Re-Implementing Apache Thrift using
Model-Driven Engineering Technologies:
An Experience Report

Sina Madani and Dimitrios S. Kolovos

Department of Computer Science, University of York, UK
{sm1748, dimitris.kolovos}@york.ac.uk

Abstract. In this paper we investigate how contemporary model-driven
engineering technologies such as Xtext, EMF and Epsilon compare against
mainstream techniques and tools (C++, flex and Bison) for the develop-
ment of a complex textual modelling language and family of supporting
code generators (Apache Thrift). Our preliminary results indicate that
the MDE-based implementation delivers significant benefits in term of
conciseness, coupling and cohesion.

1 Introduction

A number of frameworks and protocols have been developed over the years to
facilitate service-oriented architectures, such as CORBA, Protocol Buffers, Avro
and Thrift [1]. These technologies enable a cross-platform client-server model to
be implemented with minimal duplication of development effort. This is made
possible by the use of an Interface Definition Language (IDL); - a domain-specific
language for defining the data and services provided by a server. These defini-
tions are then used to automatically generate code to enable communication
across languages and platforms. Despite most of these technologies being open-
source, they are not straightforward to understand or modify; potentially due
to the tools and processes used to develop them (e.g. code generation through
string concatenation). We set out to investigate whether using contemporary
model-driven engineering facilities can provide an improvement over traditional
development methods and tools in terms of conciseness, cohesion and coupling.
To achieve this we have re-implemented’ a substantial part of Thrift using Xtext,
EMF and Epsilon [2, 3], and in this paper we report on our findings.

2 Background

Apache Thrift is a software framework for defining services which work across
languages and platforms. Thrift provides the necessary tooling to support a
service-oriented architecture across several different languages using an Interface

Y https://github.com/SMadani/ThriftMDE/

149

Definition Language (IDL). Thrift IDL files define the services, data types and
functions provided by the services in a single domain-specific language. Thrift
then parses these files and generates the appropriate skeleton code for both client
and server in the chosen language(s).

The current implementation of Thrift’s compiler is written entirely in C++
using conventional tools and a procedural approach. Since Thrift has its own
syntax and type system, it requires a parser to process IDL files. To automate
this process, the current implementation uses two well-established tools in order
to generate the code for parsing Thrift files: flex and Bison. Flex (Fast Lexical
Analyser) allows the developer to define a set of tokens using regular expressions,
and when a rule is matched, a specified block of code is executed. These tokens
make up the primitive building blocks of the language’s grammar; which is then
fed into a parser. Bison is a parser generator which allows the developer to define
parser rules from a set of tokens, and specify a block of code to execute when a
given rule is matched. Although the grammar specification of Thrift is defined
between a flex and Bison file, the abstract syntax tree is left to the developer
to configure; as is the integration between flex and Bison. These tools simply
execute code when a certain set of symbols are encountered - they do not create
any data types or objects. This is left to the developer to manually configure,
and so the compiler has a "parse" directory solely dedicated to the declaration of
classes to be used during the parsing process. This directory contains 20 files; 18
of which are class representations of Thrift types. For example, there is a 13KB
file called "t _program.h" which represents an entire Thrift program. This class
contains some utility methods as well as a list of all the program elements, such
as services, structs, enums etc. There are other files for representing lower-level
constructs too, such as functions and even fields. Again, it is worth noting that
these classes must be created and populated by hand-written code in the Bison
file.

The process of parsing Thrift’s IDL in the current implementation is quite
verbose and distributed across many files. The hand-written flex file is around
400 lines, and the parser is approximately 1300 lines of manually written code.
Then there are the class representations of program elements; which are relatively
short but numerous. One should also bear in mind that this does not include
semantic validation; which is mostly performed in the main compiler program.
The main compiler has four tasks: parse the command-line arguments, feed the
Thrift file into the parser to obtain an object of type "t program", validate the
program and then pass it into the appropriate code generator depending on the
language specified. This list of tasks occupies over 1200 lines of code; although
it also includes help functionality, typical for command-line programs.

With regards to code generation, Thrift has a single C++ code file for each
language, and a main file to perform any initialisation and call the top-level
generation functions which are present in all languages. For example, the gener-
ator will call the "generate service" function for every "t service" object (i.e.
a "Service" definition) in the IDL specification. All generators in all languages
have these top-level functions defined. The size of the generators vary greatly

150

depending on the language. In the Java generator, there are approximately 100
functions and the file is 5129 lines long (187KB). The Ruby generator however
is much smaller at 1231 lines long (40KB). The code itself is written to a file
output stream directly with string concatenation.

Thrift’s compiler appears to be an ideal use case for an MDE approach. After
all, code generation has been described as "the heart and soul of model-driven
engineering" [4], and there are a number of tools available specifically designed
for the kinds of tasks involved in creating a domain-specific language. Intuitively,
it makes sense to treat an abstract syntax of a language as a model; which can
then be validated and transformed with dedicated tools. The purpose of this
work is twofold. Firstly, it aims to establish whether a model-driven approach
is indeed superior to the more conventional approach as used by Thrift; and to
what extent. Secondly, it serves as an evaluation of the maturity of MDE tools
by applying them in practice to implement a sufficiently complex compiler that
is currently in use.

3 Re-Implementing Thrift using Xtext and Epsilon

The Eclipse Modelling Framework (EMF) offers a platform for interoperability
between MDE tools. This is primarily achieved through Ecore, which is con-
sidered to be the de-facto implementation of the Object Management Group’s
Essential MOF (Meta-Object Facility). Ecore offers a unified meta-modelling
solution on the Eclipse platform, which can be used by various applications. Of
particular significance to this project are two such tools: Xtext and Epsilon.

Xtext is a framework for creating and supporting textual domain-specific
languages. Unlike conventional parser generators such as Bison, Xtext offers a
complete all-in-one solution for developing a DSL. This includes a tokenizer,
parser, editor and even a metamodel for the language. Xtext has its own gram-
mar definition language which allows the user to define their language using
an Extended Backus-Naur Form notation. This means that unlike older tools
such as Bison, the grammar is self-documenting and more readable because it
does not contain any imperative code. For instance, Listing 1.1 is a definition of
Thrift’s "Service" concept in Xtext:

//Services are interfaces.

Service:
(comment = ML_COMMENT)? 'service' identifier = IDENTIFIER ('extends' supers =
IDENTIFIER)? '{' (functions += Function separators += LIST_SEPARATOR)x '}';

Listing 1.1. Xtext definition of Thrift’s Service concept

Perhaps one of Xtext’s most useful features is that the grammar is backed by
an Ecore metamodel, which can be automatically generated from the grammar
itself. That is, Xtext automatically maps grammar rules into appropriate Ecore
types. When the Xtext parser is run against a Thrift IDL file, the abstract syntax
tree (as defined by the generated Ecore metamodel) is populated from matching
rules. Therefore, unlike the C++ implementation, the process of obtaining an
AST is largely automated.

151

Furthermore, Xtext and EMF have APIs which allow for a stand-alone Java
application to be set up. This allows us to programmatically invoke the parser
against a given Thrift IDL file and obtain the AST in the form of an Ecore
model in just a few lines of Java code. Once obtained, we can then pass this into
Epsilon; which we turn to next.

Epsilon is a family of model management tools and languages aimed at simpli-
fying common MDE tasks such as model validation and model transformation.
Epsilon is compatible with a variety of model sources, including EMF /Ecore.
At the core of Epsilon is the Epsilon Object Language (EOL), an imperative
model-oriented language that combines the procedural style of JavaScript with
the powerful model querying capabilities of OCL. Epsilon also has two task-
specific languages of interest: Epsilon Validation Language (EVL) and Epsilon
Generation Language (EGL). The former is used to perform semantic validation,
and the latter is used for code generation.

As with Xtext, Epsilon has a Java APIs, so we can pass our parsed EMF
model into both EVL and EGX modules; as well as including additional parame-
ters (for example, the current date or the specified language). Naturally, the first
step is to perform semantic validation. Although Thrift is not a Turing-complete
programming language, it is still sufficiently complex to warrant validation logic
beyond what is feasible at the parsing stage. It supports C-like features such
as defining constant values (including complex types such as maps and lists),
structs, unions etc. as well as inheritance between services and exceptions —
amongst other things. There is also a need to ensure that names do not clash
with any of the supported languages’ keywords, and to check for unique identi-
fiers within a particular scope. For example, two functions may have the same
name in different services but not if they’re part of the same service. EVL pro-
vides the necessary constructs to perform all of these checks and report any
errors in a concise manner. For example, an EVL constraint that checks that all
of the fields in a given scope are uniquely named is illustrated in Listing 1.2.

context Field ({
guard: self.eContainer.isDefined()
constraint uniquelIdentifiers ({
guard: self.eContainer.hasProperty ("fields"
check: self.eContainer.fields.one

(field | field.identifier == self.identifier)
message: self.eContainer.identifier+" has multiple fields with the name '"+self
.identifier+"'."

Listing 1.2. EVL constraint that checks name uniqueness

Moving on to code generation, we use two languages: EGX and EGL. EGL is a
template-based model-to-text language that compiles down to EOL. As such, we
can make full use of EOL’s features, such as operations and extended properties.
In order to improve readability, re-use and cohesion, we can move commonly
used functionality to separate EOL and/or EGL files (since operations may also
contain static sections).

Unlike many interface definition languages, Thrift supports container types
such as maps and sets (which may have arbitrary levels of nesting), as well as

152

"structs" and "typedefs". Even with a neatly structured grammar, the sheer
number of different types that Thrift supports requires an extensive number
of operations to process. For each language, there is also a separate EGL file
which contains further language-specific operations which are used by other tem-
plates. These may include operations which are sufficiently complex to warrant
separation from the main template to improve readability, or operations in a
more generic context (such as "Field"; which is used by most top-level elements)
that serve as utility functions - for example, converting from a Thrift type to a
language-specific type.

EGX is a rule-based co-ordination language for co-ordinating the execution
of EGL templates. For instance, we can create a rule which will invoke the
"enum" template for every "Enum" type in our model. We can pass the relevant
parameters to the template, which may have been declared in the "pre" block or
from Java. The invoked template’s output will be written to the specified target
file as illustrated in Listing 1.3.

rule Enums transform enumeration : Enum {

parameters {
var params : new Map;
params.put ("enumeration", enumeration);
params.put ("package", pkgId);
params.put ("date", date);

return params;
}
template: "thrift-java-enum.egl"
target: outDirtenumeration.identifier+".java"

}

Listing 1.3. EGX rule for generating Enumerations

4 Evaluation

We have re-implemented Thrift’s compiler with support for two output lan-
guages: Java and Ruby (though without additional generator option flags). We
will compare our implementation with the existing one using lines of (hand-
written) code as a metric. Clearly, this is by no means an ideal qualitative mea-
sure for comparing two different approaches due to potentially differing coding
styles. However, if the two implementations vary significantly in terms of lines of
code, then we may be able to draw some conclusions with regards to the general
effort required to achieve the same functionality.

It should be noted that we tried to replicate the existing implementation’s
functionality as closely as possible. With regards to the generator(s), this in-
volved closely inspecting the source code as well as the output for a number of
different Thrift IDL files - specifically from Thrift’s repository of complex test
files designed for such purposes. We used Eclipse’s text comparison editor to
highlight any differences in the output of the two implementations, and itera-
tively worked to ensure that no (major) differences were found between their
respective outputs. The results are presented in Table 1.

153

Table 1: LOCs in the components of the two implementations

Implementation C++ Model-Driven
Language definition 3419 (105 KB) 447 (14 KB)
(parsing & validation)

Language-neutral code 712 (22KB) 1036 (26 KB)
Java generator 5129 (187 KB) 2224 (73 KB)
Ruby generator 1231 (40 KB) 422 (14 KB)
Total >10491 (395 KB) |4149 (128 KB)

Firstly, we begin by comparing the parsing process. We shall separate this into
two parts: the grammar and semantic validation. With regards to the grammar,
this includes all hand-written code required to obtain the IDL abstract syntax
tree for a given input file. This also includes any code required to read in the
input file specified in the command-line arguments. For our implementation, this
is around 7 lines of Java code to obtain an "EmfModel" from a specified input
file. The grammar definition in Xtext is 146 lines long. Meanwhile, the C+-
implementation is approximately 400 lines for the lexer, and 1300 lines for the
parser. On top of that, there are the additional parse types; which add another
1560 lines (approximately). There is also the header file for the main program
at around 80 lines, as well as the "parse" function in the main program; which
is 70 lines long. This totals well over 3000 lines of manually written code just to
obtain the AST, compared to the MDE implementation’s 150 or so lines.

Moving on to validation, the existing implementation appears to be quite
concise, with approximately 250 lines of code. By contrast, our EVL constraints
file combined with some of the helper functions it uses is approximately 360
lines. However, it is worth noting that the two implementations do perform
certain checks at different stages. For example, there is a set of illegal identifiers
which are banned because they clash with language keywords. In the existing
implementation, they are declared during the parsing process, whereas we check
for these during validation. Validation is also performed at runtime (i.e. during
code generation) in the existing implementation by throwing exceptions. Some
of the validation logic in the current implementation is also built in to some of
the parse types (classes), so it is difficult to separate the validation from parsing
to some degree. Nevertheless, there seems to be little effort saved in validation
by using EVL over a general-purpose language.

Finally, we turn to code generation. The current implementation has a sepa-
rate language-independent generator file which is over 150 lines, and is roughly
similar in function to our EGX coordination rules. Our Ruby EGX is 65 lines of
code. Meanwhile, our Ruby generator is 422 lines of code when adding up all of
the templates. However, this does not include the generic EOL file (1036 lines)
which contains many commonly used operations that are language-independent,
but still used by the Ruby generator. Our generators also do not support any ad-
ditional option flags. Based on these results, it appears that although a template-
based approach to code generation has the potential to be more concise (by up to
threefold in the case of Ruby) and, arguably, more readable, there is insufficient

154

evidence to suggest that the benefits are overwhelming compared to traditional
approaches - particularly for the dynamic code generation sections. This is per-
haps because the Thrift generator contains a lot of complex logic which can be
comfortably expressed using a general-purpose language such as C+-+, whilst
there are relatively fewer "static" sections; where a template-based language
would be better suited especially for complex languages like Java; where the
savings in terms of code are relatively smaller (5129 vs 2224). That is, a template-
based model-to-text transformation can reduce the accidental complexity, but
has marginal benefits in expressing inherent complexity more concisely.

We appreciate that fewer lines of code is not necessarily an improvement as
this can be achieved by simply using an obscure coding style. Of greater interest
are metrics such as readability and modifiability; which are arguably related to
cohesion and coupling. Although these are subjective to some extent, we can
make some comparisons based on the structure of the two implementations. We
have seen that the existing compiler has many files used for defining the IDL
and parsing it; all of which vary greatly in length but contribute piecewise to
the process. For instance, it would be difficult to argue that the existing imple-
mentation’s grammar is easier to deduce from flex and Bison source compared
to our singular Xtext file (which arguably has self-documenting syntax). If one
wanted to make a change to the language, it would simply be a case of modifying
the Xtext grammar, whereas the equivalent change in the existing implementa-
tion may be much more complicated due to the low cohesion and high coupling
between various files.

Furthermore, we argue that a template-based approach is more cohesive and
traceable than using one huge file because it is easier to find which part of the
generator contributes to a specific part of the output. For instance, by having
an EGX file, we can see how many files will be produced and what they will
be called. By splitting up the generation into multiple templates, each template
file reads similarly to the expected output file; albeit with dynamic sections to
express some logic. With regards to validation, we argue that using a domain-
specific language such as EVL makes for a much more cohesive expression of
language semantics - not only because of the syntax but also because it’s a single
file; as opposed to the relatively sparse approach of the existing implementation.
Overall, we make the case that a model-driven approach is far "cleaner" in its
workflow compared to a C++-based implementation.

5 Conclusions

We set out to discover whether the contemporary MDE tools and techniques offer
a significant advantage over conventional approaches in creating a compiler for an
intermediate language. Our findings suggest that frameworks such as Xtext offer
a much better alternative to defining and parsing a language than traditional
tools such as flex and Bison. This is mainly because Xtext enables developers to
define a grammar with relative ease and conciseness without extensive knowledge
of the concepts involved in the lexing and parsing process, whilst also providing

155

an abstract syntax tree without requiring the developer to explicitly specify how
to do this. However, with respect to code generation, it appears that although a
template-based model-to-text transformation provides a significant reduction in
code required to achieve the same output, the benefits are less pronounced for
complex dynamic sections.

We have focused on an objective measure - in this case, the number of lines
of code. However, this metric is arguably less useful to a prospective developer
than more subjective aspects, such as readability and modifiability. Given the
specialised nature of the tools used in our model-driven approach, we argue
that an MDE-based implementation is more cohesive because each stage of the
compilation process has its own dedicated tools and semantics. For instance,
the grammar definition and overall parsing process is far more concise (and
arguably more readable) because Xtext allows us to focus solely on language
specification rather than dealing with relatively low-level lexing and parsing
constructs. With respect to validation, although there aren’t any gains to be
made in terms of lines of code, the specialised nature of a language like EVL
makes for a more idiomatic approach to specifying constraints. Finally, code
generation is also more specialised, with a template-based approach allowing for
improved readability; since each template describes a single file, and it is easy
to distinguish between static and dynamic sections. However, for logic-intensive
generators such as Thrift, there is not a significant enough difference in terms of
lines of code to recommend an MDE approach solely on the basis of conciseness.
However, we recommend the MDE approach overall for its superior cohesion.

Further research on this topic should focus on evaluating the two approaches
more formally - perhaps through developer surveys or elaborate experiments -
across a wider range of more important criteria, such as ease of development,
readability, testability and modifiability. In doing so, further insights can be
gained on both the adequacy of MDE tools and the logistical benefits of a model-
driven architecture.

Acknowledgements This research was part supported by the EPSRC, through
the Large-Scale Complex IT Systems project (EP/F001096/1) and by the EU,
through the Scalable Modelling and Model Management on the Cloud (MONDO)
FP7 STREP project (grant #611125).

References

1. Apache Foundation. Apache Thrift, 2016. https://thrift.apache.org.

2. Richard F. Paige, Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos, Fiona
A.C. Polack. The Design of a Conceptual Framework and Technical Infrastruc-
ture for Model Management Language Engineering. In Proc. 14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, Potsdam, Ger-
many, 2009.

3. Eclipse Foundation. Epsilon, 2016. https://eclipse.org/epsilon.

4. Shane Sendall and Wojtek Kozaczynski. Model Transformation the Heart and
Soul of Model-Driven Software Development. IEEE Software, 20(5):42-45, Septem-
ber/October 2003.

156

