000

000



O

O

O





https://github.com/ModelDriven/fUML-Reference-Implementation

|



-


http://gemoc.org/exe16/
http://gemoc.org/exe16/
http://www.gemoc.org/studio

d O

0L


http://ptolemy.eecs.berkeley.edu/

the Projections, a part of the transformation metamodel, that
accounts for cases where an xXDSML concept is transformed
into several MoC concepts. The former can be specified
using any classical model transformation languages, while
we have devised a dedicated metalanguage for the latter. Our
contribution has been implemented in the GEMOC Studio, an
Eclipse-based language workbench, and illustrated on fUML
defined using an xXDSML capturing the notions of threads with
instructions. We have made available a video showing the
execution of an example f{UML Activity, and the sources for
the two xXDSMLs. By defining MoCs as concurrency-aware
xDSMLs, we give them a systematic structure, enabling their
use at the language-level for the modeling of other concurrency-
aware xXDSMLs. In particular, it enables the use of the MoC
that is the best fit for the concurrency paradigm of the language
being developed. It also eases the development of an xDSML,
since the model-level application of the MoC is simply a model
conforming to an xDSML, that can be executed, debugged
and animated like a regular model. Moreover, different formal
behavioral properties can be assessed on executable models
depending on the MoC used by the language.

Although any concurrency-aware xXDSML can be used as
a MoC, the concurrency theory community has studied in
details a large number of MoCs such as the Actor Model [5]
or Petri nets [4]. We plan to provide reference implementations
for these ones in a MoC standard library, including Event
Structures to bootstrap our approach. Afterwards, existing tools
around these formalisms, such as model-checking tools, can
be integrated seamlessly in our approach. Still, the approach
remains rooted in the seminal MoC (i.e., Event Structures), so
higher-order transformations could be used to verify domain
properties using the underlying MoC, while translating their
results back to the domain [30]. Finally, even though we have
considered concurrency-aware xXDSMLs as language models
for the implementation of more efficient tools, we plan to study
how code generation or scheduler synthesis could be used to
generate more efficient implementations of concurrency-aware
xDSMLs.

ACKNOWLEDGMENTS

This work is partially supported by the ANR INS Project
GEMOC (ANR-12-INSE-0011).

REFERENCES

[1] B. Combemale, J. Deantoni, M. Vara Larsen, F. Mallet, O. Barais,
B. Baudry, and R. France, “Reifying Concurrency for Executable
Metamodeling,” in SLE’I3.

F. Latombe, X. Crégut, J. Deantoni, M. Pantel, and B. Combemale,
“Coping with Semantic Variation Points in Domain-Specific Modeling
Languages,” in EXE 2015. Ottawa, Canada: CEUR, 2015.

F. Latombe, X. Crégut, B. Combemale, J. Deantoni, and M. Pantel,
“Weaving Concurrency in eXecutable Domain-Specific Modeling
Languages,” in 8th ACM SIGPLAN International Conference on
Software Language Engineering (SLE 2015), 2015. [Online]. Available:
https://hal.inria.fr/hal-01185911

T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings
of the IEEE, vol. 77, no. 4, 1989.

G. A. Agha, “Actors: A model of concurrent computation in distributed
systems.” DTIC Document, Tech. Rep., 1985.

[2]

[3

=

[5]

18

[6]
[7

—

[8

[t}

[9]
[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]
[19]
(20]
[21]
(22]
(23]
[24]
[25]

[26]

[27]
(28]
[29]

[30

=

G. Winskel, “Event structures,” in Petri Nets: Applications and Relation-
ships to Other Models of Concurrency, ser. LNCS, 1987.

V. Pratt, “Modeling concurrency with partial orders,” International
Journal of Parallel Programming, vol. 15, no. 1, pp. 33-71, 1986.

J. Deantoni and F. Mallet, “ECL: the event constraint language, an
extension of OCL with events,” Inria, Tech. Rep., 2012.

OMG, “fUML specification v1.1,” 2013. [Online]. Available: http:
/Iwww.omg.org/spec/FUML/

G. D. Plotkin, “The origins of Structural Operational Semantics,” The
Journal of Logic and Algebraic Programming, 2004.

S. Tasharofi, P. Dinges, and R. E. Johnson, “Why do scala developers
mix the actor model with other concurrency models?” in ECOOP 2013.
Springer, 2013.

F. Mallet and R. De Simone, “Correctness Issues on MARTE/CCSL
constraints,” Science of Computer Programming, vol. 106, pp. 78-92,
Aug. 2015. [Online]. Available: https://hal.inria.fr/hal-01257978

J. Armstrong, R. Virding, C. Wikstrom, and M. Williams, Concurrent
programming in ERLANG. Citeseer, 1993.

M. Gupta, Akka essentials. Packt Publishing Ltd, 2012.
DIVERSE-team, “Github for k3al,” 2016. [Online].
http://github.com/diverse-project/k3/

J. Deantoni, P. Issa Diallo, C. Teodorov, J. Champeau, and B. Combemale,
“Towards a Meta-Language for the Concurrency Concern in DSLs,” in
DATE, 2015.

OMG, “QVT specification v1.2,” 2015. [Online]. Available: http:
/Iwww.omg.org/spec/QVT/

Language Workbenches Challenge, “Comparing tools of the trade,”
2014. [Online]. Available: http://www.languageworkbenches.net/

M. Voelter and V. Pech, “Language modularity with the MPS language
workbench,” in ICSE. 1EEE, 2012.

S. Kelly, K. Lyytinen, M. Rossi, and J. P. Tolvanen, “MetaEdit+ at the
age of 20,” in CAiSE. Springer, 2013.

T. Van Der Storm, “The Rascal Language Workbench,” 2011.

L. C. Kats and E. Visser, “The spoofax language workbench: rules for
declarative specification of languages and ides,” in ACM Sigplan Notices,
2010.

T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel, “xMOF:
Executable DSMLs based on fUML,” in SLE, 2013.

G. Rosu and T. F. Serbanuta, “K overview and simple case study,” in
Proceedings of International K Workshop (K’11), 2014.

M. Nielsen, “Models for concurrency,” in Mathematical Foundations of
Computer Science, 1991.

E. Lee, A. Sangiovanni-Vincentelli et al., “A framework for comparing
models of computation,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 1998.

M. Nielsen, V. Sassone, and G. Winskel, Relationships between models
of concurrency. Springer, 1994.

C. Ptolemaeus, System Design, Modeling, and Simulation: Using Ptolemy
1I. Ptolemy. org Berkeley, CA, USA, 2014.

B. Selic, “An architectural pattern for real-time control software,” in
Workshop on Frameworks and Architectures, PLoP Conference, 1996.
F. Zalila, X. Crégut, and M. Pantel, “A transformation-driven approach to
automate feedback verification results,” in Model and Data Engineering.
Springer, 2013, pp. 266-277.

Available:


https://hal.inria.fr/hal-01185911
http://www.omg.org/spec/FUML/
http://www.omg.org/spec/FUML/
https://hal.inria.fr/hal-01257978
http://github.com/diverse-project/k3/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://www.languageworkbenches.net/

	Introduction
	Concurrency-aware xDSMLs Illustrated
	Structural Elements
	Separation of Concerns in the Semantics

	Defining and Integrating Additional MoCs
	Adequacy of Models of Concurrency
	Integration Cost of Models of Concurrency
	A Thread-based MoC for fUML
	Introducing a Recursive Definition ofthe Concurrency-aware xDSML Approach
	Abstract Syntax Transformation
	Trace of the AS Transformation


	Discussion
	Modularity
	Concurrency-aware Analyses
	Facilitated MoCMapping Modeling
	Unified Interface for MoCs
	Comparison with translational semantics

	Implementation
	Existing Elements
	Projections, Transformation and Communication Protocol

	Related Work
	Conclusion and Perspectives
	References



