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the Projections, a part of the transformation metamodel, that
accounts for cases where an xXDSML concept is transformed
into several MoC concepts. The former can be specified
using any classical model transformation languages, while
we have devised a dedicated metalanguage for the latter. Our
contribution has been implemented in the GEMOC Studio, an
Eclipse-based language workbench, and illustrated on fUML
defined using an xXDSML capturing the notions of threads with
instructions. We have made available a video showing the
execution of an example f{UML Activity, and the sources for
the two xXDSMLs. By defining MoCs as concurrency-aware
xDSMLs, we give them a systematic structure, enabling their
use at the language-level for the modeling of other concurrency-
aware xXDSMLs. In particular, it enables the use of the MoC
that is the best fit for the concurrency paradigm of the language
being developed. It also eases the development of an xDSML,
since the model-level application of the MoC is simply a model
conforming to an xDSML, that can be executed, debugged
and animated like a regular model. Moreover, different formal
behavioral properties can be assessed on executable models
depending on the MoC used by the language.

Although any concurrency-aware xXDSML can be used as
a MoC, the concurrency theory community has studied in
details a large number of MoCs such as the Actor Model [5]
or Petri nets [4]. We plan to provide reference implementations
for these ones in a MoC standard library, including Event
Structures to bootstrap our approach. Afterwards, existing tools
around these formalisms, such as model-checking tools, can
be integrated seamlessly in our approach. Still, the approach
remains rooted in the seminal MoC (i.e., Event Structures), so
higher-order transformations could be used to verify domain
properties using the underlying MoC, while translating their
results back to the domain [30]. Finally, even though we have
considered concurrency-aware xXDSMLs as language models
for the implementation of more efficient tools, we plan to study
how code generation or scheduler synthesis could be used to
generate more efficient implementations of concurrency-aware
xDSMLs.
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