Efficient OCL-based Incremental
Transformations

Frédéric Jouault and Olivier Beaudoux

Groupe ESEO, Angers, France
firstname.lastname@eseo.fr

Abstract. Active operations have recently been shown to be a possible
back-end to implement OCL-based incremental model transformations.
However, the scalability of this approach had not been evaluated yet.
This paper presents work done to address this issue by leveraging the
VIATRA CPS Benchmark. We show that our implementation of the
benchmark transformation using the Active Operation Framework scales
similarly to VIATRA. Furthermore, it presents the following advantages:
it is able to preserve collection order, and is applicable to OCL-based
approaches such as QVT and ATL.

Keywords: model transformation, incrementality, scalability, active op-
erations

1 Introduction

Incremental model transformations are becoming more and more widespread.
Several reasons make them necessary in different contexts. For instance, re-
executing whole transformations to update target models on each source model
change may not be possible for performance reasons. Another requirement may
be the preservation of target model elements identity: creating new elements
is not always the same as updating existing ones (e.g., if the target model is
observed by a third party such as a graphical editor).

However, incremental model transformations are significantly more difficult
to implement than regular ones. In general, they only become cost-efficient to
develop when they are based on a good theory, and a reusable and robust imple-
mentation, which we will call incremental framework in this paper. VIATRA [17]
is an example of such an incremental framework, providing incremental execu-
tion, while scaling to large models. No similarly mature tool exists for the scalable
and incremental execution of OCL-based model transformation approaches such
as QVT! or ATL [11].

In a previous work [10], we have already shown how active operations [1]
can be used to incrementally evaluate OCL expressions. We also showed that
this approach can be applied to model transformation [2], and have provided a
robust implementation called Active Operation Framework (AOF). However, the

! http://www.omg.org/spec/QVT/

121

scalability of this OCL-compatible incremental framework had not been asserted
before the present work.

In order to fill this gap, we leveraged the VIATRA CPS Benchmark [8].
The first step was to implement the specified CPS to Deployment model-to-
model transformation using AOF. Then, running the performance measurements
helped discover which parts needed optimization.

After implementing all the necessary optimizations to the framework, and
to the transformation itself, our AOF-based transformation scales similarly to
the VIATRA-based solutions. However, relying on active operations provides
additional benefits over VIATRA: it enables 1) preservation of collection order,
and 2) the use of OCL expressions.

Section 2 briefly presents the benchmark, as well as AOF. Implementation of
the benchmark in AOF is described in Section 3 along with some performance
results. Then, Section 4 explains how we achieved scalability, and Section 5
discusses the advantages of using AOF over VIATRA. Some related works are
presented in Section 6, and finally, Section 7 gives some concluding remarks.

2 Context

2.1 CPS to Deployment Benchmark

The VIATRA CPS demonstrator? is a model-driven engineering (MDE) scenario
going from a high-level Cyber-physical System (CPS) metamodel to Java code,
via an intermediate Deployment metamodel. It consists of several steps, notably
a model-to-model transformation from CPS to Deployment, and a model-to-text
transformation from Deployment to Java code. In this paper, we only consider
the CPS to Deployment model-to-model transformation. Multiple implementa-
tions of this transformation are provided: from simple batch-only to complex
incremental ones.

Its source and target models®, as well as its specification® are fully described
in the VIATRA documentation. All models are handled using the Eclipse Mod-
eling Framework (EMF).

The VIATRA CPS benchmark [8] is an extension of this demonstrator for
the purpose of MDE tool performance evaluation. It provides:

1. A CPS model generator, which can generate models with different statis-
tical distribution of elements and connections between them. Each of these
possible distributions is called a case. Furthermore, it can generate these
models at various scales (i.e., with varying number of elements and connec-
tions).

2 Used as motivating example in [17], and fully described in the VIATRA documen-
tation: https://github.com/viatra/viatra-docs/blob/master/cps/Home.adoc

3 https://github.com/viatra/viatra-docs/blob/master/cps/Domains.adoc

4 https://github.com/viatra/viatra-docs/blob/master/cps/
CPS-to-Deployment-Transformation.adoc

122

2. An execution machinery to launch the different transformation imple-
mentations.
3. Performance reporting tools to generate visualizations.

This benchmark is based on the MONDO-SAM framework [9].

2.2 Active Operations Framework

Active operations [1] are an approach for the incremental evaluation of OCL-like
operations on collections. Over the years, we worked on several prototype imple-
mentations. The latest implementation is called Active Operations Framework
(or AOF). It is designed as an incremental framework for the development of
model transformations, and has been developed while aiming for robustness.

AOF represents mutable values by bozes implementing the IBox<E> in-
terface. A box is either a collection (Bag, OrderedSet, Sequence, or Set) or
a singleton value (One, or Option). The types of collections are equivalent to
those available in OCL, which does not have equivalent for singleton boxes. One
(respectively Option) is necessary to represent mandatory non-nullable (resp.
optional nullable) mutable values. For instance, a Java int value is not mu-
table, and its standard object-based representation Integer is also immutable.
A TOne<Integer> wraps an Integer object, and may be mutated by replacing
the wrapped object by another one. All boxes, collections and singletons, notify
observers upon change.

Beside boxes, the second central concept in AOF is operation. An operation
produces a target box from a source box. Each operation is furthermore able
to propagate changes occurring on its source box into corresponding changes
on its target box. AOF operations are also generally (often with additional pa-
rameters such as a reverse lambda for collect) capable of propagating changes
occurring on their target box into corresponding changes on their source box.
This enables bidirectional incremental evaluation. AOF provides incremental
algorithms for elementary OCL operations such as select, collect, union, size,
isEmpty, notEmpty.

Every OCL expression can be represented by a graph with boxes as nodes,
and operations as oriented edges. Each box node represents an intermediate value
of the expression. Each operation edge represents how its target is generated and
can be updated from its source.

AQF is available in the Papyrus git repository®, where it is notably used for
experimental diagram synchronization. It provides a Java 6 API. Many of the
methods it provides (e.g., select, collect) take functions as arguments. Although
AQF is compatible with Java 6 and Java 7, more conciseness can be achieved
using the lambda expressions of either Java 8 or Xtend®.

® https://git.eclipse.org/c/papyrus/org.eclipse.papyrus.git/tree/

extraplugins/aof?h=committers/fnoyrit/aofacade
5 http://www.eclipse.org/xtend/

123

O UL W N~

The main potential scalability issue is the cost of maintaining enough infor-
mation for incremental algorithms in terms of computation time, and required
memory.

3 Overview of Benchmark Implementation with AOF

There are multiple possible implementations of a given transformation with
AOF. In this section, we detail the model traversal strategy we selected in
Section 3.1, and the concrete syntax used to write expressions in Section 3.2.
Finally, we present some performance and scalability results in Section 3.3. It
should be noted that although AOF supports bidirectional incremental evalua-
tion of OCL expressions, this is neither required nor evaluated by the VIATRA
CPS benchmark. Therefore we have not tried to achieve bidirectionality.

3.1 Source Model Traversal Strategy

Transformation rules may be called explicitly”, or implicitly®, by relying on au-
tomatic trace link resolution. Explicit rule call is more complicated when rule
selection can happen at multiple call sites. Conversely, implicit rule call can be
more costly because of rule selection mechanisms. However, the CPS to Deploy-
ment transformation does not require rule selection because there is a one-to-one
correspondence between metamodel classes and rules. Therefore, we decided to
use explicit rule call, in order to ensure better performance.

Thus, the AOF-based transformation is similar to how it would be written
with explicit unique lazy rule in ATL.

3.2 Expressions Concrete Syntax

As mentioned earlier, using Java 8 or Xtend enables much more concise lambda
syntax than earlier version of Java. Furthermore, we preferred Xtend over Java
because it is already used in the benchmark code, and it enables even more
concise and OCL-like syntax. Consider, for instance, Listing 1.1, which shows
how Xtend enables writing the bindings of a rule.

Listing 1.1. Bindings of rule hostInstance2DeploymentHost in Xtend
target._ip <=> source._nodelp

target . _applications <=>
source . _applications.collectTo (
applicationInstance2DeploymentApplication
)

7 An example of explicit rule call is ATL lazy rules.

8 Tmplicit rule call is notably the default for ATL rules.

124

N OOt W N

The first binding (line 1) binds the value of the nodelp feature of the source
element, to the ip feature of the target element (both being strings). The un-
derscore prefixing the _ip and _nodelp is there to avoid ambiguity with EMF
accessor methods. target.ip would correspond to target.getIp(), which would
return an immutable String, whereas target. _ip calls a helper method which
returns a mutable IBox<String>. The spaceship operator (<=>) has been over-
loaded to specify a call to the bind operation. Its visual symmetry indicates that
binding is a bidirectional operation in AOF, although this is not required here.
The second binding (lines 3-6) binds source applications transformed by rule ap-
plicationInstance2DeploymentApplication to target applications. The collectTo
operation is equivalent to collect in OCL, but additionally maintains source-
to-target traceability links so that it can return the same target element for a
given pair (source element, rule). In order to achieve such a concise syntax, we
used metamodel-specific helpers, which can be automatically generated from the
source and target metamodels.

In Java, the same code would look like Listing 1.2. Here, properties of source
and target elements are computed by static methods provided by the DEP and
CPS classes. These static methods are metamodel helpers that leverage Xtend
extension method syntax ?, and property access syntax for accessor method
invocation 9. This is why the Xtend syntax from Listing 1.1 is more concise.

Listing 1.2. Bindings of rule hostInstance2DeploymentHost in Java using metamodel
helpers

DEP. _ip (target). bind (CPS. _nodelp (source));

DEP. _applications (target). bind(
CPS. _applications (source).collectTo (
applicationInstance2DeploymentApplication
)

)

Without these metamodel helpers, the first binding would look like the code
of Listing 1.3. An additional issue with this syntax, beyond its verbosity, is that
the createPropertyBox method has no way to know the type of the property it
is given since it is not provided by EMF EStructuralFeatures at the type system
level with generics. Conversely, the metamodel helpers used in Listing 1.1 enable
static type checking by the Xtend compiler.

Listing 1.3. First binding of rule hostInstance2DeploymentHost in Java without meta-
model helpers

factory .createPropertyBox(
target ,

9 https://eclipse.org/xtend/documentation/202_xtend_classes_members.html#
extension-methods
10 https://eclipse.org/xtend/documentation/203_xtend_expressions.html#
property-access

125

—_

O © 00O Uk W

DeploymentPackage .eINSTANCE. getDeploymentHost _Ip ()
). bind (
factory .createPropertyBox (
source ,
CyberPhysicalSystemPackage .eINSTANCE
.getHostInstance_Nodelp ()

3.3 Scalability Results Overview

We used the benchmark machinery to measure execution time, and memory us-
age of all implementations of the transformation on each case, and at all scales'!.
The benchmark was executed on a HP Z620 Workstation with 96 gigabytes of
RAM. There is not enough place here to present all results, therefore we present
a representative sample: the publish-subscribe case.

Figure 1 shows the execution time results obtained for AOF compared to
the different VIATRA-based incremental'? approaches'® on a log-log scale. As
can be seen, AOF scales as well as VIATRA: the slopes of the different curves
are roughly equal at high scales. AOF even appears to be slightly faster, but
additional measurements on a separate machine show that it depends on the
actual hardware. The HP Z620 Workstation has faster memory, and more cores'#
than the other test machine. Therefore, we suppose the difference in performance
is due to the fact that AOF is slightly more demanding on memory allocation
and collection.

Figure 2 shows the memory usage results obtained for AOF compared to
the different VIATRA-based incremental approaches, as reported by the bench-
mark (for the Transformation phase at iteration 6). Again, AOF appears to
scale similarly to Viatra. However, these memory results are not as reliable as
the execution time ones (for instance, we have no explanation for the negative
slope of two VIATRA solutions). Measuring memory usage is particularly dif-
ficult. Notably, taking a single measurement at a specific time does not show

"' A mapping from benchmark-defined scale to number of elements and
links is given at https://github.com/viatra/viatra-cps-benchmark/wiki/
Performance-evaluation#publish-subscribe-scenario-1.

2 Results for batch implementations are not shown but are already compared with
incremental VIATRA at https://github.com/viatra/viatra-cps-benchmark/
wiki/Performance-evaluation.

13 INCR_.VIATRA_AGGRE corresponds to Partial batch transformation,
INCR_VIATRA_EXPLICI to Ezxplicit traceabilityy, INCR_-VIATRA_QUERY to
Query result traceability, and INCR_VIATRA to VIATRA EMF-based tranforma-
tion API, which are described at https://github.com/viatra/viatra-docs/blob/
master/cps/Alternative-transformation-methods.adoc#incremental.

14 Although the transformations are all single-threaded, the number of cores is relevant
for the parallel garbage collector of the Java virtual machine.

126

—e— AOF-
TEMPLA...

—— INCR_
VIATRA_
AGGRE...

INCR_
VIATRA_
EXPLICI...
—— INCR_
VIATRA_
01 QUERY_....
—— INCR_
VIATRA...

100

Time (s)

0.01
1 5 10 50 100 500 1000

scale

Fig. 1. Compared transformation execution time

peak memory usage. That being said, we observed that the maximum scale at
which transformations were executable within available memory was roughly the
same for all transformations. This shows that peak required memory is roughly
equivalent.

4 Optimization

Three kinds of optimizations have been necessary in order to achieve the scala-
bility results presented above: AOF optimizations (Section 4.1), transformation
writing methodology (Section 4.2), and specific operations (Section 4.3). Finally,
more optimization perspectives are listed in Section 4.4.

4.1 AOF Optimizations

Initial development of AOF focused on correctness (with a significant amount of
unit testing). We consider this effort as fruitful since only a couple of bugs have
been discovered (and fixed) in AOF since then. However, we did not take perfor-
mance into account at that time. Implementing the VIATRA CPS benchmark
significantly helped trigger performance bottlenecks, which we located with the
CPU profiler of the visualvm tool provided by the Java Development Kit.

The main scalability issue in AOF was due to sanity checks. Instead of using
development time assertions (using Java asserts), we wanted to throw meaning-
ful exceptions. For instance, each addition of an element to a collection without

127

—e— AOF-
/ TEMPLA....
—— INCR_

VIATRA_
10 AGGRE...
INCR_
VIATRA_
EXPLICI...
—— INCR_
VIATRA_
QUERY_...
—— INCR_
VIATRA_...

Memory (GB)
o

1 5 10 50 100 500 1000

scale

Fig. 2. Compared transformation memory usage

duplicates (i.e., OrderedSet or Set) induced a check that that element was not
already present in the collection. Although this is helpful during AOF develop-
ment, this is actually not necessary for its use. As a matter of fact, code written
using AOF never needs to directly use these methods because boxes should
only be modified by the operation creating them (except root boxes, which are
bound to EMF lists on which the changes are performed). Moreover, all oper-
ations guarantee that they do not violate these checks. Therefore, only bugs in
AOF can result in sanity check violations, which makes these checks only useful
while debugging AOF. Turning them into asserts does not sacrifice correctness.
This change alone significantly reduced time complexity.

We also performed a few local optimizations in propagation algorithms, no-
tably in the operation that converts boxes with duplicates (i.e., Bag or Sequence)
into boxes without duplicates (i.e., OrderedSet or Set).

4.2 Transformation Writing Methodology

Scalability can only be achieved if duplicate computations, and duplicate muta-
ble values (i.e., boxes) are avoided. Special care has to be taken to make sure of
it when writing AOF-based transformations with Java or Xtend as front-ends.
AOF internally caches boxes produced by its CollectBox operation, which
is a variant of collect used when the given lambda returns a mutable value. This
cache is necessary for correctness. However, we realized while working on the
benchmark that most operations should use caches to avoid duplication of work
and memory. Concretely, we must avoid having two or more boxes computed

128

UL W N

from the same initial box through the same sequence of operations with the exact
same parameters. We have not integrated caching in all AOF operations yet, but
have simply implemented it in the benchmark transformation. One difficulty in
implementing caching is that lambda expressions given as parameter to many
operations do not have intrinsic identity in Java or Xtend. This means that we
cannot use lambdas inline if we want caching, and must create them separately.
To help discover where caching is required, we created a simple tool that analyzes
the box-operation graph to detect duplicate boxes, and report where they were
created. This tool uses introspection to build a full lambda identity by taking
into account captured values. An OCL front-end could automate (and hide to
the user) most of these considerations.

4.3 Specific Operations

Operations provided by AOF are sufficient to implement the benchmark trans-
formation. However, in two specific locations they cannot provide adequate scal-
ability. This section presents the two specific operations that we developed to
overcome this issue. These operations could be later integrated in AOF. Being
able to create such specific operations shows AOF extensibility. In practice, we
expect an OCL front-end to automatically and transparently rewrite OCL ex-
pressions in terms of these operations in order to provide adequate performance.

GroupBy is well-known from database query languages such as SQL. Listing 1.4
gives an example implementation of this operation in OCL. Given a collection
(myCollection) and a function to get a key from each of its elements (getKey),
we return one tuple per unique key. This tuple contains the key, and a collection
of all elements from myCollection for which getKey returns that key. The main
issue is that there is a select nested inside of a collect. This results in quadratic
performance. We discovered this issue by using the visualvm CPU profiler.

Listing 1.4. Possible implementation of GroupBy in OCL

let keys : Set(OclAny) =
myCollection. collect (e | getKey(e))—>asSet () in
keys—>collect (key |
Tuple {key = key, elements =
myCollection—>select (e | getKey(e) = key)}

However, such an operation is required for the generation of the trace model
of the benchmark transformation. Indeed, the specification of this trace model
mandates that trace links for 2-to-1 transformation rule (e.g., from the pair
(ApplicationInstance, StateMachine) to DeploymentBehavior) be represented as
1-to-many trace links (e.g., from each StateMachine to all DeploymentBehaviors
created from a pair with that StateMachine), while forgetting the second source

129

element (e.g., ignoring the ApplicationInstance). VIATRA can work with such
a trace'®, but computing it from AOF internal trace requires additional effort.

Linear performance can be achieved by first computing a HashMap while
traversing the source collection. We implemented an active GroupBy operation
using this technique.

SelectBy Another scalability issue was due to the creation of a relatively large
number of mutable booleans (i.e., singleton boxes containing a boolean) in the
lambda of a select operation. This is mainly a memory issue, but has nonetheless
an impact on execution time due to the additionally required allocation and
garbage collection work. Consider an expression such as:

myCollection.select (e | selector(e) = someMutableValue)

where selector can be any arbitrarily complex mutable expression. Because
both operands of the equality check are mutable, a mutable boolean has to
be created for every compared pair. This produces the correct result, but can
require the creation of a relatively large number of boxes depending on where in
the transformation it appears, and which shape the model has. In practice, the
StatisticsBased case of the benchmark is the only one where the problem has a
visible impact due to its specific statistical distribution of model element types
and links.

In order to avoid this issue, we created a SelectBy operation, which can be
used in the following way:

myCollection.selectBy (selector , someMutableValue)

Internally, it works with a HashMap, which it actively maintains up-to-date upon
changes in myCollection, or in properties navigated in the selector. To detect
this kind of issue, which can be resolved with SelectBy, we created a simple
box profiler that shows hot spots in transformation code that are responsible for
the creation of many boxes. This tool is easier to use than the memory profiler of
visualvm because it focuses on boxes only, and does not need to be run separately
from the transformation.

4.4 More Optimization Perspectives

Although the optimizations presented above were enough to achieve scalability
comparable to VIATRA’s, other optimizations are possible.

First, we consider some optimizations that could be implemented in the cur-
rent version of AOF. Our optimization work so far focused on the parts of AOF
actually used in the benchmark. Other parts likely need optimization as well.
Identifying them will require a new benchmark, or operation-specific perfor-
mance tests. Memory usage could also be lowered by using specific storage for

5 There was however a bug in the plain xtend batch implementation of the benchmark
transformation that was linked to this trace representation: https://github.com/
viatra/incquery-examples-cps/issues/72.

130

singleton values, which currently use ArrayLists like collections. Finally, by giv-
ing control of caches to transformation developers, we could avoid the need for
costly weak references.

Second, other optimizations are possible with a significant rewriting work.
Mainly, relaxing order preservation on Set and Bag would improve performance
(e.g., by enabling constant time includes as can be provided by Java HashSet).
Indeed, AOF currently preserves order even on these collections for which it is
not necessary. Moreover, it is mostly because of order preservation that AOF was
under-optimized as detailed in Section 4.1: uniqueness sanity checks are slower
than they could be because all collections are backed by ArrayLists instead of
hash-based structures like HashSet. Laziness [15] could also help lower memory
usage. Finally, parallel execution may be possible, for instance by using Java 8
streams.

5 Advantages of Active Operations

Because VIATRA and AOF take significantly different approaches to the model
transformation problem, they exhibit different properties. In this section, we fo-
cus on two advantages of AOF-based transformations over VIATR A-based ones:
order preservation (Section 5.1), and extensive OCL compatibility (Section 5.2).

5.1 Order Preservation

By design, all AOF operations preserve collection order. They even do it for
unordered collections (i.e., Set and Bag), as mentioned in Section 4.4.

Order preservation is not explicitly required by the benchmark transforma-
tion specification'®, but all multivalued structural features of both the source
and target metamodels are specified as being ordered. Furthermore, the plain
xtend implementations of the transformation do preserve order, but none of the
VIATRA-based transformations do, as VIATRA has no support for this, and is
thus unable do it efficiently.

Actually, even when order preservation would bring significant benefits, VI-
ATRA approaches do not do it. Source model generation is performed using the
VIATRA query engine, and it is currently not fully deterministic for reasons
that seem to be linked to order preservation.

Beyond transformation-specific requirements on order preservation (e.g., dis-
playing target elements in the same order as source elements), it helps debugging
by resulting in deterministic target models and execution paths. It also lets de-
velopers make more assumptions when stepping through transformations.

It should be noted that preserving collection order is not always enough to
achieve order preservation of all model element properties. The reason is that
bidirectional associations can be initialized from an unordered or singleton end.

16 https://github.com/viatra/viatra-docs/blob/master/cps/
CPS-to-Deployment-Transformation.adoc

131

If order is to be maintained, the ordered end of these associations should always
be used, or order should be restored by other means'”.

5.2 Extensive OCL Compatibility

As described in Section 2, active operations enable incremental evaluation of
expressions by using mutable intermediate results produced by operations with
change propagation capabilities. This approach is applicable to OCL, as ex-
plained in [10]. The only limiting factor is availability of incremental operation
implementations.

Although not all OCL operations are currently provided by AOF, some un-
supported ones can be expressed in terms of the supported ones, with the draw-
back of being generally less scalable or at least slower than a specific implementa-
tion. For instance, many non-active functions operating on singleton values can
be lifted to operate on mutable values: by using collect when it only depends
on a single mutable value (e.g., x+1, —x), or by using zipWith when it depends
on two mutable values (e.g., x+y). For functions depending on more than two
mutable values, these values can be zipped before applying collect.

Besides, there is no theoretical issue preventing any operation from being
implemented in an incremental way. The only main difficulty in integrating a
new operation is to find efficient propagation algorithms, and implement them
correctly. For instance, iterate is not easy to make incremental in the gen-
eral case. However, if it is used with an associative operator, it can be turned
into a reduce, and computations can be arranged into a tree, which provides
logarithmic update cost.

6 Related Work

The authors are not aware of any mature OCL-based scalable and incremen-
tal transformation tool. A scalable and incremental QVT implementation is in
progress [18] but is only at the proof-of-concept level. The closest solution is to
use VIATRA [17] along with the work presented in [4] to translate a subset of
OCL to VIATRA. However, although our approach can be extended to support
all of OCL, this is not the case of that one. Another difference is that we can
preserve collection order, while it cannot (see Section 5). Moreover, our approach
has some bidirectional capability [2] that VIATRA does not have. It should be
possible to jointly use VIATRA and AOF by agreeing on a change event API,
and thus benefit from the best of both approaches.

Proof-of-concepts like incremental ATL [12] and Reactive ATL!® are able
to incrementally update target models, but they have not been shown to scale.

17 See the following bugzilla entry for a discussion on order preservation at transfor-

mation level: https://bugs.eclipse.org/bugs/show_bug.cgi?id=490172.
'8 https://github.com/atlanmod/org.eclipse.atl.reactive

132

Furthermore, although they correctly detect when to reevaluate OCL expres-
sions, they have to completely reevaluate them. Conversely, AOF only performs
a minimal amount of re-computation.

The work presented in [6] focuses on rewriting integrity check OCL con-
straints in order to enable more fine-grained incremental model validation. How-
ever, when a constraint needs to be reevaluated, this approach does not provide
means to do so incrementally. Therefore, we consider it complementary to active
operations.

A possible alternative way to support incrementality on large models is to
translate the problem to a different technical space. For instance, [13] translates
OCL expressions into SQL queries. Using this approach for model transformation
would require extending it, and would not be easy to integrate with modeling
frameworks such as EMF, and tools based on such frameworks.

Other kinds of scalability than with respect to source model size are possi-
ble. For instance, [14] focuses on graph transformation size scalability. We have
not considered this issue yet, but rule selection would likely be a performance
bottleneck.

Other approaches focus on non-incremental model transformation scalability.
Parallel ATL [16] is thus able to leverage the many cores of modern machines to
execute different parts of a transformation in parallel. As mentioned earlier, it
should be possible to parallelize the execution of active operations, and parallel
ATL could provide some valuable insight to that end. Mogwai [7] translates OCL
expressions into NoSQL queries, thus supporting very large models. Approaches
such as LinTra [5] or ATL on MapReduce [3] enable distributed execution of
model transformations. LinTra can even do it in-place. We have not considered
distributed execution of active operations yet.

7 Conclusion

The work presented in this paper leverages the VIATRA CPS benchmark [8] to
show that active operations can be implemented in a scalable, time and memory
efficient way. Although the Active Operation Framework (AOF) is not as mature
as an incremental framework such as VIATRA, it offers unique advantages: it
can preserve collection order, and can be used as an OCL back-end. The main
missing element is an actual OCL front-end built on top of AOF.

Scalability of AOF has only been evaluated for model transformation, but it
should also apply to incremental integrity constraint checking. Top performance
could likely be achieved by combining the integrity constraint rewriting work
from [6] with active operations.

Finally, the VIATRA CPS benchmark mostly evaluates scalability with re-
spect to source model size. Change propagation performance should also be
evaluated.

133

Acknowledgement

The authors would like to thank Abel Hegediis for his invaluable assistance in
implementing the VIATRA CPS Benchmark.

References

10.

11.

12.

Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.M.: Active Operations on Collec-
tions. In: ACM/IEEE 13th International Conference on Model Driven Engineering
Languages and Systems (MODELS’10). pp. 91-105. Oslo, Norway, Norway (2010),
https://hal.inria.fr/inria-00542763

Beaudoux, O., Jouault, F.: Bidirectional incremental transformations with Active
Operation Framework — Application to Facades. In: 1st Papyrus Workshop - DSML
Technologies (CEA). Toulouse, France (Jun 2015)

Benelallam, A.; Gémez, A., Tisi, M., Cabot, J.: Distributed model-to-model trans-
formation with atl on mapreduce. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering. pp. 37-48. SLE
2015, ACM, New York, NY, USA (2015), http://doi.acm.org/10.1145/2814251.
2814258

Bergmann, G.: Translating OCL to Graph Patterns, pp. 670-686. Springer
International — Publishing, @~ Cham (2014), http://dx.doi.org/10.1007/
978-3-319-11653-2_41

Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.: Parallel In-place Model Trans-
formations with LinTra. In: Proceedings of the 3rd Workshop on Scalable Model
Driven Engineering (BigMDE 2015) part of the Software Technologies: Applica-
tions and Foundations (STAF 2015) federation of conferences. pp. 52-62 (2015)
Cabot, J., Teniente, E.: Incremental evaluation of ocl constraints. In: In: Proc.
18th Int. Conf. on Advanced Information Systems Engineering, LNCS. p. 4001.
Springer (2006)

Daniel, G., Sunyé, G., Cabot, J.: Mogwai: a Framework to Handle Complex
Queries on Large Models. In: International Conference on Research Challenges
in Information Science (RCIS 2016). Grenoble, France (Jun 2016), https://hal.
archives-ouvertes.fr/hal-01344019

IncQuery Labs Ltd.: Performance benchmark using the viatra cps demonstrator,
https://github.com/viatra/viatra-cps-benchmark

Izs6, B., Szarnyas, G., Rath, 1., Varré, D.. MONDO-SAM: A Framework to Sys-
tematically Assess MDE Scalability. In: BigMDE 2014 2nd Workshop on Scalable
Model Driven Engineering. p. 40. ACM, ACM (2014)

Jouault, F., Beaudoux, O.: On the use of active operations for incremental bidirec-
tional evaluation of OCL. In: Proceedings of the 15th International Workshop
on OCL and Textual Modeling co-located with 18th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2015), Ottawa,
Canada, September 28, 2015. pp. 35-45 (2015), http://ceur-ws.org/Vol-1512/
paper03.pdf

Jouault, F., Kurtev, I.: On the interoperability of model-to-model transformation
languages. Science of Computer Programming 68(3), 114-137 (Oct 2007)
Jouault, F., Tisi, M.: Towards Incremental Execution of ATL Transformations, pp.
123-137. Springer Berlin Heidelberg, Berlin, Heidelberg (2010), http://dx.doi.
org/10.1007/978-3-642-13688-7_9

134

13.

14.

15.

16.

17.

18.

Oriol, X., Teniente, E.: Incremental checking of OCL constraints through SQL
queries. In: Proceedings of the 14th International Workshop on OCL and Textual
Modelling co-located with 17th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2014), Valencia, Spain, September 30,
2014. pp. 23-32 (2014), http://ceur-ws.org/Vol-1285/paper03.pdf

Striiber, D., Kehrer, T., Arendt, T., Pietsch, C., Reuling, D.: Scalability of model
transformations: Position paper and benchmark set. In: Proceedings of BigMDE
2016: Workshop on Scalability in Model Driven Engineering. (Jul 2016)

Tisi, M., Douence, R., Wagelaar, D.: Lazy evaluation for OCL. In: Proceedings
of the 15th International Workshop on OCL and Textual Modeling co-located
with 18th International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2015), Ottawa, Canada, September 28, 2015. pp. 46-61 (2015),
http://ceur-ws.org/Vol-1512/paper04.pdf

Tisi, M., Martinez, S., Choura, H.: Parallel Execution of ATL Transformation
Rules, pp. 656-672. Springer Berlin Heidelberg, Berlin, Heidelberg (2013), http:
//dx.doi.org/10.1007/978-3-642-41533-3_40

Varré, D., Bergmann, G., Hegedlis, A., Horvéth, A., Réth, L, Ujhelyi, Z.: Road
to a reactive and incremental model transformation platform: three generations
of the viatra framework. Software & Systems Modeling 15(3), 609-629 (2016),
http://dx.doi.org/10.1007/s10270-016-0530-4

Willink, E.: Optimized declarative transformation - first eclipse qvtc results. In:
Proceedings of BigMDE 2016: Workshop on Scalability in Model Driven Engineer-
ing. (Jul 2016)

135

136

