
Defining Semantic Variations of Diagrammatic
Languages Using Behavioral Programming and

Queries
Michael Bar-Sinai

Computer Science Department
Ben-Gurion University

Be’er-Sheva, Israel

Gera Weiss
Computer Science Department

Ben-Gurion University
Be’er-Sheva, Israel

Assaf Marron
Faculty of Mathematics and Computer Science

Weizmann Institute of Science
Rehovot, Israel

Abstract—We present a methodology for describing exe-
cutable semantics of diagrammatic modeling languages, and
an execution engine based on such definition. Under proposed
methodology, languages are defined using a set of pairs, com-
posed of a query and a group of mappers. The queries, de-
fined over the language’s diagrammatic syntax, return language
constructs. These constructs are mapped by the mappers to
behavioral programming-based models. Resultant definition is
executable, can inter-operate with similar definitions of other
languages, and is accessible to practitioners who read code
but shy away from transition formulae. We demonstrate our
approach by defining a subset of the LSC language, and by
implementing an LSC runtime engine based on that definition.

Index Terms—Modeling; Computer Languages; Software En-
gineering;

I. INTRODUCTION

Diagrammatic modeling languages hold great promise for
software engineering, being able to depict — quite literally
— structural and behavioral specifications. While some
diagrammatic languages have been adopted for documen-
tation and high-level design, their promise is still largely
unrealized when it comes to describing executable mod-
els. Almost 30 years after Harel presented StateCharts [1],
diagrammatic languages are still considered “doodles” by
many practitioners [2].

A few factors that might be holding back the adoption of
diagrammatic languages for execution are lack of accessible
definition of executable semantics, and the absence of
runtimes that can interoperate with text-based code.

This paper proposes an approach for defining executable
semantics for diagrammatic languages. The definition is
accessible to anyone who can read procedural formulation,
and lends itself to runtime engine implementation. As the
runtime is based on the Behavioral Programming paradigm,
it can easily integrate with text-based code.

The rest of this paper is organized as follows: Section II
briefly introduces Behavioral Programming. Sections III
and IV introduce and discuss the concept of querying
diagrams and mapping them to BP-based code, respectively.
Sections V and VI apply the approach to a subset of the
Live Sequence Chart language (LSC). Section VII describes

a runtime tool for LSC, implemented based on those
definitions. Section VIII demonstrates how the proposed
approach can be used to accommodate semantic variation
points. Section IX looks at related work, and Section X
concludes.

II. A QUICK INTRODUCTION TO BEHAVIORAL PROGRAMMING

Behavioral Programming (BP) [3], introduced by Harel,
Marron and Weiss in 2012 [4], is a programming paradigm
rooted in scenario-based programming. BP programs are
composed of threads of behavior, called b-threads. B-
threads run in parallel to coordinate a sequence of events
via a synchronized protocol, as follows. During program
execution, when a b-thread wants to synchronize with its
peers, it submits a statement to the central event arbiter.
This statement declares which events it requests to be
selected, which events it waits for (but does not request),
and which events it would like to block (prevent from
being selected). When all b-threads have submitted their
statements, the arbiter selects an event that was requested
but not blocked. It then wakes up the b-threads that
requested or waited for that event. The rest of the b-threads
remain at their state, until an event they requested or
waited for is selected. Blocked and waited-for events can
be described using a predicate or a list. Requested events
have to be specified explicitly. In this paper, submitting the
synchronization statement is done by calling bsync.

III. SEMANTIC MAPPING TO BEHAVIORAL PROGRAMMING

When defining semantics for a diagrammatic language,
we propose the language developer defines a set of pairs,
composed of a query and multiple mappers, and a set of BP
events called Source-Semantic Events. The queries, defined
over the source language’s terms and semantics, take a
diagram and return a set of language constructs. The BP-
mappers take each returned construct and generate a set
of b-threads, called construct agent b-threads, or CABs.

CABs act on behalf of their construct during program
execution. Source Semantic Events are used to signal events
in the original program, e.g. “message passed” for LSCs or

5



“step completed” in an Activity Diagram [5]. The mapping
process is described in Figure 1.

The set of query-mapper pairs define the executable se-
mantics of the diagrammatic language. Run together, CABs
generated by query-mapper pairs produce a valid execution
of the mapped program. An execution of a program is
considered “valid” if the order of the Source Semantic
Events in its trace complies with the requirements of the
diagrammatic language.

From a BP point of view, there is nothing special about a
CAB or an source-semantic event. While both carry special
semantics for the diagrammatic program, these semantics
are only present in the interpretation of the behavioral
program’s event log — not while the program is executing.

Query

Source Language Mapping Behavioral Programming

source 
code

result1

CAB
CAB

CAB

BProgram

•••

result2

CAB
CAB

CAB

•••

resultk

CAB
CAB

CAB

•••

•  •  •

Semantic
Mapping

BThread
Registration

Fig. 1. Defining operational semantics for diagrammatic languages using
querying and mapping. Queries select constructs from a diagram. Selected
constructs are mapped to one or more Construct Agent B-threads (CABs).
Run together, those CABs generate a valid execution of the original
program.

IV. DISCUSSION

Describing the semantics of a formal diagrammatic lan-
guage by mapping its constructs to BP is advantageous for
a number of reasons. Resultant definitions are both formal
and accessible, as they use simple code snippets rather
than transition formulae. Furthermore, the definitions are
executable, so language developers can test and verify them,
and readers can write programs to test their understanding.
This combination of readability, formality and executability
improves upon existing practices.

Formality and executability are crucial for removing
ambiguities. Obviously, non-formal definitions might be
ambiguous (e.g. Chan et. al. about Java [6] and Fecher
et. al. about UML2.0 [7]). But even fully formal semantics
definitions that use transition formulae are prone to errors,
as shown by Klein et. al. in [8].

The structure of the resultant definition is intuitive and
easy to navigate, as the query-mappers pair structure is
similar to that of a language reference. Our experience is
that many CABs can be reused across multiple constructs.
As CABs define semantics, this is not just regular code reuse,
but also concept and comprehension reuse.

The proposed approach allows language developers to
independently mix and match semantic variations of lan-
guage constructs, as changing the semantics of a single
construct is done by changing the relevant mapper only.
Adding and removing language constructs can be experi-
mented with in a similar way (See Section VIII).

Additionally, this type of definition allows for pro-
gram analysis. For example, model checking tools such as
BPMC [9], can verify that under a given specification, a
certain event will always precede another.

Finally, since BP serves as common ground to diagram-
matic languages defined using the proposed approach,
these executable definitions allows for language interoper-
ation. We have demonstrated such interoperation between
LSC and UML Activity Diagram.

Our proposed approach is, of course, not perfect. When
a language construct is mapped to many CABs, the reader
is required to keep in mind the state of those CABs in order
to fully comprehend that construct’s behavior. This issue is
somewhat alleviated by CAB comprehension reuse. Another
issue is that the definition relies on BP, which is still in early
adoption stages.

V. CASE STUDY: SEMANTIC VARIATIONS OF LSC

We will now demonstrate our approach by creating the
operational semantics of a subset of Live Sequence Charts
(LSC). LSC is a diagrammatic programming language that
extends classical message sequence charts, mainly with
a universal interpretation and must/may, monitor/execute
modalities. The language was developed by Damm and
Harel [10] and was first implemented by a tool called Play-
Engine [11]. A UML compliant variant is implemented by
the PlayGo tool [12]. The semantics of the PlayGo ver-
sion, which slightly differ from Play-Engine’s, are described
in [13].

An LSC system consists of scenarios and objects. Each
scenario describes a facet of the system’s behavior and is
described in a live sequence chart (an LSC). The overall
system behavior is the result of concurrent execution of all
the LSCs it contains. An example LSC is shown in Figure 2.

Objects, which appear in LSCs as lifelines, can send mes-
sages to each other or to themselves. Sending these mes-
sages is depicted in the charts by horizontal arrows between
lifelines. Messages can be tagged as must occur (“hot”, red)
or may occur (“cold”, blue), and as executed (“execute”,
solid) or waited for (“monitor”, dashed). The Play-Engine
variant supports both synchronous and asynchronous mes-
sages; in PlayGo, all messages are synchronous.

Each LSC is comprised of lifelines and messages. LSCs
may contain variable assignments and flow-control ele-
ments, such as loops and conditional execution. Special
kinds of lifelines represents the user and the environment.
Conditional guards, shown as elongated hexagons, specify
statements that must be true for the execution to continue.
A special condition called SYNC, always evaluates to true
and is used to synchronize lifelines.

6



card1:Card card2:Card p:Panel

click()

click()

flipDown()

flipDown()

beep()
SYNC

!(c1.value.equals(c2.value))

User

Fig. 2. LSC describing a basic move in a card memory game. After the
user clicks two cards, a beep is issued, and the two cards are compared.
If the cards are different, they are flipped back down. The click method
shows the cards’ faces, and the flipDown method turns them over again.
The first two events may or may not happen, are thus cold (blue). The
ensuing three events must happen once the first two events have, and
are thus hot (red). The Sync construct forces the Beep to occur after the
second click.

The point where a lifeline intersects with a message,
a condition, or any other language construct, is called a
location. During execution, lifelines proceed along their
locations in downward vertical order. The collection of all
current lifeline locations in an LSC, called a cut, is the
equivalent of a program counter in traditional code.

The execution of an LSC consists of a series of events,
such as message passing or condition evaluations. An event
is called enabled when all its preconditions have been
met — involved lifelines have arrived at their respective
locations, and variables have been bound, etc. At runtime,
the LSC engine repeatedly selects an enabled event for
execution. Then lifelines move to their next locations, and
the chart’s cut is updated.

The system avoids executing forbidden events whenever
possible. Forbidden events may be specified in various
ways: A scenario of events ending in a hot false con-
dition is considered forbidden. When an LSC is “strict”,
all events that appear in it and are not enabled by its
cut are forbidden. Finally, the Play-Engine variant allows
tagging individual events as forbidden in some designated
scope. When a forbidden event is nevertheless executed, an
exception called violation occurs.

LSC is an interesting language for demonstrating our
proposed approach, since it is a real-world diagrammatic
language with non-trivial semantics. Additionally, it has
multiple semantic variants, which allows us to mix and
match semantics of specific constructs.

This paper focuses on the operational semantics of a
single LSC and on a subset of the constructs. The construct
subset was selected such that it contains examples for all
construct types, and so it can be intuitively extended.

VI. A VISUAL DICTIONARY FOR LSC

In this section we present a visual dictionary that lists the
syntactic query and BP-mapping for each LSC construct.
Query matches are highlighted with a yellow background.
For example, in the Sync definition (Subsection VI-B), the

SYNC hexagon and the intersection of its upper edge are
matched, and are labeled snc and l1 to ln for the purpose of
the BP-mapper pseudo-code that follows. CABs composing
the BP-mapping for the construct matched by each query
appear after the query’s diagram. Re-used CABs are referred
to by name, and listed at Subsection VI-J. This graphical
representation of the queries is an idea for future imple-
mentations that may allow for an intuitive specification of
language constructs. In our current implementation we use
a textual query language and the graphical representation
is compiled manually for the sake of readability.

All CABs exit when an exit event of their parent chart is
triggered. This is done using the BP idiom of break-upon: b-
threads terminate when an event whose a member of their
set of break-upon events is triggered. We use break-upon
for readability — it is possible to simulate it using pure
Request-WaitFor-Block, by adding the break-upon event set
to the wait parameter of every bsync, and then exiting if the
triggered event is a member of this set.

BP allows blocking and waiting for abstract sets of
events. The model in this paper uses two such event
sets: VisibleEvents, which contains all message passings,
and ExitEvents(chart), which contains all events signaling
execution termination of a chart or a subchart.

Code listings in this paper serve both as an
implementation and as a specification. Thus, we invite the
reader to read them as both imperative and declarative.
As an imperative code, bsync(waitFor:E, block:VisibleEvents)

reads “wait for E, and until then block all visible events”.
When read declaratively, it says “No visible event can
happen until E does”.

A. Lifeline

chartName

LiL1 Ln

cond

msg

msg
cond

msg

loop until *

chart

l1

l2
l3

l4

ln

name
chartName

Lifeline CABs are responsible for advancing the chart’s
cut. A lifelineCAB, started by its parent chart, begins by
waiting for its parent chart’s start event (first bsync). It then
advances along its locations, repeatedly requesting to enter
and leave them. During execution, a lifelineCAB blocks its
parent chart from ending normally.

During the execution of subcharts, such as Loop (Sub-
section VI-I), lifelineCABs wait for the subchart to be over;

7



inside the subchart, new lifelineCABs act on behalf of the
lifelines. This is achieved by the if statement at the top of
the iteration loop.

• Lifeline CAB:

lifelineCAB(chart , l1, . . ., ln):
bsync( waitFor: ChartStart(chart) )
for ( i ∈ [1..n] ):

if ( li is at bottom of subchart ):
bsync(wait: Done(subchart),

block: ChartEnd(chart)
bsync(request: Enter(li),

block: ChartEnd(chart),VisibleEvents)
bsync(request: Leave(li),

block: ChartEnd(chart))

B. Sync

L2L1 Ln

SYNC

l1 l2
ln

snc

• For each i ∈ {1, . . . ,n} instantiate a BlockUntilCAB, block-
ing Enabled(snc) until Enter(li) is selected.

• For each i ∈ {1, . . . ,n} instantiate a BlockUntilCAB, block-
ing Leave(li) until snc is selected.

• Instantiate the following CAB:

syncCAB(snc):
bsync(request:Enabled(snc), block:Sync(snc))
bsync(request:Sync(snc), block:VisibleEvents)

This CAB enforces the SYNC to be enabled prior to
being triggered. By blocking VisibleEvents in the second
bsync, this CAB ensures that once enabled, the SYNC
will be triggered prior to any visible event.

C. Cold, Executed Message

L1 L2

l1 l2
m(v1,..vn)

message(v1,..vn)

• Instantiate two BlockUntilCABs, blocking Enabled(m) until
Enter(li) is selected (for i ∈ {1,2}). In case the sender
lifeline is also the receiver, it is possible to omit one of
these CABs.

• Instantiate two BlockUntilCABs, blocking Leave(li) for i ∈
{1,2} until Message(m) is selected.

• For each variable v not affected by m, instantiate a
BlockUntilCAB, blocking Enabled(m) until Bound(v) is se-
lected. These CABs prevent m from being enabled until
all variables it depends on are bound.

• For each variable v affected (bound) by m, instantiate a
BindFromCAB, binding v when Message(m) is selected. These
CABs announce the binding made by m for v.

• Instantiate a single ceMessageCAB (shown below):

ceMessageCAB(m):
bsync(request:Enabled(m), block:Message(m))
bsync(request:Message(m))

This CAB forces the message passing event to be
enabled prior to being triggered. The concept of an
event being “enabled” is part of the LSC language, and
so Enabled(m) serves as a source semantic event.

D. Hot, Executed Message

A “hot” message has to be executed once it was enabled
(unlike a “cold” message which may or may not happen).
The difference in behavior is achieved by adding a single
CAB, as shown below. The rest of the CABs are reused.

L1 L2

l1 l2
m(v1,..vn)

message(v1,..vn)

• Same CABs as for the cold, executed message.
• A TriggeredBlockUntilCAB, where the trigger event is

Enabled(m), after which the event set ExitEvents(chart)

is blocked until Message(m) is selected.

E. Cold, Monitored Message

L1 L2

l1 l2
m(v1,..vn)

message(v1,..vn)

• Except for the ceMessageCAB, all CABs used for the cold,
executed message (Subsection VI-C) are reused “as is”
for the cold, monitored one.

• Instantiate a single cmMessageCAB (below). This CAB is
identical to the ceMessageCAB, except for the second bsync

call which waits for the message passing event rather
than requests it.

cmMessageCAB(m):
bsync(request:Enabled(m), block:Message(m))
bsync(waitFor:Message(m))

F. Hot, Monitored Message

L1 L2

l1 l2
m(v1,..vn)

message(v1,..vn)

• Same CABs as for the cold, monitored message.
• An additional TriggeredBlockUntilCAB, as for the hot,

executed message.

G. Cold Condition

L2L1 Ln

l1 l2 ln
cnd

condition(v1,..vm)

8



• For i ∈ {1..n}, instantiate a BlockUntilCAB, blocking
Enabled(cnd) until Enter(li) is selected.

• For i ∈ {1..n}, instantiate a BlockUntilCAB, blocking
Leave(li) until Condition(cnd) is selected.

• Instantiate a single coldConditionCAB (below) with the
matched parameters.

coldConditionCAB( cnd ):
bsync(request:Enabled(cnd),

block:Condition(cnd))
if ( evaluate(cnd) ):

resultEvent = Condition(cnd)
else:

resultEvent = ColdViolation(cnd)
bsync(request:resultEvent ,block:VisibleEvents)

H. Hot Condition

L2L1 Ln

l1 l2 ln
cnd

condition(v1,..vm)

• Same as cold condition (Subsection VI-G), except that
hotConditionCAB requests a HotViolation event.

I. Loop

An LSC loop is a type of a subchart: It can contain any
LSC construct, including other loops, but uses the lifelines
of its parent chart. A cold violation of a loop terminates it,
but not its parent chart.

For every match of:

L2L1 Ln

recursively 

matched

sub-chart

loop until *

l1,1 l2,1 ln,1

l1,2 l2,2 ln,2

ctrl loopx

Instantiate the following CABs:

• BlockUntilCAB, waiting for Leave(li,1), while blocking
Enabled(loop).

• loopCAB (see below) with the matched parameters.

loopCAB( loop , ctrl ):
bsync( request: Enabled(loop) )
loopIteration(loop , ctrl)
bsync(request:Done(loop), block:VisibleEvents)

loopIteration( loop , ctrl ):
if ( ctrl > 0 ):

startCABs(loop)
bsync(request:ChartStart(loop),block:VisibleEvents)
event = bsync(request:ChartEnd(loop),

waitFor:ExitEvents(loop))
if ( event is ChartEnd(loop) ):

loopIteration(ctrl -1, loop)

A loopCAB starts by requesting its loop is enabled. It
then runs the loop repeatedly, using the sub-routine

loopIteration. After the last iteration, it announces the
loop is done by requesting a Done(loop) event. Block-
ing VisibleEvents ensures that once the loop is done,
it is declared as such prior to any message being
passed. The loopIteration sub-routine starts by checking
whether a new iteration is needed. If so, it creates
the CABs for the loop subchart, and requests its start
event to be fired. This event signals the lifeline CABs
of the subchart to start advancing along their location
list. When the subchart execution is done, loopIteration
checks whether the subchart ran to completion. If
so, another iteration is attempted1. While the loop
construct is executing, the lifelines of the parent chart
waitFor it to end before entering their next location,
below the chart.

J. Reused CABs

Common behavior aspects of constructs of the LSC
language are captured for reuse by the following CABs:

1) BlockUntilCAB: This CAB block an event until another
one is triggered. Used in all constructs to enforce correct
execution order, the code for this CAB consists of a single
bsync call.

blockUntilCAB( blocked , waitedFor ):
bsync(waitFor:waitedFor , block:blocked)

2) TriggeredBlockUntilCAB: This CAB waits for an event,
and then blocks a set of events until another event is
selected.

triggeredBlockUntilCAB(trigger , blocked , waitedFor):
bsync(waitFor:trigger)
bsync(waitFor:waitedFor , block:blocked)

3) BindFromCAB: This CAB is responsible for binding a
single variable to a value extracted from a message. It waits
for the message to be sent, and then requests a binding
event announcing the new binding.

bindFromCAB( message , variable ):
selected = bsync( waitFor:message )
value = selected.message.get(variable)
bsync( request:Bound(variable , value),

block:VisibleEvents )

VII. IMPLEMENTATION

In order to test our approach, we implemented an LSC
runtime engine. The engine takes an XML description of an
LSC as input. It then uses XQuery [14] for both querying
the source code and for generating BP code. The BP code
is then executed normally, using a standard BP library.

Input: LSCs are described using straightforward XML-
based format. Reminiscent to a verbal description of an
LSC, the format includes nodes such as <lifeline> and
<message>.

1For the special case of control value *, which means unbounded
amount of iterations, we define *-1=*.

9



Queries and BP-Mappers: Queries over the XML files
are done using XQuery. We use the BaseX [15] query engine
which implements the XQuery 3.1 W3C standard [14], with
no modifications. As LSCs contain recursive structures, the
XQuery program consists of a top-level recursive query
which is used to query to top-level chart. It then recurses
down the chart containment hierarchy, querying over each
construct it finds and mapping it to BP code. Construct
queries look very much like the construct definitions listed
above, phrased in XQuery (see Listing VII.1).

declare function local:message( $msg as node() )
as xs:string {
let $l1 := lsc:loc($msg/@from , $msg/@fromloc)
(* more value definitions (omitted) *)
return string -join((

lsc:blockUntilCAB($msgEnabled ,lsc:Enter($l1 ,$chartId)),
lsc:blockUntilCAB($msgEnabled ,lsc:Enter($l2 ,$chartId)),
lsc:messageCAB($l1 ,$l2 ,$content),
lsc:blockUntilCAB(lsc:Leave($l1 ,$chartId),$msgEvent),
lsc:blockUntilCAB(lsc:Leave($l2 ,$chartId),$msgEvent)

), $newline )
};

Listing VII.1. XQuery code for detecting <message> nodes and generating
the BPjs-based Javascript code that implements them. Compare this to
the definition of cold, executed message (Subsection VI-C). The methods
called by this query, such as lsc:messageCAB, return Javascript code.

BP engine: Generated BP code uses Javascript and the
BPjs [16] library. BPjs was originally developed for [17]. As
part of this work, we have heavily modified it to become a
general purpose BP library. These modifications, however,
did not include changes to specifically accommodate code
generated by the XQuery part of the engine.

Using this engine, LSCs described using our XML for-
mat can be directly executed. The code is available at
https://github.com/michbarsinai/BP-javascript-search.

VIII. SEMANTIC VARIATIONS

Previous sections presented the concept of querying
source code and mapping the results to BP as a mechanism
for “breathing semantics into diagrammatic languages”, to
paraphrase [10]’s title. This mechanism allows for inde-
pendently adding, removing, and altering the semantics of
each construct, and for adding new constructs or removing
them altogether. This section demonstrates such alterations,
using the LSC example presented above.

A. Asynchronous Message

The messages described in Section VI are synchronous.
We will now add an asynchronous message, which allows
the sending lifeline to advance passed the send location
without waiting for the receiving lifeline to receive the
message. This type of messages exists only in the Play-
Engine variant; PlayGo does not support it.

Instantiate the following CABs:

• BlockUntilCAB, blocking Enabled(m), waiting for Enter(l1).
• BlockUntilCAB, blocking Received(m), waiting for Enter(l2).
• BlockUntilCABs, blocking Received(m), waiting for Sent(m).
• BlockUntilCAB, blocking Leave(l1), waiting for Sent(m).
• BlockUntilCAB, blocking Leave(l2), waiting for Received(m).

• For each variable v not affected by m, a BlockUntilCAB,
blocking Enabled(m), waiting for Bound(v).

• For each variable v affected (bound) by m, a BindFromCAB,
blocking Sent(m), waiting for v.

• A single asyncMessageSendCAB (shown below), forcing the
message sending event to be enabled prior to being
triggered.

asyncMessageSendCAB(m):
bsync(request:Enabled(m), block:Sent(m))
bsync(request:Sent(m))

• A single asyncMessageReceiveCAB, requesting that the mes-
sage is received.

asyncMessageReceiveCAB(m):
bsync(request:Received(m))

As there are blockUntilCABs blocking the message from
being received prior to being enabled, fully bound,
sent, and having a lifeline in location to receive it, this
CAB does not need to handle all these preconditions
and their possible orderings.

The mapping for asynchronous messages can be used
either as a replacement for the synchronous message map-
ping, making all messages asynchronous (e.g. in a “what
if we made all messages asynchronous” scenario), or as a
mapping for a new type of specification idiom.

B. Strict vs. Tolerant Modes

An LSC can be strict or tolerant. A Strict LSC is violated if
an event that appears in it happens when it is not enabled.
Such event will not cause any violation for a tolerant LSC.
In PlayGO, all LSCs are strict. In Play-Engine, both modes
are allowed.
Strictness can be imposed by adding b-threads to the
mapping of a chart, one for each message appearing in
the LSC. Each b-thread is initialized with the events that
are present in its respective chart. The function cut(chart)

returns the cut of chart, which is the set of all the locations
its lifelines are currently in. Obtaining the cut of a given
chart does not require direct communication with that chart
or its lifelines — the cut can be obtained by waiting for the
Enter events of that chart’s locations. A cut is considered
HOT if at least one of its locations is HOT.

chartEvents = events_of( chart )
nonBlocked = ;
repeat:

event = bsync( waitFor: AllEvents ,
block: chartEvents \ nonBlocked )

if ( event is Enabled(x) ):
nonBlocked = nonBlocked ∪ {x}

else if ( event ∈ nonBlocked ):
nonBlocked = nonBlocked \ {last_event}

else:
if ( isHot(cut(chart)) ):

bsync(request:HotViolation , block:VisibleEvents)
else:

bsync(request:ColdViolation , block:VisibleEvents)

Listing VIII-B.2. Enstrictor, a b-thread that makes an LSC strict

10



C. Adding a Type System by Blocking

The LSC implementation presented so far uses dynamic
typing, as it does not verify that receiving lifelines imple-
ment the messages they receive. Using event blocking, we
can block messages unimplemented by their receiver in a
purely incremental manner, by adding a b-thread.

BP allows b-threads to block sets of events by pass-
ing a predicate to bsync. InvalidMessages, defined in List-
ing VIII-C.3, is a predicate valid for all messages unim-
plemented by their receiver. In order to prevent these
messages, the typeSystemBThread can be added to the system.

InvalidMessages( msgEvent ):
return

msgEvent.message 6∈ msgEvent.receiver.definedMessages

typeSystemBThread:
bsync( block: InvalidMessages )

Listing VIII-C.3. Type System Event Set and BThread. This code assumes
each lifeline has a list of defined operations

Traditionally, when typing constraints are imposed on
a program, they are imposed on all of it. Our proposed
approach of imposing typing constraints offers more flexi-
bility: It can be lifted or imposed with no change to the rest
of the code. It can be limited to parts of the code by altering
the predicate. Or, it can pass the invalid method call to a
special handler that can perform any arbitrary operation.
This is somewhat similar to SmallTalk’s doesNotUnderstand:

method, invoked when an object receives a message it has
no method for.

IX. RELATED WORK

The notion of describing semantics by mapping one
domain onto another is not new. AToM3 [18], for example,
is a tool for creating and transforming meta-models, uses
graph-based meta-models and transformations to achieve
this. UML [5] has its own metamodel, used to describe
its diagrams. Executable UML [19] (also known as fUML)
adds executable semantics to a subset of UML’s diagrams.
Our work differs from both in that it does not use a meta-
model per se — the queries extract data from the source
language, but the result is still in the source language, not
in a metamodel.

In [20], Latombe et. al. presented a way of coping with
semantic variations in domain specific modeling languages.
They use a 2-tier structure, where the top tier lists all
options according to a set of available semantics, and
the lower level selects the correct option according to the
desired semantic variant. Our approach differs in that it
uses changes in queries and mappers to vary the semantics.
Thus, options not available by the selected variant are not
generated.

This work was also partly motivated by the call expressed
in [21], for endowing the conventions behind complex
diagrams (biological ones, in the case of [21]) with explicit
formal semantics.

X. CONCLUSION

By querying the syntax of a diagrammatic language and
mapping the result to BP-based code, we can formally
define the operational semantics of said language. Resultant
definition has a is executable, accessible to practitioners
who shy from state change formulae but read code readily,
and allows the language developer to independently exper-
iment with different semantics of language constructs. We
have demonstrated the proposed approach using a subset
of the LSC language, and presented a working software tool
based on that definition.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[2] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the Semantics
of “Semantics”?” IEEE Computer Magazine, 2004.

[3] A. Marron. Behaviroal programming website. [Online]. Available:
http://www.b-prog.org

[4] D. Harel, A. Marron, and G. Weiss, “Behavioral programming,” Com-
munications of the ACM, vol. 55, no. 7, 2012.

[5] OMG, Unified Modeling Language Superstructure Specification, v2.0,
Aug. 2005. [Online]. Available: http://www.omg.org

[6] J. Chan and W. Yang, “Ambiguities in java,” CTHPC, vol. 2, pp. 51–62,
2002.

[7] H. Fecher, J. Schönborn, M. Kyas, and W. de Roever, “29 new
unclarities in the semantics of uml 2.0 state machines,” Formal
Methods and Software Engineering, pp. 52–65, 2005.

[8] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flat,
J. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. Findler, “Run your
research, on the effectiveness of lightweight mechanization.” POPL,
January 2012, pp. 285–296.

[9] D. Harel, R. Lampert, A. Marron, and G. Weiss, “Model-Checking
Behavioral Programs,” in Proc. 11th Int. Conf. on Embedded Software
(EMSOFT), 2011, pp. 279–288.

[10] W. Damm and D. Harel, “LSCs: Breathing Life into Message Sequence
Charts,” J. on Formal Methods in System Design, vol. 19, no. 1, pp.
45–80, 2001.

[11] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer, 2003.

[12] D. Harel, S. Maoz, S. Szekely, and D. Barkan, “PlayGo: towards a
comprehensive tool for scenario based programming,” in ASE, 2010.

[13] A. Marron and S. Szekely, LSC Language Reference Manual. De-
partment of Computer Science and Applied Mathematics Weizmann
Institute of Science, 04 2014.

[14] J. Robie, M. Dyck, and J. Spiegel, XQuery 3.1: An XML Query Language,
Std., 2015. [Online]. Available: http://www.w3.org/TR/xquery-31/

[15] C. Grun, “Pushing XML Main Memory Databases to their Limits,”
2006.

[16] M. Bar-Sinai and M. Weinstock. BP-Javascript. [Online]. Available:
https://github.com/michbarsinai/BP-javascript-search

[17] M. Weinstock, “A behavioral programming approach to search based
software engineering,” in Proceedings of the ACM Student Research
Competition at MODELS 2015.

[18] J. de Lara and H. Vangheluwe, “Atom3: A tool for multi-formalism and
meta-modelling.” in FASE, ser. Lecture Notes in Computer Science,
R. Kutsche and H. Weber, Eds., vol. 2306. Springer, 2002, pp. 174–188.

[19] OMG, Semantics Of A Foundational Subset For Executable UML
Models (FUML™) v1.2.1, January 2016. [Online]. Available: http:
//www.omg.org/spec/FUML/1.2.1/

[20] F. Latombe, X. Crégut, J. Deantoni, M. Pantel, and B. Combemale,
“Coping with Semantic Variation Points in Domain-Specific Modeling
Languages,” in 1st International Workshop on Executable Modeling
(EXE’15), 2015.

[21] E. Fox Keller and D. Harel, “Beyond the gene,” PLoS ONE,
vol. 2, no. 11, pp. 1–11, 11 2007. [Online]. Available: http:
//dx.plos.org/10.1371%2Fjournal.pone.0001231

11




