
Compression of a Dictionary

Jan Lánský, Michal Žemlička
zizelevak@matfyz.cz

michal.zemlicka@mff.cuni.cz

Dept. of Software Engineering
Faculty of Mathematics and Physics

Charles University



Synopsis

Introduction
Existing methods 
Trie-based methods
Results
Conclusion



Introduction

Why we are compressing a 
dictionary ?



Large Alphabet Compression

Text Files - Compression over alphabet 
of words or syllables. 
Alphabet (Dictionary) must be 
transferred with the coded message
Word-based methods

Moffat 1989
Syllable-based methods 

Lánský, Žemlička 2005



Influence of File Size

Large files
Dictionary takes small part of message
Influence of compression of the dictionary 
on compression ratio is small

Small files 
Dictionary takes large part of message
Influence of compression of the dictionary 
on compression ratio is large



Existing methods

Common used methods for 
compression of a dictionary of 

words or syllables



Character by Character (CD)

Code of string is composed from
Code of string type 

Moffat: 2 types of words (word, non-word)
Lánský, Žemlička: 5 types of syllables

Encoded length of the string
Symbol codes



Character by Character (CD)

Examples
code("to") = codeType(lower), 
codeLength(2), codeLower('t'), 
codeLower('o')
code("153") = codeType(numeric), 
codeLength(3), codeDigit('1'), 
codeDigit('5'), codeDigit('3')



External Compression

All strings from dictionary are 
concatenated by using separator
This resulting string is compressed by

LZW (we denote LZWD)
Bzip2 (we denote bzipD)
...



Trie-based methods
TD1, TD2, TD3

Compression of a dictionary using 
its structure



Dictionary

Data structure trie
Nodes may represent strings
Father represents a prefix of its sons

Mapping between strings and its order 
is unique in whole dictionary
Order is obtained during compression



Trie data structure

For each node we know
Whether a node represents a string 
(represents) 
Number of sons (count)
Array of sons (son)
Extension of each son (extension)



TD1 - encoding

EncodeTD1 ()
EncodeGamma number of sons count
Encode represents ( bit 0 or 1)
For each son s

Distance = s.extension – previous(s).extension
EncodeDelta(Distance)
EncodeNode(s)



TD1 - Example

Dictionary: "the", "to", "ACM", "AC", ".\n "

... Code node 'C': 
Code(1) – count
Bit(1) – repr.
Code(67-0) – dist
Code node 'M' ... 



TD2 - Improvement

In TD1 version the distances between sons 
are coded. 

Distances are calculated according binary values 
of the extending symbols 

These distances are encoded by Elias delta 
coding representing 

smaller numbers by shorter codes 
larger numbers by longer codes.

Goal – decrease distances



TD2 - Improvement

Reordering alphabet
Primary according symbol type
Secondary according symbol frequency
0-27 lower-case letter, 28-53 upper-case 
letters, 54-63 digits, 64-255 other symbols

TD2 - Distances between sons are 
counting in this new alphabet

TD2 gives shorter distances and its codes



TD2 - Example

Dictionary: "the", "to", "ACM", "AC", ".\n "

... Code node 'C': 
Code(1) – count
Bit(1) – repr.
Code(34-0) – dist
Code node 'M' ... 



TD3 - Improvement

5 types of words and syllables
Lower ("hour")
Upper ("HOUR")
Mixed ("Hour")
Numeric ("123")
Other ("???")

After coding 1-2 symbols from a string we 
can determine its type and improve its coding

2 symbols per Mixed/ Upper, 1 symbol otherwise



TD3 - Improvement

Function first
First(lower-case letter) = 0
First(upper-case letter) = 28
First(digit) = 54
First(other) = 64

TD3 – if we know the type of the string, we 
decrease the distance of the first son by the 
value of function first for the son extension



TD3 - Example

Dictionary: "the", "to", "ACM", "AC", ".\n "

... Code node 'M':
Code(1) – count
Bit(1Bit(1Bit(1) ) ) ––– reprreprrepr.
Code(33-28-0) – dist
Return to node 'C' ... 



Results

Comparison of TD1, TD2, TD3, CD, 
LZWD and BzipD on dictionaries of 

words and syllables in Czech, English 
and German



Results - syllables



Results - syllables

TD3 outperforms other methods on all 
languages and file sizes

Syllables are short
Trie of syllables is dense

Example
10Kb Czech file
770 bytes of dictionary by TD3
1540 bytes of dictionary by CD (second best)  



Results - words



Results - words

Czech
On 50kB and larger files is TD3 best
Long words, dense trie of words

English
On 200kB and larger files is TD3 best
Short words, quite dense trie of words

German
On 2MB and larger files is TD3 best
Long words, quite sparse trie of words



Results - words

How are methods succesfull on?
Smaller files

1. CD, 2.-3.TD3, 2.-3. BzipD, 4. LZWD

Middle-sized files
1. BzipD, 2. TD3, 3. CD, 4. LZWD

Larger files
1. TD3, 2. BzipD, 3. CD, 4. LZWLD



Conclusion

On what types of dictionaries is 
TD3 good ?



Conclusion

Where is TD3 successful
Dense tries with short string
Dictionaries of syllables
Larger dictionaries of words

TD3 is not bad on other types of dictionaries 
TD3 is usually at least the second best method 


	Compression of a Dictionary
	Synopsis
	Introduction
	Large Alphabet Compression
	Influence of File Size
	Existing methods
	Character by Character (CD)
	Character by Character (CD)
	External Compression
	Trie-based methods �TD1, TD2, TD3
	Dictionary
	Trie data structure
	TD1 - encoding
	TD1 - Example
	TD2 - Improvement
	TD2 - Improvement
	TD2 - Example
	TD3 - Improvement
	TD3 - Improvement
	TD3 - Example
	Results
	Results - syllables
	Results - syllables
	Results - words
	Results - words
	Results - words
	Conclusion
	Conclusion

