
Bridging GeoMQTT and REST

Stefan Herle, Ralf Becker & Jörg Blankenbach
Chair for Computing in Civil Engineering & Geo Information Systems

RWTH Aachen University
Aachen, Germany

herle@gia.rwth-aachen.de

Abstract— Wireless geo sensor networks (WGSN) use
different ways to publish their measured data in the Sensor Web
to make time series of this data accessible by means of the World
Wide Web (WWW). In earlier papers, we proposed the use of
GeoMQTT, a spatiotemporal extension to the widely known and
used “Internet-of-Things” (IoT) protocol Message Queue and
Telemetry Transport (MQTT). In this paper, we propose a
GeoMQTT – Representational State Transfer (REST) bridge to
enable users to easily interact with GeoMQTT by using standard
HTTP methods. We demonstrate that using such a bridge is
especially useful for debugging events issued by sensors nodes
using GeoMQTT as a communication protocol.

Keywords— Sensor Web; IoT; GeoMQTT; REST;
spatiotemporal pub/sub

I. INTRODUCTION

Monitoring environmental phenomena and events in
geoscience has changed dramatically over the last decade
since new technological trends improve the capabilities of
sensors and sensor platforms. According to [1], there have
been three major drivers for this development. First,
ubiquitous communication networks have evolved to facilitate
access and measuring in remote and inaccessible areas without
wires. Furthermore, the miniaturization of computing
platforms and, hence, the optimization of power consumption
enables sensor platforms to run over a significant extended
period of time. Lastly, the sensors and sensor materials
themselves have improved to size-reduced and micro-scale
sensors.

Wireless geo sensor networks (WGSN) are one
manifestation of these technological trends. Being still in an
early adoption phase, they shift traditional centralized sensor
platforms into lightweight, portable and intelligent systems on
a microscale. Distributed sensors and sensor nodes in such
networks are able to monitor an extensive geographical area
with minimal efforts and costs but deliver point-based data in
near real-time.

On the other hand, WGSNs should not be an isolated
system. The captured sensor data should be accessible by
means of existing methods of the World Wide Web and
preferably in a standardized way. This paradigm is called the
“Sensor Web”. Its goal is to hide “the underlying layers from
the applications built on top of it” [2]. Standards for accessing
sensor data over Hyper Text Transport Protocol (HTTP) have
already been developed by the Open Geospatial Consortium

(OGC) Sensor Web Enablement (SWE) initiative [3].
However, there have been some unsolved issues with
transferring the data from the WGSNs to the Sensor Web
servers since WGSNs are often not able to handle HTTP
requests. The authors of [4] suggest an intermediary layer, the
so-called Sensor Bus, to bypass this gap. We took this idea
and implemented it using an extension of the lightweight
Message Queue and Telemetry Transport (MQTT) protocol,
which we call GeoMQTT [5]. A short introduction to MQTT
and GeoMQTT is given in the next two sections.

GeoMQTT, like MQTT, is a machine-to-machine (M2M)
protocol and, therefore, is tailored to requirements of
machines. Users, on the other hand, need simpler methods to
interact with machines. The standards of the Sensor Web are
one way to achieve this, but it only holds for sensor data.
Having a more general access point to the GeoMQTT bus
would be a huge benefit, especially for developers. Therefore,
we propose an architecture built upon the Representational
State Transfer (REST) principle, which bridges GeoMQTT
and REST. It is presented in section 4 and 5 of this paper.
Last, we give a conclusion and an outlook for future
improvements.

II. MESSAGE QUEUE AND TELEMETRY TRANSPORT
(MQTT)

The MQTT protocol is a very lightweight protocol often
used in the Internet of Things and Service (IoTS). It is
especially suitable for constrained devices as well as low-
bandwidth, high-latency and unreliable networks. The
protocol implements the so-called publish/subscribe
interaction scheme, which is an event-based communication
model between publishers that produce certain information
and subscribers that register to these information. The term
event is used for the act of publishing information whilst
notification denotes the act of delivery to the consumer [6]. A
broker distributes the events according to the interests of
subscribers.

MQTT uses a topic-based publish/subscribe scheme [7] for
addressing. Events or publish messages are tagged with a topic
name, which is an arbitrary string. It can be hierarchically
structured with the topic level separator, a forward slash. For
instance, a temperature sensor node tags an MQTT message
with the topic name room/237/temperature and publishes the
room temperature in the payload of the message. Subscribers
are able to express their interests in events with a topic filter,

which is also an arbitrary string and has a similar shape like
the topic name. In addition, a single-level wildcard “+” or a
multi-level wildcard “#” can be used to register to a set of
topics. For example, if a subscriber is interested in the
temperature measurements of all rooms, he could use the
single-level wildcard in the topic filter room/+/temperature.
For all rooms and all possible observation properties, he could
use the multi-level wildcard with the topic filter room/#.

The MQTT Version 3.1.1 offers some core features, such
as a Quality of Service (QoS) mechanism, to guarantee the
delivery of a message or the Last Will and Testament (LWT)
mechanism to notify clients about an “ungracefully”
disconnected client. These features are especially useful in
unreliable networks.

MQTT is based on TCP/IP, but with the extension MQTT
for Sensor Networks (MQTT-SN), it also supports
connectionless communication protocols like UDP or ZigBee
[8]. As the name suggests, the extension is especially useful in
wireless sensor networks (WSN) since it is optimized for tiny
battery-operated Sensor/Actuator devices and considers
constraints of WSNs such as high link failure or short message
payload. MQTT-SN adds two new components to an MQTT
network: the MQTT-SN client and a gateway, which acts like
a translator between the two protocols.

III. GEOMQTT

We extended MQTT with new message types to support
spatiotemporal tagging and filtering of events [5]. Therefore,
the extension is called GeoMQTT. It is still a
publish/subscribe interaction scheme although not solely
topic-based, but also timestamp and geometry-based. The
topic mechanism, however, is inherited from ordinary MQTT
as described in Section 2.

The introduced GeoPublish message, which can be used
by producers to generate a spatiotemporal event, is tagged
with a timestamp and geometry in addition to the topic name.
The format of the timestamp can either be expressed in
ISO8061 syntax or in UNIX time, which is the number of
seconds that have elapsed since January 1, 1970 (midnight
UTC/GMT). The geometry can be specified in different
common description languages for geometries such as Well-
known Text (WKT) or GeoJSON. Like the MQTT publish
message, a GeoPublish message also consists of a payload,
which can be arbitrary.

The geo subscription mechanism uses a temporal filter
and/or a spatial filter in addition to the topic filter inherited
from the ordinary MQTT subscription. The broker forwards
the published events only if the subscription meets all
specified filters.

The syntax of the temporal filter adheres to the ISO8601
intervals and repeating intervals standard defined in [9]. For
instance, a time interval can be specified with 2016-03-
28T11:15:00Z/PT2H30M, which subscribes to events issued

between 2016-03-28T11:15:00Z and 2016-03-28T13:45:00Z.
In addition to the ISO standard, we add support for cron
expressions to specify the start timestamp of a period. The
syntax adheres to the cron expression defined in the Quartz
Job Scheduler [10]. The spatial filter is used to filter the
events with respect to the tagged geometry in the GeoPublish
message. Similar to the GeoPublish message, the geometry is
specified using common description languages such as WKT
or GeoJSON. The evaluation of the spatial filter in the broker
currently uses a simple “covers” relation. To enhance the
spatial filter, there are plans that will enable subscribers to
specify the Spatial Reference System (SRS) using an EPSG
code as well as their preferred spatial relation.

Conflicts may occur between GeoMQTT and MQTT
messages. For instance, a client is subscribed to an MQTT
topic filter and a GeoPublish message is issued whose topic
name matches the filter. Since the subscription only contains a
topic filter, but has neither a temporal nor a spatial filter, it
raises the question whether to forward the message or not. We
implemented a conflict handling strategy, which is also
compatible to MQTT clients that do not support the extension
[4]. For example, in the conflict mentioned, the temporal and
spatial information in the GeoPublish message are ignored. If
the topic filter of the MQTT subscription matches the topic
name, the message is converted into an MQTT publish
message discarding the additional information.

Since we deal with WGSNs that use ZigBee, we also
implemented a GeoMQTT-SN version to bridge the sensor
nodes with the GeoMQTT broker. We added different
message types, which are translated to GeoMQTT messages in
the gateway of the WSN. As shown in Figure 1, we use the
GeoMQTT-SN protocol in the project EarlyDike to monitor
dikes with sensors. Like MQTT, it is also useful in WGSN
environments due to its lightweight nature, but adds support
for the definition of sampling time and sampling
location/geometry in the header of the GeoPublish message.

IV. BRIDGING GEOMQTT AND REST

By adding a REST interface to GeoMQTT, two different
semantic models of communication are bridged, the
publish/subscribe interaction scheme of MQTT and the
request/response pattern of HTTP. According to [11, 12], it is
useful to couple the REST-oriented web architecture and the
real-time properties of MQTT to close the gap between
machines and developers in the IoTS. They implement a so-
called QEST broker to expose MQTT topics as REST
resources and vice versa. For instance, the REST resource
/topics/room/237/temperature corresponds to the topic
room/237/temperature. By requesting the resource with an
HTTP GET, the response consists of the latest published value
issued with the topic. Similarly, an HTTP PUT request at
/topics/room/237/temperature publishes the value of the
request body with the corresponding topic.

Fig. 1. GeoMQTT-SN architecture and layer stack

Fig. 2. GeoMQTT - REST bridge

We follow a similar approach in the implementation of our
REST bridge. Unlike [11], we do not integrate the REST
interface directly in our GeoMQTT broker, but use an
observer client, which subscribes to all messages/events.
Additionally, we use the bridge as a message logger. It does
not solely store the latest value on a specific topic, but all
messages that are received. The REST-GeoMQTT bridge is
shown in Figure 2.

As mentioned above, the observer & logger client
subscribes to all MQTT and GeoMQTT messages at the
broker. It logs the publish and GeoPublish messages received
in separate collections in a MongoDB database. The bridge
has two different REST endpoints: one for MQTT and one for
GeoMQTT.

For MQTT, the REST resources are mapped to topics
according to the approach in [7] (for instance, the resource
/publish/room/237/temperature is mapped to the topic
room/237/temperature). In an HTTP GET request, it is also
possible to use the single-level wildcard “+” or the URL-
encoded multi-level wildcard “#” of topic filters. The bridge
queries the MongoDB database for logged publish messages
and responses with a list of messages in JSON format. Setting
the optional URL parameter size to 1 allows the users to
retrieve only the latest published message that matches the
topic filter. Accordingly, with the HTTP PUT request of a
resource, the request body is published to the corresponding
topic name to the GeoMQTT broker. Wildcards are not
allowed in the resource since they are prohibited in topic
names in MQTT publish messages.

In GeoMQTT, the topic is handled similarly to the MQTT
case (resource /geopublish/temperature is mapped to topic
temperature). The HTTP GET request has four optional
parameters: from, to, geometry and size like before. from and
to are used to specify a time interval whilst geometry expects a
geometry in WKT format. All OGC Simple Feature Access
geometries are supported and extended by a BBOX and
BUFFER format. If not specified, the temporal filter and
geometry filter are set to wildcards. The bridge queries the
MongoDB database with the temporal, geometry and topic
filters and returns a GeoJSON FeatureCollection of the logged
published messages. Hereby, the geometry filter is evaluated
with a “within” relation in respect to the geometries of the
GeoPublish messages stored in the database. The HTTP PUT
request for the GeoMQTT endpoint expects two required
parameters in addition to the corresponding wildcard-free
topic name as the resource: the time parameter as an ISO8601
timestamp and the geometry parameter in WKT syntax.
Similar to the MQTT case, the request body and the
parameters form a GeoPublish message, which is sent to the
GeoMQTT broker.

In addition, we implemented HTTP DELETE for the two
endpoints to manage the database. It deletes the matching
entities in the database and returns them as a JSON/GeoJSON
document. The request parameters are the same as for the
HTTP GET requests except for the size parameter.

As mentioned previously, since HTTP uses a
request/response mechanism, it cannot fully support a
publish/subscribe mechanism. WebSockets could be one
possible solution to solve this issue [13]. In fact, we already
implemented a GeoMQTT client with WebSockets. But [11]
argues that WebSockets do not implement the concept of URI
after opening the communication and, therefore, do not
support the pure REST approach (resource-topic mapping).
They enhanced the implementation by a Long-Polling
approach for retrieving real-time updates in the browser
without using WebSockets. So far, we have not implemented
this solution, but it might be of interest in the future.

Fig. 3: Web map application to request GeoMQTT events using the REST

bridge

V. APPLICATION

The REST bridge is used in the EarlyDike1 project to log
and easily obtain events published by sensor nodes, which are
deployed at dike lines to monitor the structure of sea dikes.
We set up a Web map application to request the events and
plot them in a map. Since the response of the service is a
FeatureCollection of events in GeoJSON format, it is quite
easy to plot the events, for example, in a Leaflet2

 map
container (see Figure 3). The corresponding REST request for
the requested data in the application in Figure 3 is the
following.

http://localhost:8080/rest/geopublish/node/+/temperature?
geometry=LINESTRING(8.589248657226562
54.517893120052946,8.590707778930664, …)

The REST endpoint here is /rest/geopublish. The requested
resource corresponds to all stored messages that match the
topic filter node/+/temperature, where the "+" wildcard is
used to replace the sensor node id and, therefore, retrieve all
measured temperatures of every available sensor node.
Additionally, the stored messages are filtered by the specified
geometry, a LINESTRING which represents the southwestern
first order dike line of the German North Sea island Pellworm
(compare the purplish polyline in the map in Figure 3). The
temporal filter is not specified and thus set to a wildcard.

The bridge and application do not represent a substitution
for SWE data storage services such as the Sensor Observation
Service (SOS). We use it mainly for fast debugging of our
sensor networks or to send configuration messages to the
sensor nodes.

1 https://www.earlydike.de/
2 http://leafletjs.com/

VI. CONCLUSION AND FUTURE WORK

Bridging the publish/subscribe protocol GeoMQTT and a
HTTP based REST interface is beneficial to provide an easy
access point to the GeoMQTT bus without any further
software. By using simple HTTP methods such as GET and
PUT, it is convenient especially for developers to retrieve
events or publish messages to the GeoMQTT broker. Since we
also added logging capabilities to the bridge, users are able to
retrieve, not only the latest event issued, but also a history of
events.

REST, however, is based on HTTP requests/responses.
Therefore, it lacks in retrieving real-time data through push
notifications like in the publish/subscribe interaction scheme
of GeoMQTT. One solution to solve this issue is the use of
WebSockets. This would require additional libraries and does
not support the concept of URI. As mentioned previously, a
Long-Polling RESTful approach could be used to tackle this
issue in the future.

In combination with the Sensor Bus concept for closing the
gap between WGSNs and high-level SWE services, the
GeoMQTT-REST bridge is a powerful tool. It enables
developers of such architectures to log and retrieve events
which are issued from the sensor nodes, but also send
messages to the bus. However, the bridge does not replace the
services for storing sensor data in the Sensor Web, such as the
Sensor Observation Service (SOS). Due to the semi-structured
nature of the underlying document database MongoDB, it can
be used for logging the raw events of a GeoMQTT system or
for debugging purposes.

REFERENCES
[1] S. Nittel, “A Survey of Geosensor Networks: Advances in Dynamic

Environmental Monitoring,” Sensors, vol. 9, no. 7, pp. 5664-5678, July
2009.

[2] A. Broering et al., “New Generation Sensor Web Enablement,” Sensors,
vol. 11, no. 3, pp. 2652-2699, March 2011.

[3] M. Grothe and J. Kooijman, Sensor Web Enablement. Delft, NL:NCG,
2008.

[4] A. Broering, T. Foerster, S. Jirka and C. Priess, “Sensor Bus: An
Intermediary Layer for Linking Geosensors and the Sensor Web,” Proc.
COM.Geo 2010, 1st Int. Conf. on Computing for Geospatial Research
and Applications, Washington DC, 2010, p.1-8.

[5] S. Herle and J. Blankenbach, “GeoPipes using GeoMQTT” in
Geospatial Data in a Changing World. Selected papers of the 19th
AGILE Conference on Geographic Information Science, T. Sarjakoski,
M. Santos and T. Sarjakoski, Ed. Springer International Publishing
Switzerland, 2016, pp. 383-398.

[6] P. Eugster, A. Felber, R. Guerraoui and A.-M. Kermarrec “The many
faces of publish/subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp.
114–131, June 2003.

[7] MQTT Version 3.1.1, OASIS Standard, 2014.
[8] A. Stanford-Clark and H. L. Truong “MQTT for Sensor Networks

(MQTT-SN) Protocol Specification Version 1.2,” IBM Zurich Res. Lab.,
Zurich, Nov. 2012.

[9] Representations of dates and times, ISO 8601:2004, 2004.
[10] Terracotta Inc. (2016). Quartz CronTrigger Tutorial [Online].

Available: http://www.quartz-scheduler.org/documentation/quartz-
2.x/tutorials/crontrigger.html

[11] M. Collina, G. E. Corazza and A. Vanelli-Coralli “Introducing the QEST
broker: scaling the IoT by bridging MQTT and REST,” in IEEE 23rd
International Symposium on Personal Indoor and Mobile Radio
Communications (PIMRC), Sydney, Australia, 2012, pp. 36-41.

[12] M. Koster (2013, Oct. 4) M2M Protocol Interoperability Using the
Smart Object API. Data Models for the Internet of Things. Available:
http://iot-datamodels.blogspot.de/2013/10/m2m-protocol-
interoperability-using.html

[13] The WebSocket Protocol, IETF Standard RFC 6455, 2011.

	I. Introduction
	II. Message Queue and Telemetry Transport (MQTT)
	III. GeoMQTT
	IV. Bridging GeoMQTT and REST
	V. Application
	VI. Conclusion and Future Work

