
On the Executable Nature of Models
(Position Paper)

Eric Cariou, Olivier Le Goaer, and Franck Barbier
Université de Pau / LIUPPA, PauWare Research Group, BP 1155,

64013 PAU CEDEX, France
Email: {firstname.name}@univ-pau.fr

Abstract—Within the model-driven engineering field, the con-
cept of “i-DSML” (interpreted Domain Specific Modeling Lan-
guage) refers to executable models which are interpreted through
an engine. While several works discussed the key ingredients of
an i-DSML, few of them answered the original question: What
is the class of models that are executable by nature and those
that are not? This paper attempts to provide some answers by
proposing two discriminating criteria: The possibility of defining
execution steps and the reification of the behavior of the running
system into the executed model. On this basis, we reconsider some
well-known DSML and notice a paradoxical situation with UML
diagrams.

Keywords—MDE, model execution, i-DSML, xDSML

I. INTRODUCTION

The Model-Driven Engineering (MDE) aims to bring mod-
els as productive artifacts for the software development. Hav-
ing productive models means that they are directly the base
for obtaining the final software system, for instance through
the ability to generate code from them. The ultimate challenge
within productive models field is to skip the implementation
stage and that the models at design-time are fully reifying
the whole system at run-time. This can be achieved through
model execution. Recent initiatives at the OMG such as fUML1

or ALF2 enable to add an executable behavior for instance
on UML3 class diagrams that are basically static structures.
In a more general way, the MDE enables to define its very-
own modeling language dedicated to a specific purpose within
the concept of DSML (Domain Specific Modeling Language).
Therefore one can also define DSML for executable models.
Such DSML are called i-DSML [5] for interpreted DSML or
xDSML [6] for executable DSML.

Model execution has been widely studied and a consensus
has been established on the constituent elements of an i-DSML
and so, on how carrying out model execution. This answers
the question: “How to build an i-DSML?”. In this paper, we
try to answer a symmetrical question that is: “If we are facing
a model, can we determine if this is an executable model, or
worded other way, if the DSML used is actually an i-DSML?”.
We are then looking for characteristics of the executable nature
of a model.

In the next section, we recall the constitutive elements of
an i-DSML. In section III, we give two criteria allowing to

1Semantics of a Foundational Subset for Executable UML Models (http:
//www.omg.org/spec/FUML/)

2Concrete Syntax for a UML Action Language: Action Language for
Foundational UML (http://www.omg.org/spec/ALF/)

3Unified Modeling Language (http://www.omg.org/spec/UML/)

determine if a model is executable. These criteria are then
applied on well-known DSML from the OMG.

II. CHARACTERIZATION OF MODEL EXECUTION

Model execution has been studied by several works, espe-
cially [2], [3], [4], [5], [6], [7]. All these works built a consen-
sus on the rationale of model execution and how to design an
i-DSML. Figure 1 summarizes our characterization from [4].
An i-DSML is a specific kind of DSML whose metamodel
contains two types of elements: Elements called ’static’ which
describe the steady structure of a model, and elements called
’dynamic’ which indicate the global model state at a given
execution step. In the case of a state machine for example, the
static elements are states and transitions while the dynamic
elements are the current active state(s). A precise execution
semantics is attached to an i-DSML. It specifies how to make
evolving the model at runtime, acting only on the dynamic
elements of the model under execution. Reconsidering the
state machine example, it specifies how the transitions have
to be fired according to both the current active state(s) and an
incoming event, leading to modify the current active state(s).
This execution semantics is implemented through an execution
engine. The engine takes an executable model (conforming to
an i-DSML) in input and is in charge of its interpretation,
that is, making evolving it, thereby generating a sequence of
execution steps (a.k.a an execution trace).

It is worthwhile mentioning that the aforesaid characteriza-
tion assumes that the current state of a model under execution
is stored in the model itself. This is not always the case,
since knowledge about the current state can also be internally
managed by the engine. As an example, PauWare4 is an
execution engine for UML state machines, written in Java.
Nevertheless, the genuine UML specification did not planned
to store in a state machine diagram what are the current active
state(s). Consequently, the PauWare engine is responsible for
this. To our opinion, storing the execution state inside the
model rather than inside the engine has the advantage that
it provides a self-contained execution trace. Thanks to that, it
is possible to perform failure recovery or to apply verification
techniques onto the trace.

As a side note, we identified a paradoxical situation about
UML. Indeed, the genuine UML specification does not focus
enough on the execution of the different types of diagrams it
defined, and especially about the behavioral ones that yet are
executable a priori. Reconsidering the state machine diagram,
the UML specification defines a kind of a dynamic part and

4http://www.pauware.com

44



Model

Executable Model

MetaModel

conforms to

i-DSML

conforms to

Static Part

<<structure>>

Dynamic Part

<<structure>>

Execution Semantics

<<behavior>>

Execution Engine

takes input

defined for

applies on

<<implements>>

Figure 1. Conceptual framework of model execution

an execution semantics but only in an informal manner, in
natural language. The dynamic elements are missing from
the UML metamodel (in [3] we proposed an extension in
that purpose). Conversely, the famous class diagram, whose
execution is counter-intuitive at first sight, is curiously released
with dynamic elements thereof: Those of the object diagram.
Indeed, despite that the object diagram has not been invented
with execution concerns in mind, it may serve to capture a
current state of the instances of a class diagram, at a given
moment of the future running system. These ideas of state and
time are clearly expressed in the OMG’s specification of the
UML Object diagram5: “A static object diagram is an instance
of a class diagram; it shows a snapshot of the detailed state of
a system at a point in time”.

III. CHARACTERIZATION OF THE EXECUTABLE NATURE
OF A MODEL

The aforesaid characterization of model execution does not
allow knowing explicitly what are models that can be executed,
and those who cannot. This is rather a matter of intuition
from the software engineer, sometimes giving rise to debate
or controversy. In order to draw a clearer demarcation line, let
us describe two criteria that seems enough to characterize the
executable nature of a model:

• The behavior of the software system is located into
the model;

• It is always possible to determine the execution next
step and an initial state.

These two simple criteria tell us if execution semantics can
be defined for a given DSML and hence if an engine can be
implemented thereafter. In other words, they tell us if a DSML
is an i-DSML.

A. Location of the system behavior

Let us assume some kind of software system which uses a
model during its execution (at runtime). The question is how
to know the role of this model against the overall behavior
of the running system. We recall that a system performs
“business actions”. For example, an elevator system opens
and closes doors, winds/unwinds the cable to reach a given

5http://doc.omg.org/formal/2000-03-01.pdf, section 3-20, page 278

floor. As another example, a travel booking system inserts
customers data into database or call Web services provided by
air transport companies. The behavior of a system determinates
when these business routines have to be executed and under
what conditions.

In this context, the question is whether the decisions to
carry out these actions are impelled by the model itself or
if they come from elsewhere, in which case the model is
considered as mere input data helping to take the decisions.
Reconsidering the examples above, the actions of the elevator
may be triggered according to a set of states and transitions
modeled through a finite state machine. Similarly, the calls
to the various Web services may be orchestrated through a
BPEL6 or BPMN7 model. In both cases, the behavior of the
system is fully defined by the model. Conversely, in the spirit
of models@run.time [1], the elevator system may leverage
during its execution from a model about the extent of wear of
the components or about daily uses, etc. Such kind of models
ought to be queried by the business actions, but in no case to
trigger them. Hence, these are not executable models. In the
wake, if a model defines the global behavior of a system, then
the software unit taking the latter as input can be referred as
an execution engine.

B. Determinism of execution steps

As discussed in Section II, model execution consists in
carrying out execution steps; each step making the model
evolving from an active state to another one. The model must
then intrinsically enable to pinpoint different execution states.
However, being able to define the current state of the model
is necessary, but not sufficient. Indeed, we highlighted that
the object diagram can be seen as the current state of a
class diagram although the class diagram is absolutely not
executable. Unless it is associated and complemented with
behavioral diagrams (sequence, state machines, . . . ) or fUML
specifications, taken in isolation, a class diagram does not
enable to determine how making evolving a related object
diagram.

Consequently, the second criterion of the executable nature
of models is to be able to carrying out execution steps. This

6Web Services Business Process Execution Language (https://www.
oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm)

7Business Process Model and Notation (http://www.omg.org/spec/BPMN/)

45



feature can be found for example within activity diagrams,
finite state machines or Petri nets. In all these types of models,
modeling elements exist in that purpose, typically transitions
that can be followed between states, activities or places. In
some other cases, the “computing” of the next state can be
made without dedicated modeling elements. For instance, for
SBVR models8, it is the execution engine that browses the
entire rules set to determine the ones to trigger, as for any
declarative language.

There is a step which stands out from others: The one that
starts the model execution by placing it in its initial state. The
model must then define a starting point. Making an analogy
with programming languages, it can be seen as the equivalent
of a main() operation defining what to do when the program
is just launched. For finite state machines, activities diagram
or Petri nets, the starting point is defined explicitly as special
modeling elements exist for this purpose. Having an ending
point is optional as some executions are not expected to end.

Having the capability to make the model evolving from a
given running state to another one is a fundamental feature
because, without it, it will be impossible to specify an execu-
tion semantics. Indeed, the goal of an execution engine is to
carrying out the model evolution accordingly to an execution
semantics.

C. Some examples of OMG’s DSML

Modeling language System Current Execution Executable?behavior state steps
BPMN Yes External Explicit Yes
UML use case Yes Internal None No
UML class diagram No Internal None No
UML component diagram No Internal None No
UML state machines Yes External Explicit Yes
SBVR Yes External Implicit Yes
UML sequence diagram Yes External Explicit Yes
Table I. EXECUTABLE NATURE OF SOME DSML FROM THE OMG

Table I applies our criteria on some well-known DSML of
the OMG, based on their OMG specifications1,7,8. For sake
of simplicity, we consider each UML diagram as a DSML. A
model is considered as executable if it reifies the behavior of
the system and if execution steps can be defined. The current
state of a model can either be defined as a full-fledged part of
the model or in an external way.

Unsurprisingly, models defining structural software arti-
facts such as component or class diagrams are not executable.
None of them enables to have execution steps. All UML
diagrams classified as behavioral diagrams (state machines, se-
quence diagram, etc.) are unquestionably executable. However
the OMG has never planned to add to them their dynamic
part. For these models, the management of the current model
state will be left to the responsibility of the execution engine.
The specification of BPMN models suffers from the same
limitation.

Paradoxically, some non-executable models such as class
diagrams or use case diagrams have a dynamic part defined by
their meta-model. Indeed, as seen before, for class diagrams,
the object diagram plays the role of its dynamic part. For use

8Semantics of Business Vocabulary and Business Rules (http://www.omg.
org/spec/SBVR/)

cases, curiously, the UML meta-model defines the concept
of use case instance that could be used as a dynamic part.
However there is no way to determine how to execute a use
case as the notion of execution step is totally missing in use
cases. It is not possible to know which use case or in which
order use cases must be executed. Moreover, the description
of a use case is informal, written in natural language, and does
not permit to execute a case on its own.

SVBR models are executable without internal dynamic part
and have the particularity to define implicit execution steps.
This is due to the declarative nature of this modeling language.

IV. CONCLUSION

In this paper, we first recalled what is an i-DSML from a
technical point of view: An i-DSML defines a dynamic part
within the meta-model, an execution semantics is specified and
is implemented by an execution engine. Then, we studied, in
a more “philosophical” way, the executable nature of models.
We have identified two criteria allowing determining if a model
is executable and consequently if the DSML it is conforming
to, is actually an i-DSML: 1) the fact that the behavior of
the running system can be reified in the model and 2) that
the DSML enables to define execution steps during the model
execution. These two features make possible to define an
execution semantics and execution engines for this i-DSML.
Finally, we applied these criteria of some known DSML of
the OMG and showed a completely backward situation: All
the executable models may not have their DSML defining a
dynamic part while some non-executable models do have a
possible dynamic part.

This characterization of the executable nature of a model
is presumably not comprehensive but we guess that these two
criteria are the most important to take into account. We will
study more deeply several other i-DSML to make new criteria
emerge.

REFERENCES

[1] Gordon S. Blair, Nelly Bencomo, and Robert B. France. Mod-
els@run.time. IEEE Computer, 42(10):22–27, 2009.

[2] Erwan Breton and Jean Bézivin. Towards an understanding of model
executability. In Proceedings of the international conference on Formal
Ontology in Information Systems (FOIS ’01). ACM, 2001.

[3] Eric Cariou, Cyril Ballagny, Alexandre Feugas, and Franck Barbier.
Contracts for Model Execution Verification. In Seventh European
Conference on Modelling Foundations and Applications (ECMFA 2011),
volume 6698 of LNCS, pages 3–18. Springer, 2011.

[4] Eric Cariou, Olivier Le Goaer, Franck Barbier, and Samson Pierre.
Characterization of Adaptable Interpreted-DSML. In 9th European
Conference on Modelling Foundations and Applications (ECMFA 2013),
volume 7949 of LNCS, pages 37–53. Springer, 2013.

[5] Peter J. Clarke, Yali Wu, Andrew A. Allen, Frank Hernandez, Mark
Allison, and Robert France. Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, chapter 9: Towards Dynamic
Semantics for Synthesizing Interpreted DSMLs. IGI Global, 2013.

[6] Benoit Combemale, Xavier Crégut, and Marc Pantel. A Design Pattern to
Build Executable DSMLs and associated V&V tools. In The 19th Asia-
Pacific Software Engineering Conference (APSEC 2012). IEEE, 2012.

[7] Grzegorz Lehmann, Marco Blumendorf, Frank Trollmann, and Sahin
Albayrak. Meta-Modeling Runtime Models. In Models@run.time
Workshop at MoDELS 2010, volume 6627 of LNCS. Springer, 2010.

46




