
Concurrency-aware Executable Domain-Specific
Modeling Languages

as Models of Concurrency
Florent Latombe, Xavier Crégut and Marc Pantel

Université de Toulouse, IRIT
Toulouse, France

first.last@enseeiht.fr

Abstract—To deal with the increasing complexity of mod-
ern highly-concurrent systems, the GEMOC approach for
concurrency-aware eXecutable Domain-Specific Modeling Lan-
guages (xDSMLs) proposes to make explicit, in the operational
semantics model, the concurrency concerns using a Model of
Concurrency (MoC). This separation of concerns enables re-
finements (e.g., for sequential or parallel execution platforms)
and analyses (e.g., to assess behavioral properties like deadlock-
freeness) of the concurrency concerns. This approach initially
provides only one MoC: Event Structures. But this MoC is not
the best fit for all concurrency paradigms used in xDSMLs,
resulting in complex models which are difficult to maintain or
analyze. Moreover, extending the approach with new MoCs is
complex: many elements must be integrated, and fit into the
APIs used by the implementation. We propose to seamlessly
define and integrate new MoCs through a recursive definition
of the concurrency-aware xDSML approach, enabling the use of
previously-defined xDSMLs as MoCs. This allows xDSMLs to
always rely on an adequate MoC which also comes tooled with
the generic execution and debugging facilities provided by the
concurrency-aware approach. We illustrate this on the definition
of fUML in the GEMOC Studio, an Eclipse-based language
workbench.

Index Terms—Domain-Specific Modeling Languages; Models
of Concurrency; Executable Metamodeling

I. INTRODUCTION

Modern complex systems (e.g., Cyber-Physical Systems,
Internet of Things, etc.) are highly-concurrent and executed
on increasingly-parallel platforms (e.g., many-core CPUs,
GPGPU pipelines, etc.). eXecutable Domain-Specific Modeling
Languages (xDSMLs) can be used to specify such systems,
but in traditional executable metamodeling techniques, the con-
currency concerns are spread throughout the whole semantics,
making difficult its identification, refinement or analysis. A
novel concurrent executable metamodeling approach has been
proposed and refined in [1], [2], [3]: the GEMOC concurrency-
aware xDSML approach. It proposes to make explicit, in the
operational semantics of xDSMLs, the concurrency concerns
using a Model of Concurrency (MoC) (e.g., Petri nets [4], the
Actor model [5], Event Structures [6], etc.). In this approach,
the concurrency concerns are separated from the data concerns.
The former are captured in the Model of Concurrency Mapping
(MoCMapping), which specifies how a MoC is systematically
used for models conforming to the Abstract Syntax (AS)
of the language (i.e., it generates the model’s concurrency

concerns based on a MoC formalism). The latter are captured
in the Semantic Rules, which extend the AS with the data and
operational concerns of the semantics. Both are connected by
a third model called the Communication Protocol.

The approach from [1], [2], [3] relies on the Event Structures
MoC [6], in which partial orders [7] are defined over a set
of events. The language-level model, the MoCMapping, is
built using EventType Structures [8]. However, the use of
a particular MoC for an xDSML is an important decision:
it defines which formalism will be used to represent the
concurrent aspects of the executable models. Depending on
the MoC used, different concurrency-aware analyses (usually
relying on existing external tools) may be performed to assess
behavioral properties of the models. Moreover, not all MoCs
are good fits for all xDSMLs. Depending on the xDSML’s
concurrency paradigm, MoCs may be more or less adequate.
Providing only the Event Structures MoC effectively limits
the approach, or complicates the modeling of some xDSMLs.
Integrating new MoCs alongside Event Structures is complex,
since it requires modifying the language workbench in which
the concurrency-aware approach is implemented.

In this paper, our contribution consists in a recursive
definition of the concurrency-aware xDSML approach, in
which a previously-defined concurrency-aware xDSML can be
used as the MoC of another xDSML, based on the composite
design pattern. This greatly reduces the complexity of defining
and integrating new MoCs into the approach. Moreover, the
MoC can also benefit from any of the generic execution
and debugging facilities provided for free by the language
workbench implementing the concurrency-aware approach. The
contribution to executable metamodeling techniques is thus
twofold: we extend the existing concurrency-aware xDSML
approach with the possibility to define and integrate new MoCs,
effectively allowing xDSMLs to always rely on an adequate
MoC; and we bridge the gap between MoCs (usually defined
as formalisms dedicated to the modeling of concurrent systems)
and software language engineering, effectively providing a com-
mon interface to MoCs (i.e., as concurrency-aware xDSMLs).

The rest of this paper is organized as follows. First,
in Section II, we illustrate the concurrency-aware xDSML
approach on an example language, fUML. In Section III, we
first show the importance of the adequacy of a MoC for an

12



xDSML. We explain why directly integrating MoCs into the
approach is complex and time-consuming. We then describe
our recursive definition of the approach, illustrated by defining
a new xDSML that we will use as the MoC of fUML. The
upsides and limitations of our contribution are presented in
Section IV. Section V focuses on our implementation in the
GEMOC Studio’s Language Workbench. Finally, we discuss
related work in Section VI; then conclude and give perspectives
for future work in Section VII.

II. CONCURRENCY-AWARE XDSMLS ILLUSTRATED

We apply the seminal concurrency-aware xDSML ap-
proach [1], [2], [3] to the Foundational Subset for Executable
UML Models (fUML) [9]: an executable subset of UML
Activities.

A. Structural Elements

In Model-Driven Engineering (MDE), a language’s Abstract
Syntax is usually modeled as a metamodel enhanced with
static semantics, expressed using the Meta-Object Facilities
(MOF) and Object Constraint Language (OCL) from the OMG.
Figure 1 shows an example fUML Activity composed
of nodes (ActivityNode) of various natures, connected
by edges (ActivityEdge). This example models drinking
something while talking. The former consists in checking what
is available on the table (“CheckTableForDrinks” returns at
random “Coffee”, “Tea” or “Neither”), and then executing one
of the three branches depending on what was found on the table.
In this example, concurrency takes place in the branches of

Fig. 1. fUML example: Fetching a drink while talking.

the ForkNode: the “Talk” node can be executed simultaneously
with, or interleaved with, any of the nodes of the drinking
part of the activity. Implementations usually hard code this
decision, or rely upon the underlying execution platform. With
the concurrency-aware approach, all the valid possibilities are
explicitly specified, thus enabling the use of concurrency-aware
analyses, allowing the management of semantic variations [2] or
the refinement of the language for specific execution platforms
(e.g., sequential, highly-parallel, etc.).

B. Separation of Concerns in the Semantics

The concurrency-aware approach introduces a separation of
concerns in the operational semantics [10] models.

The data and operational concerns are first captured in the
Semantic Rules. The Execution Data define the dynamic data
in the language (i.e., current state of an automaton, current
tokens in a place, current value of a variable, etc.) and how
they evolve during the execution (i.e., through fired transitions,
executed instructions, etc.). In fUML, Tokens are created
and consumed by the nodes. The Execution Data are thus the
reference currentTokens weaved in the fUML metamodel,
from the ActivityEdge concept to the Token concept. The
execution of nodes is performed by an Execution Function
weaved onto the ActivityNode concept, implemented by the
execute() operation.

The concurrency concerns are then captured in the Model
of Concurrency Mapping. So far, the approach only supports
Event Structures so the MoCMapping is an EventType Structure
model. In fUML, the core of the MoCMapping essentially
consists in declaring an EventType representing the execution
of an ActivityNode, and in constraining it such that for every
ActivityEdge, its source is executed before its target. This
language-level model is unfolded for each fUML model to
generate the Model of Concurrency Application (MoCApplica-
tion, in our case, an Event Structure) representing the model’s
concurrency concerns.

Finally, both concerns are connected by another language-
level model called the Communication Protocol that maps the
MoCTriggers (i.e., the abstract actions of the MoCMapping, that
is the EventTypes of an EventType Structure) and the Execution
Functions of the Semantic Rules. It also includes the Feedback
Protocol, required in fUML for DecisionNodes, which was
motivated and illustrated in [3].

Figure 2 shows an overview of the approach we just
described, as a Class Diagram.

Fig. 2. Class diagram of the concurrency-aware xDSML approach.

III. DEFINING AND INTEGRATING ADDITIONAL MOCS

This section first motivates the use of other MoCs besides
Event Structures and shows why integrating new MoCs directly
into the approach is complex and time-consuming. Then, we
propose to define and seamlessly integrate new MoCs thanks
to a recursive definition of the concurrency-aware xDSML

13



approach. This proposal is illustrated by the use of a new MoC
based on the notion of Threads instead of Event Structures to
model fUML.

A. Adequacy of Models of Concurrency
Several criteria can be used to assess the adequacy of a

MoC to model an xDSML’s concurrency concerns. First, there
is the conceptual proximity with the xDSML’s concurrency
paradigm, or with the systems modeled with the xDSML. In
“Why Do Scala Developers Mix the Actor Model with Other
Concurrency Models?” [11], one of the reasons why a Scala
code base integrates other MoCs besides the Actor model
promoted by Scala, is because of inadequacies of the actor
model. Using an inadequate MoC increases the chance of
creating deadlocks and data races. Another important factor to
account for is the language designer’s experience with MoCs.
This was also one of the reasons in [11] for the mixing of MoCs
in Scala code bases. This can lead to an antipattern known as
the Golden Hammer: “if all you have is a hammer, everything
looks like a nail”. These two criteria may complicate the use
of a MoC, ultimately making the MoCMapping difficult to
specify or maintain.

Moreover, one of the main benefits of the concurrency-aware
approach lies in being able to formally verify properties of
systems based on their MoCApplication. Which properties and
verification technologies remains at the discretion of the MoC
used. The formal method community has developed tools and
methods for such verifications, e.g., Petri nets [4] are commonly
used for model-checking activities. This may be an important
factor in selecting which MoC to use, for instance if particular
safety properties must be enforced (e.g., in critical systems).

B. Integration Cost of Models of Concurrency
To integrate new MoCs into the concurrency-aware approach,

two metalanguages have to be considered. First, the MoC
itself, to which the MoCApplication is conforming, with its
editor, runtime, and possibly verification tools. Then, the
MoCMapping formalism, to which the MoCMapping of an
xDSML is conforming, with its editor and generator (used to
produce the MoCApplication). Besides the merely technical
difficulties of integrating these languages and their associated
tools (provided the language workbench used is even open-
source, or implemented with the abstractions permitting its
extension in the first place), the main issue is that the notion
of MoCMapping is the main novel artefact of the concurrency-
aware xDSML approach. This means that for existing MoCs,
the MoCMapping formalism has to be fully defined and tooled
before being integrated into the approach, which is complex
and time-consuming.

To overcome these issues, we propose a generic approach to
define and seamlessly integrate new MoCs into the approach,
enabling the tailoring of the MoCs used in the definition of
concurrency-aware xDSMLs.

C. A Thread-based MoC for fUML
We illustrate our proposal with the definition and use of

another MoC for fUML, whose semantics is given in the stan-

dard in both natural language and a reference implementation
in Java1. Neither description is particularly adapted to the
use of Event Structures, so the resulting MoCMapping was
complex. Instead, Petri nets [4] can be considered, since it
originally inspired UML Activity Diagrams. Another practical
alternative is to rely on the notion of Thread: a conceptual unit
for computation, also known as green threads, or user threads,
as opposed to the operating system’s threads (or kernel threads).
The mapping between these two depends on the implementation
of the runtime of the concurrency-aware xDSML approach.
This MoC is convenient for fUML because it corresponds to
the MoC provided in Java by the threading API, used for its
reference implementation.

Let us detail how the MoCMapping of fUML can be specified
using the notions of threads with a set of instructions, and the
possibility for a thread to start another thread or to wait for
the end of another thread. An Activity is mapped to the main
thread in charge of the activity’s InitialNode and FinalNode.
The execution of nodes in sequence in an activity can be
represented by a sequence of instructions in a thread. For
every ForkNode, one thread is created per branch. It is in
charge of executing the associated branch’s nodes. Executing
the corresponding JoinNode is possible when all these threads
have finished executing their instructions.

Figure 3 shows the application of such a mapping on the
example fUML Activity of Figure 1. The main thread consists
in executing the InitialNode and the ForkNode, which starts the
two sub-threads. It then waits for the sub-threads to complete,
before allowing the execution of the JoinNode and FinalNode.
In the first sub-thread, corresponding to the drinking part of the
activity, the corresponding branch is executed as a sequence
of instructions. After the DecisionNode and the evaluation of
the guards, depending on the results retrieved, only one of the
drinking nodes is executed before the MergeNode is executed.
On the second sub-thread, there is just one node corresponding
to talking.

1https://github.com/ModelDriven/fUML-Reference-Implementation

Fig. 3. Mapping the fUML example to threads.

14

https://github.com/ModelDriven/fUML-Reference-Implementation


D. Introducing a Recursive Definition of
the Concurrency-aware xDSML Approach

More generally, we propose to leverage a previously-defined
concurrency-aware xDSML as the MoC for another xDSML.
This means that the concurrency concerns of a model are
expressed as a model conforming to another xDSML, more
appropriate to capture these concerns.

At the language level, this means that the MoCMapping
as described in Section II is now a model transformation
from the xDSML to the xDSML used as MoC. The model
resulting from the transformation (the MoCApplication) is
however not semantically equivalent to the original model: it
only represents its concurrent aspects. The MoCTriggers are the
Mappings (from the Communication Protocol) of the xDSML
used as MoC. And since an element in a model may result in
several elements in the resulting model (e.g., ForkNodes are
transformed into several ”StartThread” instructions), we also
need to be able to exploit the trace of the transformation to
disambiguate the Communication Protocol of our xDSML.

More formally, we consider two concurrency-aware xDSMLs,
LDomain and LMoC . We will detail our approach to specify
LDomain using LMoC as MoC, illustrated in the case where
the former is fUML and the latter is an xDSML capturing the
notions of threads and their instructions. LMoC is considered
as already defined, which means that it has been specified
either as shown in Section II, or as is being shown in this
section. Figure 4 gives an overview of our approach as a class
diagram. It relies on two additional models presented in the
“Concurrency-aware xDSML Recursive Definition” package of
the class diagram. The rest of this section focuses on these
two models.

1) Abstract Syntax Transformation: The first one is
a Transformation from LDomain to LMoC , denoted as
TDomain→MoC . It specifies how the concurrency concerns
of LDomain are represented using LMoC . It effectively corre-
sponds to the MoCMapping of LDomain, as it maps the AS of
LDomain to the structure of the formalism used as MoC. For
an input model MDomain, its output is MMoC .

For our example, we must first consider the definition of a
concurrency-aware xDSML with the notion of Threads. In
such an xDSML, we define a ThreadSystem as composed
of Threads, with one of them considered as the main one.
Each Thread has a number of Tasks which can be of different
nature (execution, disjunction, conditional, etc.), in particular
they can consist in starting or joining other threads. Inside a
Thread, Tasks are executed sequentially. Threads are concurrent
by nature, so if several are running at the same time, they
can execute their instructions in parallel or in any form of
interleaving. Joining on another thread waits for the selected
thread to have all its instructions executed. Disjunctions
are tasks for which only one of the two operands (Tasks)
is executed, while Conditionals are executed if all their
conditions (other Tasks) have been executed previously. The
main Mapping of interest in the Communication Protocol
of this Threading xDSML pertains to the execution of a

Task, denoted as ExecuteTask. Once we have designed
this language using the concurrency-aware approach, we can
specify TfUML→Threading . For our example model of Figure 1,
the resulting model corresponds to the right half of Figure 3.

2) Trace of the AS Transformation: When a concept of
LDomain is transformed into several concepts of LMoC , we
need a means to specify which one should be used as the
trigger for the execution of the LDomain concept. For instance,
a ForkNode is transformed into as many Tasks as it has
branches. We need to be able to define which Task’s execution
will be mapped to the ForkNode’s execution. In order to do
so, we thus need an additional language-level model, which
consists in an excerpt from the metamodel of the trace of
the AS Transformation. This excerpt is called the Projections
of LDomain, designated as PDomain→MoC . It specifies, for a
concept of LDomain, into which concept(s) of LMoC they
are transformed (through TDomain→MoC) and with which
purpose(s), through labels. This allows us to specify, for
instance, that the execution of the ForkNode is mapped to
the execution of the first Task representing the execution of
one of its branches.

This model is then used by the Communication Protocol of
LDomain, in order to generate its model-level counterpart with-
out ambiguities. This model, denoted as PfUML→Threading

for fUML, as well as its use by the fUML Communication
Protocol model, are both illustrated in Section V using our
metalanguage implementations in the GEMOC Studio.

IV. DISCUSSION

We discuss our contribution’s benefits and drawbacks.

A. Modularity

The modularity of the initial approach is not disrupted. The
data and concurrency concerns are still separated. In fact, it
even favors the reuse of the AS and Semantic Rules of an
xDSML by using different MoCs, for instance to compare two
MoCs for the same language. Reversely, concurrency-aware
xDSMLs can be reused as MoCs for other xDSMLs.

B. Concurrency-aware Analyses

Depending on the available tools, or expected behavioral
properties, the language designer may choose to use one or
another MoC for their xDSML. For instance, Petri nets [4]
are commonly used to assess liveness or safety properties. Our
approach also remains ultimately rooted in Event Structures. By
transitivity, analyzing the concurrency concerns of a model can
also be done through its underlying Event Structure [12]. Our
contribution has thus provided an additional hook for potential
analyses of executable models.

C. Facilitated MoCMapping Modeling

By facilitating the integration of new MoCs defined as
xDSMLs, we allow concurrency experts to provide a large
MoC library. Thus, we allow language designers to use the
most appropriate MoC for the xDSML being modeled. This is
similar to how DSLs are used for the dedicated abstractions they

15



Fig. 4. Overview of the recursive definition of the concurrency-aware xDSML approach.

propose: some formalisms are more adapted for the modeling
of some concurrency paradigms. This adequacy translates
into an overall simpler or more maintainable MoCMapping
model. Moreover, instead of having to learn and master an
additional metalanguage for the MoCMapping (e.g., EventType
Structures), the language designer now only has to learn the
Projections metalanguage (which is small and straightforward),
while using a model transformation for the MoCMapping.
Execution and debugging facilities of the concurrency-aware
approach are also made available for free for the xDSML used
as MoC.

D. Unified Interface for MoCs

MoCs are usually defined in many different manners,
but usually quite “informally”, either as “formalisms”, or
through language or framework constructs (e.g., Erlang ac-
tors [13], Scala’s Akka actors [14]). Our contribution allows
any concurrency-aware xDSML to be used as MoC. MoCs are
thus all modelled as xDSMLs in a uniform way and it is the
use made of an xDSML that determines whether it corresponds
to a MoC or not. In other words, “MoC” is a role played by
an xDSML, not its nature.

E. Comparison with translational semantics

Our contribution bears resemblance with translational se-
mantics (i.e., a language’s execution semantics is defined by
a translation to another well-defined language). Indeed, we
propose to define a transformation from LDomain to LMoC :
TDomain→MoC . However, the purpose of this transformation
is very different from that of translational semantics. In
our approach, the source model (MDomain, conforming to
LDomain) and the target model (MMoC , conforming to LMoC )

are not semantically equivalent. MMoC is only a representation
of the concurrency concerns of MDomain, using LMoC as a
formalism; whereas in translational semantics, the intention
of the transformation is to produce a semantically equivalent
model. The data treatments done in the Semantic Rules of
LDomain are never translated in terms of concepts of LMoC ,
and only the concurrency concerns of LDomain are transformed
into LMoC . This is quite similar to the abstraction phase
done during the modeling of a system in order to assess the
correctness of the concurrency concerns using model checkers.

V. IMPLEMENTATION

Our proposal has been implemented in the GEMOC Studio2,
an EMF-based language workbench. The full execution of
the example fUML Activity is available as a video at http:
//gemoc.org/exe16/. An archive file also provides the GEMOC
Studio with our implementation of fUML based on Threads,
as well as the source files for these xDSMLs.

A. Existing Elements

The Abstract Syntax is captured as an Ecore metamodel.
The Semantic Rules can be weaved into the AS by defining
aspects using the Kermeta 3 Action Language (K3AL) [15].
EventType Structures are specified using a combination of
MoCCML [16] and ECL [8]. The Communication Protocol is
specified using a dedicated metalanguage called the GEMOC
Events Language (GEL) [3].

2http://www.gemoc.org/studio

16

http://gemoc.org/exe16/
http://gemoc.org/exe16/
http://www.gemoc.org/studio


B. Projections, Transformation and
Communication Protocol

To specify PDomain→MoC , we have designed a small dedi-
cated metalanguage. Listing 1 shows the projections for fUML,
PfUML→Threading . fUML ActivityNodes are transformed into
Tasks. When a Task is executable, then the corresponding
ActivityNode (if there is one) is also executable. In the same
manner, some Tasks correspond to the evaluation of the guard
of an ActivityEdge, while some others represent the fact that a
branch may or may not be executed, based on the result of its
guard (more details in [3]).

Listing 1. fUML projections on Threading.
1 Projections:
2 LanguageProjection Proj_Execution:
3 fuml.ActivityNode projected onto threaded.Task end
4 LanguageProjection Proj_Evaluation:
5 fuml.ActivityEdge projected onto threaded.Task end
6 LanguageProjection Proj_MayExecute:
7 fuml.ActivityEdge projected onto threaded.Task end
8 LanguageProjection Proj_MayNotExecute:
9 fuml.ActivityEdge projected onto threaded.Task end

10 end

TDomain→MoC can be specified using any Model to
Model (M2M) transformation language [17] and any general-
purpose programming languages relying on an appropri-
ate model management library such as Java with EMF’s
APIs. However, the transformation must not only transform
MDomain into a corresponding MMoC , but it must also
generate the model-level models of PDomain→MoC , denoted
as PDomainModel→MoCModel, and used during the generation
of the model-level Communication Protocol. Indeed, we have
extended GEL with the capacity to reference projections from
PDomain→MoC when defining the Mappings. Listing 2 shows
the Communication Protocol for our implementation of fUML.

Listing 2. Communication Protocol for fUML.
1 DSE ExecuteActivityNode:
2 upon event ExecuteTask with Proj_Execution
3 triggers ActivityNode.execute blocking end
4

5 DSE EvaluateGuard:
6 upon event ExecuteTask with Proj_Evaluation
7 triggers ActivityEdge.evaluateGuard returning bool
8 feedback: // Presented in more details in [3].
9 [bool] => allow event ExecuteTask with Proj_MayExecute

10 default => allow event ExecuteTask with Proj_MayNotExecute
11 end
12 end

VI. RELATED WORK

The concurrency-aware xDSML approach we have extended
brings together two fields of research.

First, language Workbenches [18], such as MPS [19] or
MetaEdit+ [20] traditionally focus on the language syntaxes.
Executability of DSMLs is provided using “meta-programming”
like Rascal [21] or Spoofax [22]; or “executable metamodeling”
like xMOF [23] or the K Framework [24]. In both cases, the

concurrency concerns are either embedded in the metalanguages
provided by the approach used, or implicitly inherited from the
underlying execution platform. In concurrency-aware xDSMLs,
they are made explicit at the language level through the use
of a MoC.

Then, concurrency theory has studied Models of Concurrency
like Petri nets [4], the Actor model [5] or Event Structures [6]
for a long time [25]. Different MoCs typically split a task in
different manners and the communication and collaboration
between the computing entities (e.g., threads, actors, etc.) is
done in different ways (i.e., in terms of data-sharing, scheduling,
cooperation, etc.). A unification of MoCs has been proposed
through the use of the “tagged signal” model [26] or of category
theory [27], but they do not focus on defining and integrating
new MoCs. For instance in Ptolemy3 [28], adding new MoCs
(called “directors”) requires complex changes in its source
code.

In “Why Do Scala Developers Mix the Actor Model with
Other Concurrency Models?” [11], the authors analyze Scala
code-bases and interview their developers to determine how
often and why the Actor MoC was not the only one used.
Reasons were categorized into three groups: a) inadequacies of
the actor library, b) inadequacies of the MoC, and c) inadequate
developer experience. Concurrency-aware xDSMLs move a)
and c) away from the system designer to the language designer,
greatly reducing the number of users concerned with the correct
uses of MoCs. Thanks to our contribution, b) is removed as
any MoC can be used for any xDSMLs, as long as they have
been modeled as concurrency-aware xDSMLs. This enables
the language designer to use the best MoC for the concurrency
concerns of each xDSML.

Finally, we would like to point out the similarity of our
proposal with the design pattern identified by Bran Selic as the
“Recursive Control” pattern in [29]. In our case, LMoC and its
runtime is the internal control for LDomain and its runtime.
Since LMoC itself can be specified using another xDSML,
this effectively corresponds to an application of the “Recursive
Control” pattern.

VII. CONCLUSION AND PERSPECTIVES

The concurrency-aware xDSML approach advocates making
explicit, in the operational semantics, the concurrency concerns
using a Model of Concurrency. However, only one MoC,
namely Event Structures, was provided initially. We have shown
that not all MoCs are good fits for all concurrency paradigms,
and that manually integrating new MoCs into the approach is
complex and time-consuming as it requires two metalanguages
(for the language and model levels) as well as their tools.

To ease this activity, we have proposed an extension
which enables the use of previously-defined concurrency-
aware xDSMLs as MoCs. This contribution relies on two
main changes in the language models: an abstract syntax
transformation to specify how the xDSML’s concurrency
concerns are encoded in the xDSML used as MoC; and

3http://ptolemy.eecs.berkeley.edu/

17

http://ptolemy.eecs.berkeley.edu/


the Projections, a part of the transformation metamodel, that
accounts for cases where an xDSML concept is transformed
into several MoC concepts. The former can be specified
using any classical model transformation languages, while
we have devised a dedicated metalanguage for the latter. Our
contribution has been implemented in the GEMOC Studio, an
Eclipse-based language workbench, and illustrated on fUML
defined using an xDSML capturing the notions of threads with
instructions. We have made available a video showing the
execution of an example fUML Activity, and the sources for
the two xDSMLs. By defining MoCs as concurrency-aware
xDSMLs, we give them a systematic structure, enabling their
use at the language-level for the modeling of other concurrency-
aware xDSMLs. In particular, it enables the use of the MoC
that is the best fit for the concurrency paradigm of the language
being developed. It also eases the development of an xDSML,
since the model-level application of the MoC is simply a model
conforming to an xDSML, that can be executed, debugged
and animated like a regular model. Moreover, different formal
behavioral properties can be assessed on executable models
depending on the MoC used by the language.

Although any concurrency-aware xDSML can be used as
a MoC, the concurrency theory community has studied in
details a large number of MoCs such as the Actor Model [5]
or Petri nets [4]. We plan to provide reference implementations
for these ones in a MoC standard library, including Event
Structures to bootstrap our approach. Afterwards, existing tools
around these formalisms, such as model-checking tools, can
be integrated seamlessly in our approach. Still, the approach
remains rooted in the seminal MoC (i.e., Event Structures), so
higher-order transformations could be used to verify domain
properties using the underlying MoC, while translating their
results back to the domain [30]. Finally, even though we have
considered concurrency-aware xDSMLs as language models
for the implementation of more efficient tools, we plan to study
how code generation or scheduler synthesis could be used to
generate more efficient implementations of concurrency-aware
xDSMLs.

ACKNOWLEDGMENTS

This work is partially supported by the ANR INS Project
GEMOC (ANR-12-INSE-0011).

REFERENCES

[1] B. Combemale, J. Deantoni, M. Vara Larsen, F. Mallet, O. Barais,
B. Baudry, and R. France, “Reifying Concurrency for Executable
Metamodeling,” in SLE’13.

[2] F. Latombe, X. Crégut, J. Deantoni, M. Pantel, and B. Combemale,
“Coping with Semantic Variation Points in Domain-Specific Modeling
Languages,” in EXE 2015. Ottawa, Canada: CEUR, 2015.

[3] F. Latombe, X. Crégut, B. Combemale, J. Deantoni, and M. Pantel,
“Weaving Concurrency in eXecutable Domain-Specific Modeling
Languages,” in 8th ACM SIGPLAN International Conference on
Software Language Engineering (SLE 2015), 2015. [Online]. Available:
https://hal.inria.fr/hal-01185911

[4] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings
of the IEEE, vol. 77, no. 4, 1989.

[5] G. A. Agha, “Actors: A model of concurrent computation in distributed
systems.” DTIC Document, Tech. Rep., 1985.

[6] G. Winskel, “Event structures,” in Petri Nets: Applications and Relation-
ships to Other Models of Concurrency, ser. LNCS, 1987.

[7] V. Pratt, “Modeling concurrency with partial orders,” International
Journal of Parallel Programming, vol. 15, no. 1, pp. 33–71, 1986.

[8] J. Deantoni and F. Mallet, “ECL: the event constraint language, an
extension of OCL with events,” Inria, Tech. Rep., 2012.

[9] OMG, “fUML specification v1.1,” 2013. [Online]. Available: http:
//www.omg.org/spec/FUML/

[10] G. D. Plotkin, “The origins of Structural Operational Semantics,” The
Journal of Logic and Algebraic Programming, 2004.

[11] S. Tasharofi, P. Dinges, and R. E. Johnson, “Why do scala developers
mix the actor model with other concurrency models?” in ECOOP 2013.
Springer, 2013.

[12] F. Mallet and R. De Simone, “Correctness Issues on MARTE/CCSL
constraints,” Science of Computer Programming, vol. 106, pp. 78–92,
Aug. 2015. [Online]. Available: https://hal.inria.fr/hal-01257978

[13] J. Armstrong, R. Virding, C. Wikström, and M. Williams, Concurrent
programming in ERLANG. Citeseer, 1993.

[14] M. Gupta, Akka essentials. Packt Publishing Ltd, 2012.
[15] DIVERSE-team, “Github for k3al,” 2016. [Online]. Available:

http://github.com/diverse-project/k3/
[16] J. Deantoni, P. Issa Diallo, C. Teodorov, J. Champeau, and B. Combemale,

“Towards a Meta-Language for the Concurrency Concern in DSLs,” in
DATE, 2015.

[17] OMG, “QVT specification v1.2,” 2015. [Online]. Available: http:
//www.omg.org/spec/QVT/

[18] Language Workbenches Challenge, “Comparing tools of the trade,”
2014. [Online]. Available: http://www.languageworkbenches.net/

[19] M. Voelter and V. Pech, “Language modularity with the MPS language
workbench,” in ICSE. IEEE, 2012.

[20] S. Kelly, K. Lyytinen, M. Rossi, and J. P. Tolvanen, “MetaEdit+ at the
age of 20,” in CAiSE. Springer, 2013.

[21] T. Van Der Storm, “The Rascal Language Workbench,” 2011.
[22] L. C. Kats and E. Visser, “The spoofax language workbench: rules for

declarative specification of languages and ides,” in ACM Sigplan Notices,
2010.

[23] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel, “xMOF:
Executable DSMLs based on fUML,” in SLE, 2013.

[24] G. Rosu and T. F. Serbanuta, “K overview and simple case study,” in
Proceedings of International K Workshop (K’11), 2014.

[25] M. Nielsen, “Models for concurrency,” in Mathematical Foundations of
Computer Science, 1991.

[26] E. Lee, A. Sangiovanni-Vincentelli et al., “A framework for comparing
models of computation,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 1998.

[27] M. Nielsen, V. Sassone, and G. Winskel, Relationships between models
of concurrency. Springer, 1994.

[28] C. Ptolemaeus, System Design, Modeling, and Simulation: Using Ptolemy
II. Ptolemy. org Berkeley, CA, USA, 2014.

[29] B. Selic, “An architectural pattern for real-time control software,” in
Workshop on Frameworks and Architectures, PLoP Conference, 1996.

[30] F. Zalila, X. Crégut, and M. Pantel, “A transformation-driven approach to
automate feedback verification results,” in Model and Data Engineering.
Springer, 2013, pp. 266–277.

18

https://hal.inria.fr/hal-01185911
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/FUML/
https://hal.inria.fr/hal-01257978
http://github.com/diverse-project/k3/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://www.languageworkbenches.net/

	Introduction
	Concurrency-aware xDSMLs Illustrated
	Structural Elements
	Separation of Concerns in the Semantics

	Defining and Integrating Additional MoCs
	Adequacy of Models of Concurrency
	Integration Cost of Models of Concurrency
	A Thread-based MoC for fUML
	Introducing a Recursive Definition ofthe Concurrency-aware xDSML Approach
	Abstract Syntax Transformation
	Trace of the AS Transformation


	Discussion
	Modularity
	Concurrency-aware Analyses
	Facilitated MoCMapping Modeling
	Unified Interface for MoCs
	Comparison with translational semantics

	Implementation
	Existing Elements
	Projections, Transformation and Communication Protocol

	Related Work
	Conclusion and Perspectives
	References



