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Abstract

In this paper we describe a solution for the Trans-
formation Tool Contest 2016 (TTC’16) Class Respon-
sibility Assignment (CRA) case study using Sigma,
a family of Scala internal Domain-Specific Languages
(DSLs) that provide an expressive and efficient API
for model consistency checking and model transforma-
tions. Since the Class Responsibility Assignment prob-
lem is a search-based problem, we base our solution
on multi-objective genetic algorithms. Concretely, we
use NSGA-III and SPEA2 to minimize the coupling be-
tween classes’ structural features and to maximize their
cohesion.

1 Introduction
In this paper we describe our solution for the TTC’16 Class Responsibility Assignment (CRA)
case study [FTW16] using Sigma [KCF14]. The goal of this case study is to find high-quality class
diagrams from existing responsibility dependency graphs (RDG). The RDGs only contain a set of
methods and attributes with functional and data relationships among them. The CRA problem
is essentially about deciding where the different responsibilities in the form of class structural
features (i.e. operations and attributes) belong and how objects should interact by using those
operations [BBL10]. Since the design space of all possible class diagrams grows exponentially
with the size of the RDG model [FTW16] (i.e. the number of structural features), the problem is
hard to solve. However, a possible approximation could be found using search-based optimization
techniques [CLV07]. Concretely, the use of multi-objective genetic algorithms seems to provide
an efficient solution for the CRA problem as demonstrated by Bowman et al. [BBL10].
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In this paper, we therefore present a solution to the CRA problem using Sigma and multi-
objective genetic algorithms. We use Sigma to transform the input RDG diagram into a search-
based problem which is then solved by a genetic algorithm. In the implementation we use
NSGA-III and SPEA2 algorithms from the MOEA framework1. The MOEA Framework is a free
and open source Java library for developing and experimenting with multi-objective evolutionary
algorithms (MOEAs) and other general-purpose multi-objective optimization algorithms [Had16].

Sigma is a family of Scala2 internal DSLs for model manipulation tasks such as model vali-
dation, model to model (M2M), and model to text (M2T) transformations. Scala is a statically
typed production-ready General-Purpose Language (GPL) that supports both object-oriented
and functional styles of programming. It uses type inference to combine static type safety with
a “look and feel” close to dynamically typed languages.

Sigma DSLs are embedded in Scala as a library allowing one to manipulate models using
high-level constructs similar to the ones found in the external model manipulation DSLs. The
intent is to provide an approach that developers can use to implement many of the practical
model manipulations within a familiar environment, with a reduced learning overhead as well as
improved usability and performance. The solution is based on the Eclipse Modeling Framework
(EMF) [SBPM08], which is a popular meta-modeling framework widely used in both academia
and industry, and which is directly supported by Sigma.

In this particular TTC’16 case study, the main problem is in solving an optimization problem
rather than a transformation problem. Sigma is therefore only used for straightforward trans-
formation of input RDG models into optimization problems and problems’ solutions back into
class diagrams.

The complete source code is available on Github3. In the Appendices A and B we provide
steps how to install it locally as well as how to run it on the SHARE environment.

2 Solution Description
The core of this case study is to transform a RDG model into a high-quality class diagram (cf.
Figure 1).
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Figure 1: Class Model metamodel

to the partitioning of a set of labeled features (operations and attributes) into non-empty classes so that every feature is
included in exactly one class. The number of possible partitions, i.e., classes, is given by the Bell number (cf. Equation 1).
The nth of these numbers, Bn, counts the number of different ways a given a set of n features can be divided into classes.
If there are no features given (B0), we can in theory produce exactly one partition (the empty set, ;). The order of the
classes as well as the order of the features within a class does not need to be considered as the semantic of a class diagram
does not depend on that order.
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Considering the first Bell numbers, which are shown below (cf. sequence A0001102 in the OEIS online database for integer
sequences), we can see that the number of partition possibilities grows exponentially and is already quite high for a low
number of features. For example, an instance where you need to assign 15 features to an unknown amount of classes
already yields 1382958545 different possibilities.

1 , 1 , 2 , 5 , 15 , 52 , 203 , 877 , 4140 , 21147 , 115975 , 678570 , 4213597 , 27644437 ,
190899322 , 1382958545 , 10480142147 , 82864869804 , 682076806159 , 5832742205057 ,
51724158235372 , 474869816156751 , 4506715738447323 , 44152005855084346 ,
445958869294805289 , 4638590332229999353 , 49631246523618756274 , . . .

In order to solve the case, as described in the next section, several techniques may be applied by the contestants.

2 Case Description
In this case study we propose a simplified version of the CRA problem. Contestants are given a set of methods and
attributes as well as dependencies between them. Such a structure is also referred to as responsibilities dependency graph
(RDG). Based on the RDG, the goal is to generate a high-quality class diagram (CD) model. The purpose is therefore to
create a RDG2CD model transformation, where the RDG must evolve into a CD, categorized as an endogenous model
transformation [MVG06], since both the input and output models conform to the same metamodel.

Figure 1 depicts the common metamodel that is used to represent both, the RDG and the output CD. The RDG is
the subset of the metamodel containing only the features and their dependencies, and is represented in black, while the
additional class and relationships needed to produce a CD are represented in green. The concepts depicted in the metamodel
are summarized as follows:

Class Classes represent classes as known from object-oriented programming and modeling languages. A class hereby
encapsulates certain functionality aspects in terms of methods, which in turn use data stored in attributes of instances
of the same or other classes. In this sense, classes serve as a container object for behavioral features (methods) and
data features (attributes).

2http://oeis.org/A000110

Figure 1: RDG and class model metamodel [FTW16]

To consider the quality of a class digram, two common software engineering metrics are used:
coupling (the number of external dependencies) and cohesion (the number of internal dependen-
cies). The two metrics can be further combined in one, single quality metric called CRA-Index,
which simply subtracts the coupling from cohesion. The case study authors provide a set of
utility functions that can compute all these metrics from a class digram instance and therefore
we do not need to concern ourselves by their precise definitions.

The outline of the solution proposed in this paper is as follows:

1http://www.moeaframework.org/
2http://scala-lang.org
3https://github.com/fikovnik/ttc16-cra-sigma
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1. Load the input RDG model from a given XMI file.
2. Transform the RDG model into MOEA problem instance.
3. Run the MOEA solver using either NSGA-III or SPEA2 algorithms.
4. From the possible solutions (which are part of a Pareto optimal front cf. below), select the

one with the highest CRA-Index.
5. Transform the selected solution into class digram.
6. Save the resulting class diagram into XMI file.

2.1 Transformations

An optimization problem defines a search space, or the set of possible solutions together with one
or more objective functions. In our case the search space spans are all the valid class diagrams
that can represent a given RDG model. The objectives are: (1) to minimize coupling, and (2) to
maximize cohesion.

The functions that compute coupling and cohesion ratios from a class diagram are part of the
case study description. What remains is to find the way how to represent the RDG model as
a vector of variables that can be used in a evolutionary algorithm to find a solution. We use a
simple integer vector where the index corresponds to the feature index in the input RDG model
and the value corresponds to the index of a class in the resulting class diagram. The range of
each vector element is between 0 and the number of features −1 (since we use 0-based indexing).
In the worst case, (i.e. one feature per class), this actually equals to the number of features. For
example, a vector (3, 5, . . .) represents a solution in which first feature belongs to fourth class,
second feature to sixth class, and so on and so forth. Figure 2 shows a further example of this
representation on the example input/output model pair from the case description [FTW16].
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Figure 3: Example input/output model pair with quality characteristics: (a) input model in abstract syntax, (b) output model
in concrete syntax, (c) measures for output model.

Optimality With optimality the quality of the correctly generated models is evaluated, i.e., the CRA-Index of the output
model. The higher the CRA-Index the better the quality of the output model. Here, the reviewers need to rank the
solutions in relation to the other solutions provided and give them points on a scale between 1 and 10, where 1 refers
to the worst (possible) solution and 10 refers to the best solution. To support this ranking, we provide the CRA-Index
of our reference solution in the evaluation spreadsheet and a program that calculates the CRA-Index for a given class
diagram.

Complexity With complexity we measure the efforts needed to provide search capabilities for good solutions as well as
to evaluate the solutions based on the given metrics. For instance, this involves to evaluate how much effort has been
invested to augment the provided rules, develop orchestration specifications such as providing an explicit control flow
for the rules, implement search algorithms as transformations, or to implement transformations to dedicated encodings
used for performing the search and back. Here, again, the reviewers need to rank the solutions in relation to the other
solutions provided and give them points on a scale between 1 and 10, where 1 refers to the worst (possible) solution
and 10 refers to the best solution.

Flexibility Flexibility measures how easy it is to modify the given solution to support additional/other quality metrics
besides coupling, cohesion and the CRA-Index. For this criteria, reviewers need to estimate the effort it takes to
integrate new objectives (such as fixing the number of classes to a given value) and give the provided solutions points
on a scale between 1 and 10, where 1 refers to the worst (possible) solution, i.e., the solution where the most effort is
needed, and 10 refers to the best solution, i.e., the integration can be done quickly.

Performance The performance evaluation consists of the measured execution time, i.e., the time it takes the provided
solution to generate a high-quality output model for a given input model. Please note that reading the input model
and writing the output model is not considered to be part of this performance evaluation. For Java-based solutions,
we suggest using Java’s internal time measurements, i.e., the method java.lang.System.nanoTime(), which
is also used by the Apache Commons Lang’s4 StopWatch class. All performance values must be given exact to the
millisecond, e.g., 03:02.426 meaning 3 minutes, 2 seconds and 426 milliseconds or in total 182426 milliseconds.

All criteria, except the complexity and flexibility of the solution, are evaluated separately on all provided input models.

4https://commons.apache.org/proper/commons-lang/
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Figure 2: Example of the Solution

The advantage of this representation is that it can be easily mapped to MOEA decision
variables. Also, each feature will always be assigned to (encapsulated by) some class. Therefore,
the second validation constraint all features provided in the input model must be encapsulated by
a class, will be always satisfied without any additional logic.

Concretely, in the MOEA framework, we have created a Problem class, called CRAProblem.
The integer vector is used to define the decision variables, their types (i.e. integers) and bounds
(i.e. 0 . . . number of features− 1). The number of decision variables corresponds to the number
of features in the input RDG model. The number of objectives is always two, the first one for
coupling and the second one for cohesion. The method instantiating new solution instances looks

3



as follows:

override def newSolution() = {
val s = new Solution(numVars, numObjs)
(0 until numVars) foreach (x => s.setVariable(x, newInt(0, numVars - 1)))
s // return the new instance

}

Next to providing a method to instantiate new instances of solutions for the problem, we need
to also define the evaluation of a solution to compute the objectives. This involves two steps:
(1) transforming the solution into a class diagram (2) using the provide calculateCoupling
and calculateCohesion utility functions to compute the metrics. In code this is implemented
as:

override def evaluate(s: Solution) = {
val m = solutionToClassModel(initModel, s) // transformation
s.setObjective(0,calculateCoupling(m)) // minimize coupling
s.setObjective(1,-calculateCohesion(m)) // maximize cohesion

}

The negation of the cohesion ratio is due to the fact that MOEA only works on minimization
problems and thus we need to negate the objective value to convert from maximization into
minimization. The following is the code that does the transformation. This is the main code
that uses Sigma.

def solutionToClassModel(initModel: ClassModel, s: Solution) = {
val m = initModel.sCopy // create a new model as a copy of the input one
val v = EncodingUtils.getInt(solution) // get problem vector (v: Array[Int])
// create new classes
val classes = (0 to v.max) map (x => Class(name = s"Class $x"))

// assignment
v.zipWithIndex.foreach {

case (cIdx, fIdx) => m.features(fIdx).isEncapsulatedBy = classes(cIdx)
}

// add non-empty classes
m.classes ++= classes filter (x => !x.getEncapsulates.isEmpty)
m

}

Finally, we define a new type, Solver, which is a function RDG → ClassDiagram. The
solver is responsible (1) to find the Pareto optimal front of all possible solutions (subject to solver
configuration), and (2) to select the solution from that set which has the highest CRA-Index. The
non-dominated, Pareto optimal front refers to optimal solutions whose corresponding vectors are
non-dominated by any other solution vector [BBL10] and it can be found by MOEA Executor.
For example using the NSGA-III algorithm, we find the non-dominated vector as:

new Executor().withProblemClass(classOf[CRAProblem], initModel)
.withAlgorithm("NSGAIII")
.withProperty("populationSize", 64)
.withMaxEvaluations(10000)
.run()

The individual solutions in this vector are first converted to the class model using the function
solutionToClassModel. Then we use the given calculateCRA function to find the highest
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CRA. To have a better chance to find a good solution, we run each algorithm 10 times (this
starts the algorithm from 10 different random seeds). The properties of each algorithm are
defined based on the suggestion by Bowman et al. [BBL10].

3 Evaluation
In this section we provide an evaluation of our solution following the categories given by the
case study description. We leave the complexity and flexibility characteristics to be evaluated
by reviewers. All the presented results are based on the NSGA-III algorithm which in all runs
performed better than SPEA2. More results are provided on the github page.

Completeness & Correctness. The solution always converts a valid input RDG into a class
model. The three constraints that were imposed by the solution description are solved as follows:
— Every class must have a unique name. The new classes are created in a loop that iterates

over a number range. Part of the class name is the iteration variable and thus it must be
always unique.

— All features provided in the input model must be encapsulated by a class. This has been
already explained in the previous section. This is a property of the problem mapping we have
chosen.

— There cannot be any empty classes. We explicitly filter out empty classes.

Optimality and Performance. The following table shows the cohesion and coupling rations,
the resulting CRA-Index as well as the completion time from the SHARE environment4:

Input Cohesion Coupling CRA Time [s]
A 4 1 3 19.17
B 6.5 2.5 4 34.78
C 6.37 3.63 2.74 72.53
D 4.83 7.94 -3.11 300.49
E 7.38 17.99 -10.60 1110.74
F 9.85 44.74 -34.88 6289.75
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A Install and Run Locally
The only requirements for running the solution is to have git and sbt5 tools installed. To
reproduce the benchmark simply execute these steps in a command line:

$ git clone \
https://github.com/fikovnik/ttc16-cra-sigma

$ cd ttc16-cra-sigma
$ ./build.sh
$ ./run.sh

B Install and Run on SHARE
On the share environment we provide ready to be run solution. Simply log into the SHARE VM
remoteArchLinux64-TTC16_SIGMA with ttcuser/ttcuser as user name/password and
run the following:

$ cd ttc16-cra-sigma
$ ./run.sh

5simple-built-tool cf. http://www.scala-sbt.org/
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