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Abstract. Despite the advent of scalable process mining techniques that
can handle both noisy and incomplete real-life event logs, there is a lack
of scalable algorithms capable of handling a common cause of model un-
derfitting: when the same activity in the log in fact behaves differently
depending on the number of occurrences in a particular trace. This paper
proposes a simple scalable technique to identify these cases and success-
fully mine better process models from event logs. The technique has been
implemented and evaluated on well-known benchmarks in the literature.

1 Introduction

Process discovery techniques strive to derive models that are expected to be
good under four quality dimensions: fitness, precision, generalization and sim-
plicity [4]. Hence, these are multi-objective techniques that search in a large solu-
tion space, where typically not one but many optimal solutions exist. In practice,
each discovery technique puts the emphasis in a proper subset of dimensions; for
instance, techniques based in the theory of regions focus on deriving fitting and
precise models, while simplicity and generalization is not always guaranteed. An-
other example is the recent block-based techniques that recently appeared [6, 7],
where structured, fitting, generalized and simple process models are preferred.

The techniques from [6, 7] are the driving force of this work. On the one
hand, they are among the few scalable process discovery technique that can de-
rive structured process models. This has made [6, 7] one of the most popular
techniques for process discovery nowadays. However, as mentioned in [3], these
techniques can sacrifice precision significantly for the sake of deriving a fitting
structured model (see the example in Section 1.1). The alternative offered in [3]
is to use evolutionary techniques, which are far from scalable. Instead, the tech-
nique proposed in this paper represent a fresh look at this problem, amending
(when possible) process models derived from the technique in [6, 7] as a simple
post-processing step, based on unrolling loops in the model whenever the num-
ber of loop iterations found in the event log satisfy certain criteria. Next section
illustrates the intuition behind the technique of this paper.
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(a)
(b) (c)

Fig. 1. A first model accepting traces such as σ = ABCADCBACDACABCADCBA-
CADE. The second model is an unrolled version that only accepts executing twice the
initial iterative behaviour. Finally, a repair of the model with respect to the trace σ
highlighted that the second choice construct could be simplified to a simple sequence.

1.1 Label splitting as loop unrolling to improve precision

Consider the model Figure 1.a, which was discovered by considering the trace σ =
ABCADCBACDACABCADCBACADE. It is hard to notice that the precision
of this model could be improved: Activities A, B and D can be found in any
ordering and hence the parallel construct is appropriate, and trace σ hints that
the iterative approach might be a good candidate for describing such a process.
Nevertheless, a further analysis shows that there is still place for improvement.

In this paper, we propose to unroll iterative parts of a process to check if there
are hidden relations between the activities that are hindered by the limitation
of only having one single copy of the activity in the model. See Figure 1.b for
an example of such unrolling. In this particular case, we have chosen to repeat
the iterative structure so we are forcing to execute its subprocess twice in each
iteration. A replay of trace σ on this new process model highlights that activities
B and D were never mutually exclusive. And hence, one could discover that the
process model of Figure 1.c might be more precise in describing σ.

1.2 Related work

Different approaches exist in the literature for the problem of label splitting
in the context of process mining. We will focus here in recent approaches, and
will illustrate the different nature of the technique of this paper with respect to
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them. The heuristic techniques in [10, 8] rely on a window local search approach
to define the duplication of certain candidate activities. This process is done in
the model itself ([10]) or as a refinement of the input log ([8]). By focusing on
the loops of a process model, the technique of this paper complements these
approaches.

Alternatively, global approaches can be found in [9, 5]. These global methods
rely on the use of unfolding of the process model ([9]) and a later optimization
technique to fold back activities, or search for special states of the underlying
state space of the model ([5]), followed by a clustering strategy to merge them
heuristically. By relying on complex representations and techniques (unfoldings
or state spaces can be exponential on the size of the models), these approaches
cannot be applicable for large inputs.

2 Definitions and notation

Definition 1. A process model, or simply process, N = (A, C, E) is a di-
rected graph consisting of activities A, control elements C and edges E. Edges
connect activities and control elements. Control elements define the behavior of
the process model, and are of any of the following types start, finish, split-choice,
join-choice spilt-parallel, join-parallel. The only condition over the graph struc-
ture is that all maximal paths must start and end with a start and a finish control
flows. A subprocess of N is any valid process model (A′, C′, E ′), with A ⊇ A′,
C ⊇ C′, in which E ′ is defined as all edges in E that connects any pair of elements
in A′ and/or C′.

Processes are a graph representation of a potentially infinite set of sequences
of events, which is denoted by L(N). Generally, all paths from the initial start
control element to the end traverse a sequence of activities. Such sequences are
the elements of L(N). Although the graphical notation used for representing
processes is irrelevant in terms of the results presented in this paper, Business
Process Modelling Notation will be used to improve understandability.

Definition 2. Structured process imposes extra conditions on the control ele-
ments of a process: all split-parallel nodes (resp. split-choice) must have a unique
corresponding join-parallel node (resp. join-choice) such that all paths connect-
ing these two nodes must visit zero or two of any other pair of control elements.
This correspondence is unique in the sense that if two split nodes u and v have
the same corresponding join node, then u and v are the same node.

This definition allows us to consider structured processes as smaller sub-
processes or individual activities that are interconnected via edges or control
elements. Due to the soundness of structured processes, some notions can be
easily described.

Definition 3. An iterative subprocess or loop l is the combination of two
subprocesses that describe a process that can be repeated. The forward path
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of l (fwd(l)) is the subprocess that must be executed at least once during the
execution l. Whereas the backward path of l (back(l)) is the subprocess such
that its execution enforces the loop to re-execute fwd(l).

From now on we will consider all process models to be structured. Impor-
tantly, structured processes allow us to map particular events in the trace to a
subprocess in the process model. Allowing us to define the following notions:

Definition 4. Given a process model N with a loop l and a trace σ ∈ L(N), we
define El(σ) as the number of times fwd(l) is executed during the execution of σ.

Definition 5. Let l be a loop of a process model N and σ a trace accepted by
N . We define the projection of σ to l (denoted by σ|l) as the result of keeping
the events that are mapped into activities contained in l after a replay of σ
in N . Moreover, we define the projection of σ to the exit condition of l
(denoted by σ|Exit(l)) as keeping the events that are mapped into activities of N
that cannot coexist with the execution of l. In particular, all activities contained
in l and any other concurrent activity are erased by this projection.

Considering again the process model of Figure 1.a and trace σ = ABCAD-
CBACDACABCADCBACADE, we have a loop structure l consisting of: as the
forward path, activities A, B and D that can be executed concurrently but B
and D are mutually exclusive; and activity C as its backward path. The forward
path was executed El(σ) = 8 times; σ|l = σ − {E} whereas σ|Exit(l) = E. Any
execution of activity E clearly indicates that any event after event E is not part
of the loop.

Definition 6. (Fitness and precision) Process mining techniques aim at extract-
ing from a log L a process model N with the goal to elicit the real unknown process
S. By relating the behaviors of L, L(N) and S, particular concepts can be de-
fined [4]. A process model N fits log L if L ⊆ L(N). A process model is precise
in describing a log L if L(N)\L is small.

Unless stated otherwise, we assume we deal with fitting process models. In
case this condition is violated, we assume the process models are first aligned
with current techniques to satisfy the fitness condition [1].

3 Label splitting with loop unrolling

Most discovery algorithms generate processes in which activities are not dupli-
cated, forcing the algorithm to introduce loops when an activity is consistently
occurring multiple times per trace. Unfortunately, this constraint may overgen-
eralize the resulting process model. Consider, for instance, trace σ = ABCA.
A technique like the ones in [6, 7] will produce an iterative process model even
though the trace is not showing so clearly that behavior.

First we will describe the unrolling algorithm for improving the precision of
loops that are not included in any other iterative process. The main idea of this
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algorithm is to create a process model that forces the re-execution of the loop
and then filters out unused elements. Finally, we will extend this algorithm for
the case of nested loops.

3.1 Simple case: Unrolling of individual loops

The first process model of Figure 1.a depicts a process describing the log consist-
ing of the trace ABCADCBACDACABCADCBACADE. One may notice that,
when replaying the log on the process model, the forward path (Activities A, B
and D) is executed a multiple of two. Hence, we may force the process model to
repeat the loop as in Figure 1.b. The unroll of a loop is precisely the process of
making explicit this transformation.

Definition 7. A k-unroll of a loop l is the process of substituting the loop for
the subprocess defined by a loop structure with:

– A sequence of k− 1 copies of the sequence fwd(l);back(l) as the forward path
of the new loop structure,

– finishing the aforementioned sequence with another copy of fwd(l);
– The back(l) is maintained as the backward path of the new loop structure.

In Figure 1.b, a 2-unroll of the iterative process is performed. In this case, the
subprocess containing activities A, B and D is the forward path, whilst activity
C is the backward path. And hence, its 2-unroll produces a loop structure with
the sequence AND(AOR(B,D))C AND(AOR(B,D)) as the forward path and
maintains C as the backward path.

Proposition 1. Given a process model N describing the log L, a k-unrolling
(k > 1) of a loop l increases the precision of the model.

Besides, if the process model fits log L and k is a divisor of the greatest
common divisor (gcd) of the number of executions per trace of the forward path
of l, then the k-unrolled process also fits log L.

Proof. Let l be a loop of N and let Nk be a k-unroll of l with k > 1. By
construction of the k-unroll, we can ensure that any trace is an element of the
language of N such that the forward path of l is executed a multiple of k times.
I.e.

L(Nk) = {σ ∈ L(N) |El(σ) is divisible by k}

We will show that L(Nk) ( L(N) and hence, based on Definition 6, Nk

improves the precision of process model N . Let σ′ be a trace accepted by the
process N that visits exactly once the forward path of the loop l, and hence the
backward path of l is never visited. Since 1 is not a multiple of k, we can ensure
that σ′ is not an element of L(Nk) and hence L(Nk) \ L is a non-trivial subset
of L(N) \ L and therefore the precision of N ′ is bigger than the precision of N .

Besides, let k be a divisor of the greatest common divisor of the number of
executions per trace of the forward path of l, N a process model that fits log L
and Nk the k-unroll of the process model N . Let σ′ be a trace of the log L. Since
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N fits log L, the trace σ′ is in the language of the process model. Moreover, the
number of executions of the forward path of l is a multiple of k and hence the
trace σ′ is also an element of the language of L. Therefore, Nk fits log L. �

Once all loops have been unrolled, some activities and structures of the result-
ing process model may be redundant or unused and can be removed or simplified
allowing for further improvement on the precision of the process model. The first
process model of Figure 2 describes traces ACADBCBD, BCBDACBD and
BCAD. Such process may benefit from a 2-unroll as shown in the second process
model. Besides, a replay of the three traces highlight that split choices between
C and D are unnecessary: starting with C, activities C and D alternate in the
execution of the process model. The last process model of Figure 2 depicts the
process model after pruning unused paths.

Fig. 2. A process model describing the traces ACADBCBD, BCBDACBD and
BCAD.

3.2 General case: Unrolling of nested loops

Structured subprocesses allow process models to have nested loops structures
This poses a problem for deciding the number of unrolls, as the number of
executions of the forward path per trace may be interleaved across embedded
loops. The process model from Figure 3 depicts a process with a nested loop that
accepts trace ABBBABBB. If we follow the count executions of the forward path,
then activity B is recommended to be unrolled 6 times, even though it has never
been executed 6 times in a row.
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Instead of considering the number of executions per trace, we may count the
number of consecutive executions of a forward path. In the particular case of
trace ABBBABBB, the forward path B is consecutively executed 3 times at two
different points in the trace, whilst the forward path consisting of activities A
and B is consecutively executed 2 times. Definition 8 formalises this concept by
counting the number of executions on maximal subtraces contained in the loop
subprocess.

Definition 8. Let l be a loop structure of the process model N , and σ a trace
accepted by N . Then we define the set of continuous executions of the loop
l in the trace σ as

CEl(σ) =

n
∣∣∣∣∣∣∣∣∣∣
∃σ1, σ′, σ2 s.t.

σ = σ1σ
′σ2

σ′|l ∈ L(l)
σ′|Exit(l) = ∅
El(σ

′|l) = n
σ′ is maximal


Informally, the set CEl(σ) represents a set of numbers, each one denoting con-
tinuous executions of l in σ.

The combination of no exit condition and maximality of subtrace σ′ in Defini-
tion 8 ensures that we are splitting the trace σ on chunks such that a continuous
execution of the loop l is not separated in two different subtraces. Besides, non-
consecutive executions of the loop cannot be included in the same group as this
would have shown some activities incompatible with the execution of the loop.
Notice that activities that are executed concurrently alongside the iterative sub-
process l might be included in the subtrace σ′, but they are removed during
the projection to the iterative subprocess l and they are not part of the exit
condition.

Consider trace σ = ABBBABBB and the smaller loop, or B-loop, of process
model 3. The exit condition of the B-loop is activity A, since any execution of
that particular activity clearly shows that the execution is happening outside
the B-loop. Hence, we may split σ in two instances of σ′ = BBB. Notice that
we cannot extend it since then we would include an exit condition, and σ′ is
accepted by the B-loop. And therefore, CEB−loop(σ) = 3.

Similarly to the non-nested case, the language accepted by an unrolled pro-
cess model can be described as a refinement on the language accepted by the
original process model as depicted in Proposition 2.

Proposition 2. Let N be a process model, and l a loop subprocess of N . Let Nk

be any k-unroll of l. Then

L(Nk) = {σ ∈ L(N) | ∀n ∈ CEl(σ), n is divisible by k}

Proof. The definition of the k-unroll of loop l ensures that any execution of
the loop l executed a multiply of k times the forward path of l and hence any
maximal subtrace σ′ ⊆ σ such that σ′|l ∈ L(l), σ′|Exit(l) = ∅ must satisfy that
k divides El(σ

′).
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On the other hand, let σ be a trace in L(N) such that all continuous exe-
cutions CEl(σ) are divisible by k. Then, σ is also an element of the language
L(Nk). Suppose not, then the trace σ violates any behavioural relation between
a set of activities or the iterative process must finish before repeating k times
the forward path. Both cases are not possible. The former violates the fact that
σ ∈ L(N) and the latter violates the fact that CEl(σ) only contains multiples
of k. �

Proposition 3 is a direct consequence of Proposition 2, due to the hard con-
straint that k divides all n ∈ CE(t, l).

Proposition 3 (Generalization of Proposition 1). Given a process model
N describing the log L, a k-unrolling (k > 1) of a loop l increases the precision
of the process model. Besides, if the process model fits log L and k is a divisor
of CL(l, t) for all t ∈ L(N), then the k-unrolled process model also fits log L.

Revisiting the example of trace ABBBABBB and the process model of Figure
3, which contains a nested loop, a replay of the trace contemplates that the
big loop is executed 2 times and the smaller loop is executed 3 times on each
execution. Hence, we could perform a 3-unroll on the latter and a 2-unroll on the
former. Doing so, we discover the second process model of Figure 3, and a second
replay highlights the possibility of removing the unnecessary loop structures as
illustrated by Figure 3.

Fig. 3. Three process models describing the trace ABBBABBB.

4 Evaluation

To evaluate our duplicate technique, we reuse an existing dataset comprising 15
small logs [10] whose source processes are well-known and reproduce behavior
commonly found in real-life scenarios. Besides, we also considered the BPI Chal-
lenge 2012 dataset. This real-life log contains events describing the application
process for a personal loan, or overdraft, within a global financing organization.
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From all these events, we have only selected the events starting with W as they
show actions performed by workers of the organization, instead of states in a
fixed sequential process.

Inductive Miner (IM) IM + Unrolling PNSimpl
Model P T τ Precision Fitness P T τ Precision Fitness Precision

alpha 11 17 6 0.6750 1.0 12 19 3 0.7386 1.0 0.70

betaSimpl 14 21 8 0.6216 1.0 14 15 2 0.9130 1.0 0.93

Fig5p1AND 9 8 3 0.8333 1.0 10 8 2 1.0000 1.0 1.00

Fig5p1OR 5 6 1 0.7000 1.0 6 6 0 1.0000 1.0 1.00

Fig5p19 9 14 6 0.6746 1.0 Not applicable 0.85

Fig6p9 10 15 8 0.6667 1.0 Not applicable 0.83

Fig6p10 15 24 13 0.6282 1.0 Not applicable 0.76

Fig6p25 22 35 14 0.7629 1.0 25 36 13 0.8467 1.0 0.84

Fig6p31 6 10 1 0.6250 1.0 7 10 0 0.90 1.0 1.00

Fig6p33 7 11 1 0.6667 1.0 8 11 0 0.90 1.0 1.00

Fig6p34 17 24 12 0.5785 1.0 Not applicable 0.93

Fig6p38 13 11 4 0.6212 1.0 13 10 2 0.77 1.0 0.65

Fig6p39 12 12 5 0.8986 1.0 Not applicable 0.89

Fig6p42 7 18 4 0.2284 1.0 Not applicable 0.74

RelProc 21 28 12 0.7143 1.0 Not applicable 0.73

BPIC2012 15 22 15 0.6195 1.0 16 23 15 0.6594 0.9893 0.79
Table 1. Comparison of the precision in selected process models discovered with In-
ductive Miner and then Unrolled. The simplicity of the processes is also depicted with
the number of places P , transitions T and silent activities τ in the discovered Petri
Nets. For some cases the unroll is not possible without sacrificing fitness.

Table 1 contains the precision obtained with the process model discovered
with Inductive Miner (IM), the precision obtained after unrolling these process
models and precision obtained by PNSimpl [5]. We have used the alignment-
based precision metric [2] for this evaluation. 7 out of 15 processes do not show
any improvements with our technique since it was not possible to perform an
unroll without losing fitness. For the BPI Challenge 2012 log, it was also not
possible to perform an unrolling without losing fitness. None of the iterative
subprocesses was repeated a multiple of k times for any k. Nevertheless, for this
dataset we followed another strategy: We choose k in order to minimize the loss
in fitness. In this particular case, after performing a 2-unrolling on the activity
Calling to add missing information to the application, 9% of the traces cannot
be replayed by the unrolled process model, with a minimal impact on fitness,
but its precision increases 5%.

Results indicate that precision gain is similar with both techniques, provided
that unrolling is possible. Nevertheless, both approaches treat the initial process
model differently: Our approach enhances the expressive power of the initial
process, whilst PNSimpl rediscover the process after each label split and, hence,
the final process might be significantly different. Besides, the ability of perform-
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ing unrolls (by losing fitness) enables us to highlight interesting properties of
the process. For instance, loop unrolling allowed us to check that the financ-
ing organization of the BPI Challenge 2012 usually had to call customers twice
for getting the necessary information. Is there any reason one attempt is not
enough?

In terms of complexity, the technique of this paper may be a light alternative
for methods like [5], which require to iteratively apply agglomerative clustering
for special sets in the state-space representation of the event log.

5 Conclusion

In this paper, we presented a method for improving the precision of structural
subprocesses based on explicitly repeating iterative subprocesses and pruning
unused constructs and activities. We have shown that this approach is applicable
to simulations of real-life processes, and also it is applicable to real-life scenarios.

The presented approach is the first step on considering the unrolling of itera-
tive processes. Results in Table 1 show several examples of how unrolling improve
the precision of the process models, with minimal impact on their complexity.
Nevertheless, bigger process models might be more difficult to understand and,
hence, it remains to conduct expert reviews on readability and understandability
of process models after unrolling. Besides, we have experienced on some datasets
that some iterative processes can be explained as a few iterations are used for
initialization, and then the real loop starts. We would also like to study how
the k-unroll operation affects the precision of the process model for a particular
precision metric. In particular, is it possible to establish a lower bound on the
increase of the precision?
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