
The SDMLib solution to the Class Responsibility

Assignment Case for TTC2016

Christoph Eickhoff, Lennert Raesch, Albert Zündorf
Kassel University, Software Engineering Research Group,

Wilhelmshöher Allee 73, 34121 Kassel, Germany
raesch—christoph—zuendorf@uni-kassel.de

Abstract

This paper describes the SDMLib solution to the Class Respon-
sibility Assignment Case for TTC2016. SDMLib provides reacha-
bility graph computation ala Groove. Thus, the simple idea was
to provide rules for possible clustering operations and then use the
reachability graph computation to generate all possible clusterings.
Then, we apply the CRAIndex computation to each generated clus-
tering and identify the best clustering. Of course, this runs into
scalability problems, very soon. Thus, we extended our reachabil-
ity graph computation to do an A* based search space exploration.
Therefore, we passed the CRAIndex computation as a metric to
our reachability graph computation and in each step, we consider
the set of not yet expanded graphs and choose the one, that has
the best metric value for expansion. The paper reports about the
results we achieved with this approach.

1 Introduction

This paper describes the SDMLib solution to the Class Responsibility Assignment Case for TTC2016 [1].
SDMLib provides reachability graph computation ala Groove [2]. For a given start graph and a given set
of rules, the reachability graph computation generates all graphs that may be derived from the start graph
by applying all rules at all possible matches as often as possible in all possible orders. Each time a new
graph is computed, we search through the set of already computed graphs for an already known isomorphic
graph. As proposed by [2], SDMLib computes node and graph certificates which are then used as hash keys
to access potentially isomorphic graphs efficiently. The node certificates then also help to do the actual
isomorphism test. If a new graph has been generated, we create a so-called reachable state node and we
connect the reachable state node of the predecessor graph with the reachable state node for the new graph
via a rule application edge labeled with the name of the rule used. In addition, a root node of the graph is
attached to the reachable state node. Altogether, the generated reachability graph has a top layer consisting
of reachable state nodes connected via rule application edges and each reachable state node refers to the
corresponding application graph via a graphRoot link. In SDMLib, this whole structure is again a graph,
and graph rules may be applied to it in order to find e.g. reachable states with a maximal metric value for
the attached application graph or to find states where all successor states have lower metric values or to find
the shortest path leading to the best state. Actually, any graph related algorithm may be deployed.

The Class Responsibility Assignment Case challenges the rule orchestration mechanisms provided by
the different model transformation approaches. Thus, our solution uses the SDMLib reachability graph
computation for rule orchestration. This is a very simple way to apply all rules in all possible ways and

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

in addition we are able to investigate all intermediate results in order to identify which paths through the
search space are the most interesting ones. The drawback of this approach is that it wastes a lot of runtime
and memory space for copying the whole class model graph each time a rule is applied and for the search
of already known isomorphic copies of the generated graphs. As shown in the case description, the number
of possible clusterings grows with the Bell number, i.e. for larger examples a complete enumeration of all
possible clustering is not possible in a meaningful time. As only a small fraction of the search space can be
explored, it might be helpful to be able to investigate all intermediate states to identify the most promising
spots for further expansion. Thus, we hope that the flexibility provided by the SDMLib reachability graphs
to investigate different intermediate states pays off, in the end.

As it is usually not possible to generate the whole reachability graph for a given example, our reachability
graph computation may be restricted to a maximum number of reachable states to be generated. Next, we
have extended our reachability graph computation with an A* like search space exploration that takes a
metric as parameter and at each step chooses the state with the best metric value for expansion. We have
developed two variants of this A* algorithm which will be discussed below.

The next section introduces the rules we use to solve the Class Responsibility Assignment Case and
then Section 3 shows the different search strategies we use in this example. Finally, Section 4 shows our
performance measurements.

2 The Model Transformation Rules

Our feature clustering approach uses two SDMLib model transformation rules. In the preparation phase we
use the rule shown in Figure 1 to create one class for each feature in our class model.

c1 : ClassModelPO

<< start >>

<< bound>>

f2 : FeaturePOfeatures

classes encapsulates

c3 : ClassPO

<< create>>

name:="Class4"+f2.name

{allMatches}

Figure 1: Rule adding initial classes

This rule starts by matching the pattern object c1 to the ClassModel object passed as parameter. Then,
f2 is matched to a Feature object attached to this ClassModel object. The {allMatches} constraint causes
the rule to be applied to all possible matches. Thus, for each Feature object in our current ClassModel,
the <<create>> sterotype on pattern object c3 causes the creation of a new Class object. In addition
the new Class object is attached to the ClassModel via a classes link and to the Feature object via an
encapsulates link. Finally, the new Class object’s name attribute gets assigned the concatenation of the
prefix "Class4" and the name of the current Feature. Thus, after the execution of this rule, each feature has
its own class containing just this feature. This class model is then used as starting point for the repetitive
application of our clustering rule.

Our clustering rule merges classes along functional or data dependencies, cf. Figure 2. The matching of
this rule starts with the ClassModel object which is bound to c1 at rule invocation. Then we follow a classes

edge to find a match for c2, i.e. a Class object in our ClassModel. Next, we follow an encapsulates edge
to match a Method object m4 contained in c2. The object matched by m4 must have a dataDependency edge
or a functionalDependency edge to a Feature object matched by the pattern object f5. This Feature

object in turn must be contained in a Class matched by c6. By default, SDMLib allows homomorphic
matches, thus c2 and c6 would be allowed to match the same Class object. Via the {matchOtherThen c2}
clause, we enforce isomorphic matching, i.e. c2 and c6 must match two different Class objects. Finally,
the Class matched by c6 must belong to our ClassModel c1. When such a match is found, the subpattern
containing the FeaturePO pattern object f7 is executed on all possible matches. Pattern object f7 matches
for all features contained in the Class matched by c6. (Note, f7 exploits homomorphic matching and will

c2 : ClassPO

f7 : FeaturePO

c6 : ClassPO

m4 : MethodPO f5 : FeaturePO

classe
s

e
n
ca

p
su

la
te

s

dataDependency or functionalDependency

isE
n
ca

p
su

la
te

d
B

y

classmodel

encapsulatesisEncapsulatedBy

c1 : ClassModelPO

<< start >>

<< bound>>

{allMatches}

<< destroy>><< create>>

{matchOtherThen c2}
<< destroy>>

Figure 2: Merging Classes via Feature Dependencies

also match the Feature object already matched by f5.) For each Feature object, the encapsulates edge
connecting it to the Class matched by c6 is deleted and a new isEncapsulatedBy edge connecting it to
the Class matched by c2 is created. After transferring all features to the Class matched by c2, the Class

matched by c6 is destroyed. Thus, the rule shown in Figure 2 merges two classes that are connected via a
feature dependency into one class.

Our clustering rule merges classes only if there is a dependency between them. This already utilizes
application specific knowledge about our CRAIndex metric. Our search space expansion will start with
classes containing only one feature each. Merging classes without a dependency between them is not going
to improve the CRAIndex of the resulting class model. Merging classes has the potential to improve the
CRAIndex only if the classes contain features that depend on each other. Thus, our clustering rule is already
optimized for the optimization of the CRAIndex. Using a different metric would perhaps require a more
general clustering strategy. As the metric is evaluated during the search space exploration, it would be easy
to simply merge any two classes, as any graphs resulting from applying a non metric improving rule would
immediately be dismissed anyways.

3 The Search Space Exploration Mechanisms

At the beginning, a ReachbilityGraph object is initialized with a start graph or startState and with a set
of rules that shall be applied to the different reachable states. Our standard A* search space exploration
algorithm is shown in Listing 1. For the A* search space exploration, we call e.g.

rg.explore(25000, g -> CRAIndexCalculator.calculateCRAIndex((ClassModel) g));

where the first parameter is the maximal number of states to be generated and the second parameter is the
metric function that guides our search space expansion algorithm. First, our expansion algorithm initializes
its todo list with the startState and adds the startState to a hash table of reachable states where a
graph certificate is used as key, as proposed by [2]. Then, line 5 loops through the todo list until it
drains or the maximal depth of the search space is reached. Line 6 of our explore method just sorts the
todo list before choosing a new element in line 7. Thereby, each exploration step considers the state with
the best CRAIndex for further expansion resulting in a depth first like expansion strategy. Then line 8
and line 9 iterate through all rules and all matches. For each match, we clone() the current state and

apply() the rule changes to that clone, resulting in a newState. As the newState may have been created by
other rule applications already, line 11 tries to find an isoOldState, i.e. the find operation computes the
certificate of the newState and tries to look it up in the states hash table. This involves an isomorphism
check to exclude accidentally matching certificates. If no isoOldState is found, line 13 adds the newState

to the hash table of reachable states, line 14 adds an edge labeled with the applied rule from the current

state to the newState, and line 15 adds the newState to our todo list. If there is an isoOldState line 17
just adds an edge from the current state to the isoOldState.

1 Reachabi l i tyGraph : : exp lo r e (depth , metr ic) {
2 todo = new ArrayList () ;
3 todo . add (this . s t a r t S t a t e) ;
4 s t a t e s . put (c e r t i f i c a t e (this . s t a r t S t a t e) , s t a r t S t a t e) ;
5 while (! todo . isEmpty () && s t a t e s . s i z e () <= depth) {
6 s o r t (todo , metr ic) ;
7 cur rent = todo . get (0) ; todo . remove (0) ;
8 f o r (Rule r : this . r u l e s) {
9 while (r . f indMatch ()) {

10 newState = current . c l one () . apply (r) ;
11 i soOldState = f i n d (s t a t e s , newState) ;
12 i f (i soOldState == null){
13 s t a t e s . put (c e r t i f i c a t e (newState) , newState) ;
14 addEdge (current , r , newState) ;
15 todo . add (newState) ;
16 } else {
17 addEdge (current , r , i s oOldState) ;
18 }
19 }
20 }
21 }
22 }

Listing 1: Default A* based Search Space Expansion

Within each step, our default A∗ search space exploration strategy generates all successors of the current
state. For case E there are about 400 dependencies, thus, the initial state has about 400 successor states.
While this number decreases by one with each rule application, the first 100 rule applications have 350
successors on average resulting in 35000 states, which already exceeds our memory space. To improve this,
we added a variant of our algorithm called Ignore Decline mode. The Ignore Decline mode improves our
exploration algorithm by comparing the metric value of the newState with the current bestMetric. If
the metric of the newState is lower then the bestMetric we ignore the newState, i.e. we do not add it
to our reachability graph nor to our todo list. This may exclude some important candidates from later
consideration but it reduces the number of states to be added to our reachability graph considerably thus
reducing memory space consumption.

The second variant of our search space exploration algorithm is called Promote Improvements mode. The
Promote Improvement mode computes the metric for each new state and in case of an improvement compared
to the current state, we stop the expansion of the current state (putting it back into the todo list). Then we
jump back to line 6 and start with a new iteration, i.e. we sort the todo list (bringing the new best state to
the front) and continue the search space exploration with this new state. The Promote Improvement mode
reaches local optima of the reachability graph very fast. Note, when the search is exhausted for some state
and we go back to earlier states, rule application on those earlier states will first produce the same matches
as in earlier runs. These same old matches will be identified by line 11 as isoOldStates and thus ignored.
However, this requires the computation of a certificate and an isomorphism check. To avoid this effort, our
real implementation of the Promote Improvement mode stores the number of already created successors for
each state and on reconsideration, this number of rule applications is directly ignored.

4 Performance Results

Figure 3 shows the CRAIndex we achieve for the different input models and the time our best algorithm
needed to compute this.

Figure 3: Performance Summary

References

[1] M. Fleck, J. Troya, and M. Wimmer. TTC2016 The Class Responsibility Assignment Case.
https://github.com/martin-fleck/cra-ttc2016, 2016.

[2] A. Rensink. The GROOVE simulator: A tool for state space generation. In Applications of Graph
Transformations with Industrial Relevance, pages 479–485. Springer, 2003.

