

Integration of CityGML and Air Quality
Spatio-Temporal Data Series via OGC SOS

Wanji Zhu
Karlsruhe Institute of Technology European Institute for

Energy Research
Email: Wanji.Zhu@eifer.uni-karlsruhe.de

Alexander Simons
European Institute for Energy Research

Email: Alexander.Simons@eifer.org

Sven Wursthorn
Karlsruhe Institute of Technology
Email: Sven.Wursthorn@kit.edu

Alexandru Nichersu

European Institute for Energy
Email: Alexandru.Nichersu@eifer.org Research

Abstract—Cities have always been considered a horsepower of

industrial growth over centuries. However, urbanization often has
environmental effects. In this paper we will focus on one of them,
namely air pollution, and how we can integrate 3D city models and
air quality sensor data. In most cases, air quality data is acquired
from static sensor systems like weather stations, which lack the
coverage required for urban simulation. Applying mobile data for
air quality models is more reasonable due to the spatial coverage of
the urban model. Yet academic research has been scarce on the
integration of city models and spatio-temporal varying sensor data.
To close the gap, this paper proposes a novel approach to integrate
city model data and spatio-temporal data in an interoperable and
standardized way. The geometry aspects of a city are described by
those defined in CityGML and the air spatio-temporal varying data
is retrieved by OGC Sensor Observation Service. The approach
uses Cesium JS, a JavaScript library for visualizing the semantical
city model stored in CityGML and the OGC SOS observation
service from 52°North for the air quality data transmission.

Keywords—CityGML; SOS; Spatio-Temporal; Varying Data;
Air Quality

I. INTRODUCTION

Cities have to navigate around different concepts for urban
planning to solve problems they are facing today and tomorrow.
The smart city vision involves the integration of solutions for
information and communication technologies to help in
providing municipal services, such as. sanitation, water supply,
street network, public libraries, schools, food inspection, fire
department, police, ambulance, other health department issues
and transportation. The integration of classical municipal ser-
vices and Web services is a big challenge for many players
worldwide, e.g. IT services providers, urban systems operators,
energy providers. Open interoperable standards and the use of
geo-spatial information provides an environment filled with
opportunities for cities as they empower them to use their
socioeconomical data for different applications in the domains of
analysis and modeling, visualization, semantics and metadata.
An important component of a city’s success is the perceived
quality of life. Citizens and companies expect to have better
access to services, health facilities and consumption goods.

These are often associated to the notion of common wealth.
The environmental effects are often associated with
urbanization and affect the quality of life. Air pollution is one
of the most important side effects of urbanization. In Europe,
3D city models have become readily available and it is only
the next logical step to link them to air quality sensor data.

A. Serving CityGML via WFS

1) Concept of CityGML: The City Geography Markup
Language (CityGML) is a comprehensive concept for the
modeling and exchange of 3D city and landscape models. As
an open data model, CityGML defines full-blown classes and
relations describing 3D objects regarding their geometry,
topology, semantics and appearance properties. This allows the
employment of virtual 3D city models for complicated
analytical tasks in different domains such as simulations, urban
data mining and facility management [1].

CityGML defines five consecutive Levels of Detail (LOD),
from terrain alone to architectural models (outside and inte-
rior). With increasing LOD, objects become more detailed
both at the geometric and thematic level [2]. In addition to
their attributes, objects in CityGML can have external
references to corresponding objects in other databases or data
sets. CityGML also provides an extension mechanism with the
Application Domain Extension (ADE) in order to enrich data
for specific domain areas. That is where different kinds of
models, such as environmental noise models, energy models
and air quality models, can come into play. The most
important development for using CityGML and energy related
data together has been built through the ADE mechanism and
is called the EnergyADE [3].

The objective of the EnergyADE is the storing and
managing of data needed for simulating complex urban energy
models, which consider existing international building and
energy data specifications (INSPIRE, BEDES). An important
feature of this ADE is the possibility to handle different data
qualities regarding level of details and complexity of energy
models (E.g. monthly energy balance of ISO 13790,

sub-hourly dynamic simulation of software such as CitySim or
EnergyPlus) [4].

CityGML is released and implemented as a GML application
schema for the Geography Markup Language version 3.1.1,
issued by the Open Geospatial Consortium (OGC) and the ISO
TC211 [5]. This allows CityGML to be used with the whole
family of GML compatible OGC Web Services for data
accessing, processing and cataloging like Web Feature Service
(WFS), Web Processing Service (WPS) and the Catalog Service
[6].

2) Advantages of a WFS: Since CityGML is quickly being
adopted on an international level, serving and retrieving
CityGML data over the web becomes more appealing than any
time before. This is also a focus of this paper. Using traditional
communication techniques, such as File Transfer Protocol (FTP),
to share CityGML data led to some underlying problems. The
major one is that CityGML data size can become rather large
even for a small geographical region, when the CityGML model
is at a high level of detail. This causes issues for users or clients
uploading and downloading data. To solve this problem, the Web
Feature Service (WFS) Standard, first published with version
1.0.0 in 2002, comes into play. The key characteristic of the
WFS is to allow users to share geographic information at
fine-grained feature and feature property level rather than at the
file level. That completely changes the way in which geographic
information is created, modified and exchanged via the Internet
[7]. There are multiple advantages to serving CityGML via a
WFS. One of the most important advantages is that the WFS is a
standardized interface. Rather than sharing the whole dataset of
CityGML data, which is stored on a relational geodatabase using
the 3DCityDb structure [8], data can be exchanged based on
specific feature types, such as buildings, transportation or others
defined by the CityGML public schema. This allows CityGML
data to be queried by using various filters depending on
implementation of conformance of the WFS. For example, a user
could request all buildings based on a given Bounding Box by
using a WFS instance, which supports the spatial filter query.

3) Obstacles of Implementation: As depicted above, serving
CityGML via a WFS improves the performance of exchanging
data. However, a number of technical challenges arise from the
characteristics of the CityGML model. In the first place, the
CityGML model makes extensive use of complex data types for
properties and nesting of features within feature collections.
This, in consequence, causes CityGML to have a deep nested
data structure. In addition, the geometry types supported in
relational databases are often more limited than those used in
CityGML, which could be a restriction for those WFS
implemented on top of a relational database [9].

Despite the technical challenge mentioned before, at least two
commercial solutions have appeared to cover the existing market
demand. The Project 3D City DB, which provides a 3D
geodatabase based on CityGML, released an implementation for
the 2.0 version of the OGC Web Feature Service. However, this
satisfies only the simple WFS conformance class and the

advanced version including more WFS operations is com-
mercially available from the company virtualcity SYSTEMS
GmbH Berlin [8]. Another example is the WFS integrated with
CityGML offered by Snowflake. It supports both the OGC
WFS 1.0 and 1.1 specifications [1]. These products satisfied
the need of the market to some extent, but open source projects
and free products with full functionality for users in research
and development are currently limited.

One of the goals of this paper is to search for an open
source solution to serve CityGML via a WFS with advanced
functionality. Thus, to achieve this objective, all software used
should be open source, and, as such, an open mechanism to
provide CityGML data is needed. One of those solutions tested
for this paper was GeoServer in combination with its
“Application Schema” extension. The main reason for
choosing GeoServer to serve CityGML is that it has
implemented the OGC WFS standard. This is considered a
reference implementation of the WFS and provides
full-fledged WFS functionality including discovery, query,
locking, transaction and stored query operations [10]. In
addition, its “Application Schema” extension allows users to
define complex feature types by “Feature Chaining” [11], in
which feature types are configured independently, with
relationships specified in the mapping file [12]. This implies
that using GeoServer with the Application Schema satisfies not
only the complexity of feature types defined in the CityGML
model, but also provides WFS operations, as well as various
query filters.

The GeoServer Application Schema is made up of two
concepts called “Feature Mapping” and “Feature Chaining”.
“Feature Mapping” defines the relationships between a source
feature type (in most cases tables in a relational database) and
a target feature type, which is declared in a public GML
application schema. “Feature Chaining” helps to construct a
complex feature type, in which simple features can be
structured in a hierarchical way. These two concepts allow the
Application Schema to map complex feature types defined in
CityGML. However, there are some restrictions to how this
works. The most important one is that all public GML
application schemas used for mapping with the GeoServer
Application Schema must satisfy the GML encoding rule,
known as the “Striping” rule. The “Striping” rule requires that
a complex type is never the direct property of another complex
type. The complex types are always contained in a property
type to ensure that their specific type is encoded in a
surrounding element or container element. In other words, the
GeoServer Application Schema supports those schemas, which
enforce all the GML encoding rules. In terms of CityGML, a
couple of schemas are involved to describe feature types of
city objects. However, not all schemas obey the GML
encoding rules. One of them is the generic.xsd, which defines
the generic attributes of city objects. It is pivotal to storing
additional information about all kinds of models, such as
energy models and heat models. This is the main reason why
GeoServer with Application Schema can’t completely satisfy
the need.

B. Serving Spatio-Temporal Air Quality Data via SOS

1) Concept of SOS: The Sensor Observation Service (SOS)
standard provides a standardized interface for managing and
retrieving metadata and observations from heterogeneous sensor
systems, which include a variety of sensor types, such as in-situ
and remote sensors, mobile sensor platforms or networks of
static sensors. In particular, this standard specifies how the
observation, sensor description, as well as computational
representation of observed features are accessed in an
interoperable way. It further defines means to register new
sensors and delete old ones. This standard also provides a
mechanism to insert new observations and remove existing ones
[13]. SOS 2.0 relies on the Sensor Model Language (SensorML)
standard to encode meta description of sensor and the
Observation and Measurement standard (O&M Model) to encode
data gathered by sensors. The SOS is an OGC standard and
ultimately only defines a service interface but not an
implementation. There are currently several Open Source
implementations of this service, such as 52°North SOS, deegree
SOS and istSOS. To achieve the goal of air quality data
integration with CityGML, 52°North SOS was chosen for our
SOS deployment. 52°North SOS is standardized, interoperable
and has a consistent implementation [14].

2) Description of Air Quality Data: The air quality data used
in this paper is supplied by the “AERO-TRAM” project,
sponsored by environmental ministry of Baden-Württemberg and
realized by the Karlsruhe Institute of Technology. The latter’s
aim is an extensively automated, long-term study of
concentration, spatial distribution of parameters such as O3, NO,
NOx, CO, CO2, H2O(g), particle size distribution and total
particle count in the area of Karlsruhe. In this project, the spatial
distribution of air particles was continuously measured by an
inlet sensor system, which is carried by the S-Bahn’s (the local
train system) two trams, the S1 and S2 in Karlsruhe. The
selection of the actual running line depends on the internal
scheduling procedure of the municipal transport service. Line S1
characterizes a specific height profile and Line S2 has a complete
flat profile [15]. Each observation of air quality took place in a
short time interval when the trams moved along their paths. In
other words, the air quality sensor data varied both in spatial and
temporal domains.

3) Encoding mobile Sensor Data: In order to provide the air
quality data via SOS, two key processes should be undertaken,
which include (1) encoding data in a standardized format and (2)
populating an O&M database with data behind the SOS instance.
Encoding data in a standard format is, more specifically, the
encoding of the description of sensors and the sensor
measurements based on the SensorML Model and O&M Model
specifications respectively. The encoded file format should be
compliant to the binding mechanisms supported by the SOS
instance, such as XML, JSON and SOAP. Since the inlet sensor
system is carried by the tram vehicle and the observation is
measured during its movement, our sensor system falls into the
category of mobile sensor platforms. Thus, the air quality sensor

data should be considered as time series sampling. The part of
encoding sensor metadata according to the SensorML 2.0
includes the description of our physical sensor systems. The
following information has to be defined: sensor identifier,
definition of sensor input and output, sensors’ constraints and
their connections within the sensor system . On the other hand,
the part of encoding sensor data is to actually convert the
sensor measurements into the concept “Observation”. To
define an observation, six elements should be involved
according to the O&M Model. These are: “procedure”,
“phenomenon time”, “result time”, “observed property”,
“feature of interest” and “result”. Listing 1 demonstrates how
these six elements of one single observation are defined in our
case. The “procedure” should be linked to a specific sensor
identifier defined in the sensor metadata part and the
“phenomenon time” is considered to be equal to “result time”.
This is represented by the sampling timestamps, with a
temporal resolution of recording varying every second. The
measurement of each timestamp is represented by a centered
one-minute mean over a window of 60 data points. “Feature of
interest” represents the geometric information of the
observation, which for a static sensor system like weather
stations can be depicted by the location of the relevant sensor.
In this case, the “feature of interest” is considered a sampling
feature, analyzing the “bubble of air”. As for a mobile sensor
platform, the geolocation of each observation varies all the
time during the movement of the sensors. Thus, “feature of
interest” in this case should be used as a domain feature
(known as sampled feature). The street on which our tram
passed along and the geometry point of each observation is
described as a sampling feature. The second process is the
import of the encoded data into the database. To that end a data
feeder is needed. The SOS instance used in this paper, the
52°North SOS, has released a tool called “SOS Importer”,
which supports the import of data into the database suitable
both for mobile and static sensor platforms.

1 <om:OM_Observation gml:id="o_01">
2 <gml:description>NO</gml:description>
3 <gml:identifier codeSpace="">s1-no1-observation
 -0</gml:identifier>
4 <om:type xlink:href="http://www.opengis.net/def/
 observationType/OGC-OM/2.0/OM_Measurement"/>
5 <om:phenomenonTime>
6 <gml:TimeInstant gml:id="phenomenonTime_0">
7 <gml:timePosition>2015-12-13T05:59:40</gml
 :timePosition>
8 </gml:TimeInstant>
9 </om:phenomenonTime>
10 <om:resultTime xlink:href="#phenomenonTime_0"/>
11 <om:procedure xlink:href="cld_66"/>
12 <om:parameter>
13 <om:NamedValue>
14 <om:name xlink:href="http://www.opengis.
 net/def/param-name/OGC-OM/2.0/
 samplingGeometry"/>
15 <om:value xsi:type="gml:
 GeometryPropertyType">

16 <gml:Point gml:id="sp_01">
17 <gml:pos srsName="http://www.opengis
 .net/def/crs/EPSG/0/4326">
 49.052822 8.388629</gml:pos>
18 </gml:Point>
19 </om:value>
20 </om:NamedValue>
21 </om:parameter>
22 <om:observedProperty xlink:href="http://sweet.
 jpl.nasa.gov/2.0/chemCompound.owl#NO"/>
23 <om:featureOfInterest xlink:href="http://
 localhost/geoserver/wfs?request=GetFeature&
 typeNames=tram:tram&featureID=s1"/>
24 <om:result xsi:type="gml:MeasureType" uom="ppb"
 >3.08</om:result>
25 </om:OM_Observation>

Listing 1. Sample XML excerpt of a single observation

4) Serving Mobile Sensor Data with the 52°North SOS’s
Sensor Web RESTful API 2.0: The Representational State
Transfer (RESTful) Web services are considered much more
lightweight and often better integrated with HTTP than
SOAP-based Web services, because RESTful Web services do
not require XML messages or WSDL service descriptions [16].
Thus, all the data used for this paper are designed to be accessed
by RESTful services and then are used on the client side. The
52°North SOS supports the RESTful API, whose current stable
version is 1.0 and it supports HTTP GET as well as POST
methods. This RESTful API provides easy access to time series
information from the SOS instances. However, there are
limitations to serving air quality data via this API. It currently
only supports time series data from static sensors and not yet
from mobile sensor platforms. One of the core query parameters
named “station” is designed for orientation of resources and only
considers the “feature of interest” of observation as a sampling
feature. This means the stations can only represent the location of
a static sensor. In our case, the “feature of interest” is designed as
a domain feature, which is not a simple geometry point. The
geometry information of each observation, which is encoded as a
sampling feature, will not be accessible using the current API. In
order to supply sensor data from heterogeneous sensor systems,
the 52°North SOS has released a new beta version of the Sensor
Web REST API 2.0, which aims to support mobile sensor
systems. With the extension of this API, the mobile air quality
data can be accessed and later integrated with CityGML data on
the client side.

C. Integration of CityGML and Air Quality Data

In this paper, the JavaScript library “Cesium” was chosen for
visualization on the client side. Cesium is a WebGL virtual globe
and map engine, which is capable of displaying KML and
COLLADA/gITF files built on CityGML data [17]. There are
several approaches considered for the integration of CityGML
and air quality data via SOS. The first one is to display the urban
model described by CityGML on Cesium and visualize the
observation data as sampling points overlaying the city objects.
The workflow of this approach is depicted by Figure 1. The
second approach is to couple SOS by referencingthe WFS

request of CityGML to the “feature of interest” of
observations. This approach works because the 52°North SOS
can handle the features both in an internal and external way.
The third approach is the use of Dynamizers [18]. Dynamizers
are a mechanism that allows the storing of dynamic values
separately from the original attributes in CityGML. This
approach is contrary to the second one. The new CityGML
data type “SensorConnection” defined in Dynamizers can be
linked by various SOS requests for sensor metadata and the
observations. For our work we used the first approach. Figure
2 and Figure 3 illustrate a Web demo based on the current
infrastructure. As Figure 2 depicts, tram vehicle S1’s
observations, whose observed property is NO, are visualized as
a track of color-coded dots (see legend in the second floating
window on the right of Figure 2). The observations are
previously classified into different groups based on their
values. A semantic 3D model of north-west Karlsruhe is also
loaded to the platform. The track information, such as its
platform, procedure and observed property etc. is displayed on
the info box of the Web demo. Figure 3 shows a time slot
interface, which allows the user to observe how the results of
the track varies in a specific interval.

II. CONCLUSION

The workflow of this paper can be summarized into two
stages, namely data acquisition and data fusion. In terms of
data acquisition, the OGC WFS and SOS standards are applied
to retrieve CityGML and spatio-temporal varying air quality
data respectively. It has been proved that GeoServer and its ex-
tension Application Schema is not a complete solution to serve
CityGML via WFS, due to the issues with CityGML and the
encoding rules of GML. A solution would be a more advanced
CityGML WFS with RESTful API. As for the air quality data,
the 52°North SOS SNAPSHOT 4.4.0 release modified the
database schema to support mobile sensor platforms and
provides a beta 2.0 RESTful API to extend query for ”tracks”.
This has proven to be suitable to store observations whose

Fig. 1. Workflow of Integration between CityGML and Air Quality Data

Fig. 2. Web Demo of Integration between CityGML and Air Quality Data on
Cesium. The dotted line shows color coded NO values along the tram line.

Fig. 3. Web Demo of Integration between CityGML and Air Quality Data on
Cesium. The graph shows the variation of NO values within a specific interval.

“feature of interest” is a domain feature. This can satisfy the
demand of mobile sensor data provision. The second stage, data
fusion or data integration, is achieved by accessing
heterogeneous data with the RESTful API. The approach used in
this paper is appropriate when only visualization is needed. The
downside of this approach is the lack of relationships between
city objects in the model and observation data.

ACKNOWLEDGEMENT

The authors of this study would like to thank the researchers and
colleagues of the “AERO-TRAM” project for the data provision,
their colleagues at EIFER -European Institute For Energy
Research- as well as KIT-IPF Karlsruhe Institute of Technology
Institute of Photogrammetry and Remote Sensing for their
continued support and assistance. A special thanks goes to
Christian Malewski for advice on setting up the project. The
methodological basis presented here was developed in the
context of a research and development project called the EDF
City Simulation Platform Project. It has been running from 2012
to 2016 in EIFER and other institutes of EDF (Electricite de
France).

REFERENCES
[1] K.-H. Häfele, “Citygml wiki.” [Online]. Available: http://www.

citygmlwiki.org/index.php?title=Citygml Wiki (visited on 13/05/2016).

[2] C. Mtral, G. Falquet, and K. Karatzas, “Ontologies for the integration of
air quality models and 3d city models,” In Conceptual Models for
Practitioners, Jan 2012.

[3] “Citygml energy ade.” [Online]. Available: http://www.citygmlwiki.org/
index.php?title=CityGML Energy ADE (visited on 30/06/2016).

[4] R. Nouvel, R. Kaden, J.-M. Bahu, J. Kaempf, P. Cipriano, M. Lauster, J.
Benner, E. Munoz, O. Tournaire, and E. Casper, “Genesis of the citygml
energyade,” in Proceedings of International Conference CISBAT 2015
Future Buildings and Districts Sustainability from Nano to Urban Scale,
Scartezzini and Jean-Louis, Eds., sep 2015. [Online]. Available:
https://infoscience.epfl.ch/record/213436

[5] G. Gröger, T. H.Kolbe, C. Nagel, and K.-H. Häfele, “OGC City
Geography Markup Language (CityGML) Encoding Standard,” OGC
12-019, Version 2.0.0, apr 2012. [Online]. Available: http://
www.opengis.net/spec/citygml/2.0 (visited on 15/06/2016).

[6] “Citygml homepage.” [Online]. Available: http:/
/www.citygml.org (visited on 13/05/2016).

[7] P. P. A. Vretanos, “OGC Web Feature Service 2.0 Interface Standard
With Corrigendum,” OGC 09-025r1 and ISO/DIS 19142, Version 2.0.0,
nov 2010. [Online]. Available: http://www.opengeospatial.org/
standards/wfs (visited on 13/06/2016).

[8] “3dcitydb documentation v3,” pp. 217–218, 2015. [Online].
Available: http://www.3dcitydb.org/3dcitydb/documentation/ (visited on
18/06/2016).

[9] E. Curtis, Advances in 3D Geoinformation Systems. Springer Berlin
Heidelberg, dec 2008, ch. Serving CityGML via Web Feature Services
in the OGC Web Services -Phase 4 Testbed, pp. 331–340.

[10] “Wfs basics.” [Online]. Available: http://docs.geoserver.org/2.2.1/user/
services/wfs/basics.html (visited on 12/05/2016).

[11] “Feature chaining.” [Online]. Available: http://docs.geoserver.org/stable/
en/user/data/app-schema/feature-chaining.html (visited on 14/05/2016).

[12] B. Caradoc-Davies and R. Angreani, “Geoserver application schema
support: Complex web feature service for geoscience interoperability,”
Manuscript -CSIRO Research Publications Repository, nov 2010.

[13] A. Bröring, C. Stasch, and J. Echterhoff, “OGC Sensor Observation
Service Interface Standard,” OGC 12-006, Version 2.0.0, apr 2012.
[Online]. Available: http://www.opengis.net/doc/IS/SOS/2.0

[14] “Sensor web community.” [Online]. Available: http://52north.org/
communities/sensorweb/ (visited on 30/06/2016).

[15] R. Hagemann, U. Corsmeier, C. Kottmeier, R. Rinke, A. Wieser, and B.
Vogel, “Spatial variability of particle number concentrations and {NOx} in the
karlsruhe (germany) area obtained with the mobile laboratory aero-tram,”
Atmospheric Environment, vol. 94, pp. 341 – 352, 2014. [Online]. Available:
http://www.sciencedirect.com/science/ article/pii/S1352231014003987

[16] E. Jendrock, R. C.-N. I. Evans, D. G. K. Haase, and W. M. C. Srivathsa,
“Introduction to web services.” [Online]. Available: http://
docs.oracle.com/javaee/6/tutorial/doc/gijti.html (visited on 28/06/2016).

[17] “Demos 3dcitydb.” [Online]. Available: http://cesiumjs.org/demos/
3dcitydb.html (visited on 28/06/2016).

[18] K. Chaturvedi and T. H. Kolbe, “Dynamizers -Modeling and Implementing
Dynamic Properties for Semantic 3D City Models,” in Eurographics
Workshop on Urban Data Modelling and Visualisation, F. Biljecki and V.
Tourre, Eds. The Eurographics Association, 2015.

..

