
On Leveraging Executable Language Engineering
for Domain-Specific Transformation Languages

(Position Paper)

Erwan Bousse
TU Wien

Vienna, Austria
bousse@big.tuwien.ac.at

Manuel Wimmer
TU Wien

Vienna, Austria
wimmer@big.tuwien.ac.at

Wieland Schwinger
JKU Linz

Linz, Austria
wieland.schwinger@cis.jku.at

Elisabeth Kapsammer
JKU Linz

Linz, Austria
elisabeth@cis.jku.at

Abstract—An increasing number of domain-specific transforma-
tion languages (DSTLs) are used to define model transformations
in specific contexts. This shift led to many approaches to define
new DSTLs and associated tools, either through frameworks or
complete generative approachs. In parallel, the fields of language
engineering and model execution have seen the development of
many approaches to efficiently define new executable domain-
specific modeling languages (xDSMLs), and to provide tools
(e.g., editor, debugger) for any newly defined xDSML. In this
position paper, we propose to study how the engineering of
DSTLs could benefit from state-of-the-art xDSML engineering
approaches. We first demonstrate why a DSTL is an xDSML
with specific characteristics. We then give a selection of research
directions to apply xDSML engineering approaches on DSTLs.

Index Terms—model transformation, domain-specific transfor-
mation languages, language engineering, model execution

I. INTRODUCTION

Model transformations are at the core of all model driven
engineering activities [15]. They are defined using model
transformation languages, which provide concepts to express
model modifications or code generation. Because model
transformations are complex artifacts, an increasing number of
domain-specific transformation languages (DSTLs) [12] are
used to define them. A DSTL can be specific to a technical
concern of model transformation (e.g., Epsilon task-specific
DSTLs [11]), or to a specific context (e.g., mapping of abstract
and concrete syntaxes [9]), or even to a specific set of input
and output metamodels (especially in generative approaches,
e.g., [10]). The growing usage of DSTLs led to many methods
to efficiently define new DSTLs and associated tools, such as
frameworks [5], [16] or generative approaches [7], [10]. A good
illustration of this trend is the Tool Transformation Contest
2016 (TTC’16), which confronted transformation tools on the
implementation of an engine for a dataflow-based DSTL1.

In parallel, the fields of language engineering and model
execution have seen the development of many approaches to
efficiently define new executable domain-specific modeling lan-
guages (xDSMLs) [3], [6], [13], which are DSMLs supported
by execution semantics. Such approaches can automatically
provide static (e.g., editor) or dynamic (e.g., debugger) tools
for any newly defined xDSML. For example, our recent

1https://github.com/bluezio/ttc2016-live

work focused on the generation of dedicated execution trace
management facilities of an xDSML [4], and on the usage of
such facilities for model omniscient debugging [2].

In this context, we make the following observation: if we
consider a model transformation as a model [1], [12], we can
consider a DSTL as a specific sort of xDSML. Therefore, all
research results in the field of xDSML engineering can be
applied to DSTLs, in order to improve or supplement exist-
ing DSTL engineering approaches. For instance, a language
workbench such as the GEMOC Studio [3] can be used to
implement a DSTL and to automatically provide it with a
debugger. Furthermore, such research results can presumably
be adapted or extended for the specific case of DSTLs, given
a study of what characterizes DSTLs as specific xDSMLs.
For instance, in the case of DSTLs, the parameters given to
the executed model (i.e., the model transformation) commonly
always comprise an input model and input/output metamodels.

In this position paper, we propose to study how the engi-
neering of DSTLs could benefit from state-of-the-art xDSML
engineering approaches. In Section II, we present why a DSTL
is a specific sort of xDSML. In Section III, we present some
specific characteristics of DSTLs, and we identify a selection
of research directions to apply xDSML engineering approaches
on DSTLs. Finally, we conclude in Section IV.

II. FROM XDSML TO DSTL ENGINEERING

In this section, we first briefly explain what is an xDSML,
we then demonstrate how a DSTL is as a specific sort of
xDSML, and finally we present a category of DSTLs that are
defined with fixed input and output metamodels.

A. Executable Domain-Specific Modeling Language (xDSML)

An xDSML is a domain-specific modeling language sup-
ported by execution semantics [6]. There are two main ap-
proaches to define execution semantics: translational (i.e., com-
pilation or code generation) and operational (i.e., interpretation).
In this paper we focus on operational semantics, only.

Figure 1 shows an xDSML and its usage to execute a model.
The central part of an xDSML is the abstract syntax, also called
the domain model. It is completed by the parameter metamodel
that defines the possible parameters for an execution. The
executable model and the parameter model conform to these

41

https://github.com/bluezio/ttc2016-live


Abstract
syntax

xDSML

Executable
model

Parameter
metamodel

State
metamodel

Parameter
model

Execution
state

Execution
transformation

Model

Model
transformation

data flow

depends on / uses

conforms to

Figure 1. Representation of an xDSML and its usage.

Abstract
syntax

DSTL

Engine state
metamodel

Transformation and
metamodels

Types

Metamodeling
language

InstancesInstances

Output
and
state Engine

State

Output
model

Input
model

Input
metamodel

Output
metamodel

Model
transformation

Transformation
engine

Figure 2. Representation of a DSTL as an xDSML, and its usage for a
model-to-model transformation. Some arrows are not shown for readability
(e.g., the input and output metamodels conform to Types).

metamodels. Next, the operational semantics of the xDSML
comprise two parts. First, the state metamodel defines what is
the dynamic execution state of an executable model. Second,
the execution transformation is a model transformation (often
in-place) that defines how the state changes during execution.

B. Domain-Specific Transformation Language (DSTL)

A DSTL is domain-specific language that can be used
to express model transformations. If we consider a model
transformation as a model [1], [12], we can consider a DSTL
as a specific sort of xDSML, and a model transformation as an
executable model. In the following, we present the common
case of DSTLs that can process models conforming to any
given input/output metamodels (e.g., Epsilon DSTLs [11]).

Figure 2 shows a refinement of Figure 1 to represent a
DSTL in the case of model-to-model transformations. While
it was implicit in Figure 1, we explicitly must show here the
considered metamodeling language (e.g., EMF Ecore) that is
required by a DSTL to generically handle any input or output
metamodels and models. It is shown at the top left, and is
composed of two parts: Types (e.g., EClass, EReference)
and Instances2 (e.g., EObject). The Types part is used by
the abstract syntax, since a model transformation references
classes of the considered input and output metamodels. The
Instances part is used both as the parameter metamodel,

2Relationships are presented from the perspective of the DSTL, meaning
that the input/output models are considered as generic models conforming to
the Instances metamodel, i.e., we present the linguistic relationships. Yet, if
we consider ontological relationships, the input/output models do conform to
the input/output metamodels, which is only shown here as dependency links.

Input
model

Abstract
syntax

Transformation
engine

DSTL specific to M1 and M2

Model
transformation

Input
metamodel M1

State and output

Engine state
metamodel

Output
metamodel M2

Execution state metamodel

Output
model

Engine
state

Figure 3. Representation of a DSTL with fixed input and output metamodels
M1 and M2, and its usage for a model-to-model transformation.

so that any input model may be taken as a parameter,
and for the state metamodel, so that the output model can
be constructed. The executable model not only consists of
the model transformation, but also of its input and output
metamodels. The execution transformation is commonly called
a transformation engine, which is responsible for applying the
rules of the executed model transformation. More precisely,
such engine is a transformation that generically reads both the
input transformation and the input model (e.g., using eGet
in EMF) and produces the output model (e.g., using eSet
and factories in EMF). The engine is arbitrarily complex and
completely dependent on the paradigms and features provided
by the implemented DSTL (e.g., pattern matching). Finally, at
runtime, the execution state comprises both the engine state
(e.g., current rule being executed), and the output model being
produced. Note that if the input and output models are distinct,
we have an out-place model transformation, and if they are the
same single model, we have an in-place model transformation.
The latter case is possible since the input and output models
conform to the same Instances metamodel.

C. DSTL with fixed input and output metamodels

While a DSTL can commonly consider any input and output
metamodels, it is also possible to define a DSTL for fixed
input and output metamodels. This is especially the case
for generative approaches that produce the DSTL specific to
a given DSML [10], in order to facilitate the definition of
transformations for this DSML. While such choice implies
a loss of genericity, it makes possible to provide syntactic
constructs very similar to the input and output metamodels
(e.g., by deriving a pattern language from the input metamodel),
and ease the definition of the engine, among other advantages.

Figure 3 shows a refinement of Figure 1 when considering
a DSTL that is specific to an input metamodel M1 and to an
output metamodel M2. In this scenario, the DSTL does not
have to explicitly rely on a metamodeling language, since M1
is directly used as a parameter metamodel and M2 is part of the
execution state metamodel. Consequently, the only parameter
given to the engine is an input model conforming to M1.

III. OBSERVATIONS AND RESEARCH DIRECTIONS

While being xDSMLs, DSTLs have a number of specific
characteristics. For example, when a DSTL supports any input
or output metamodels (see Section II-B), the executed model

42



is heterogeneous and complex since it is composed of both
input/output metamodels in addition to the transformation. In
other words, the abstract syntax of such DSTL has to import
all the complexity of a complete metamodeling language. In
addition, the parameter metamodel is a subset of the same
metamodeling language, meaning that the parameter can be
any kind of arbitrarily complex model. The execution state is
likewise rather complex, since it includes the complete output
model under construction. Lastly, the transformation engine of
a DSTL can also be elaborated to manage diverse concerns
(e.g., pattern matching, order of execution of rules) [8], [16].

While there is already a wide range of efficient approaches
to engineer DSTLs [7], [10], the aforementioned complexity
is a strong motivation to further improve these approaches.
Research in language engineering and model execution include
many approaches to tackle the complexity of engineering an
xDSML. To potentially benefit from such results in the context
of DSTLs, we propose a selection of research directions:

a) xDSML design pattern: Understanding a DSTL, es-
pecially its transformation engine [14], helps verifying that
both a DSTL and conforming transformations are correct. The
xDSML design pattern [6] was proposed to capitalize good
engineering practices for xDSMLs with a strong focus on the
separation of concerns, which helps understandability. Such
design pattern could be used or adapted for engineering DSTLs.
Furthermore, defining xDSMLs in a systematic manner gives
the possibility to analyze them with automatic procedures.

b) xDSML generic and generative approaches: Generic
and generative approaches have been proposed to support any
xDSML defined in a systematic manner (see previous point).
For instance, we proposed an approach to generate the domain-
specific trace metamodel of an xDSML [4], and a generic
omniscient debugging approach for model execution [2]. Such
approaches could be applied or adapted for DSTLs.

c) Extend xDSML workbenches for DSTLs: Some existing
work aim at capitalizing knowledge and practices for the
engineering of transformation languages. For instance, the
T-Core framework [16] provides a wide range of primitives to
greatly facilitate the definition of transformation engines. Such
frameworks or libraries could be used in xDSML language
workbenches to help defining operational semantics of DSTLs.

d) Use DSTLs as case studies for model execution: Due
to their peculiarities, DSTLs represent interesting cases of
xDSMLs. Following the trend of the TTC’16, DSTLs could
be used as case studies for model execution approaches.

e) Efficiency of transformation engines: Because the
semantics of DSTLs tend to be complex, implementing
efficient transformation engines is a difficult task. For example,
providing a query mechanism requires efficient ways to explore
the input model, and to store or cache intermediate results.
While there are already common ways to improve efficiency,
such as using traceability maps in operational semantics or
choosing an efficient target language in translational semantics,
specific techniques could be developed or studied.

As a starting point for exploring these directions, we have
implemented an open-source toy DSTL called MiniTL3 using
the GEMOC Studio language workbench.

IV. CONCLUSION

We showed that DSTLs are a specific sort of xDSMLs,
and we proposed research directions to study how xDSML
engineering can be leveraged to improve or supplement DSTL
engineering. We plan to explore these directions as part of the
TETRA Box research project to improve the testing of model
transformations, and to study whether DSTLs are the “killer”
case studies for xDSMLs workbenches.

ACKNOWLEDGMENT

This work has been funded by the Austrian Science Fund
(FWF): P 28519-N31, by the Christian Doppler Forschungsge-
sellschaft CDL-Flex and the BMWFW (Austria).

REFERENCES

[1] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow.
Model Transformations? Transformation Models! In Int. Conference on
Model Driven Engineering Languages and Systems (MODELS), 2006.

[2] E. Bousse, J. Corley, B. Combemale, J. Gray, and B. Baudry. Supporting
Efficient and Advanced Omniscient Debugging for xDSMLs. In Int.
Conference on Software Language Engineering (SLE), 2015.

[3] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale. Execution Framework of the GEMOC Studio (Tool
Demo). In Software Language Engineering (SLE), 2016.

[4] E. Bousse, T. Mayerhofer, B. Combemale, and B. Baudry. A Generative
Approach to Define Rich Domain-Specific Trace Metamodels. In Euro-
pean Conference on Modeling Foundations and Applications (ECMFA),
2015.

[5] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT
0.17. A language and toolset for program transformation. Science of
Computer Programming, 72:52–70, 2008.

[6] B. Combemale, X. Crégut, and M. Pantel. A Design Pattern to Build
Executable DSMLs and associated V&V tools. Asia-Pacific Software
Engineering Conference (APSEC), 2012.

[7] J. S. Cuadrado, E. Guerra, and J. De Lara. Towards the Systematic
Construction of Domain-Specific Transformation Languages. In European
Conference on Modelling Foundations and Applications (ECFMA), 2014.

[8] K. Czarnecki and S. Helsen. Feature-based survey of model transforma-
tion approaches. IBM Systems Journal, 45(3), 2006.

[9] A. S.-B. Herrera, E. D. Willink, and R. F. Paige. A Domain Specific
Transformation Language to Bridge Concrete and Abstract Syntax. In
Int. Conference on Model Transformation (ICMT), 2016.

[10] K. Hölldobler, B. Rumpe, and I. Weisemöller. Systematically deriving
domain-specific transformation languages. In Model Driven Engineering
Languages and Systems (MODELS), 2015.

[11] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. The Epsilon
Transformation Language. In Int. Conference on Model Transformation
(ICMT), 2008.

[12] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer. Explicit
Transformation Modeling. In Int. Workshop on Multi-Paradigm Modeling
(MPM), 2010.

[13] T. Mayerhofer, P. Langer, M. Wimmer, and G. Kappel. xMOF: Executable
DSMLs based on fUML. In Int. Conference on Software Language
Engineering (SLE), 2013.

[14] J. T. Saxon, B. Bordbar, and D. H. Akehurst. Opening the Black-
Box of Model Transformation. In European Conference on Modeling
Foundations and Applications (ECMFA), 2015.

[15] S. Sendall and W. Kozaczynski. Model Transformation: The Heart and
Soul of Model-Driven Software Development. IEEE Software, 20(5),
2003.

[16] E. Syriani, H. Vangheluwe, and B. LaShomb. T-Core: a framework
for custom-built model transformation engines. Software and Systems
Modeling (SoSyM), 14(3), 2013.

3https://github.com/tetrabox/minitl

43

https://github.com/tetrabox/minitl

	Introduction
	From xDSML to DSTL engineering
	Executable Domain-Specific Modeling Language (xDSML)
	Domain-Specific Transformation Language (DSTL)
	DSTL with fixed input and output metamodels

	Observations and research directions
	Conclusion
	References



