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Abstract—Cities have always been considered a horsepower of 

industrial growth over centuries. However, urbanization often has 
environmental effects. In this paper we will focus on one of them, 
namely air pollution, and how we can integrate 3D city models and 
air quality sensor data. In most cases, air quality data is acquired 
from static sensor systems like weather stations, which lack the 
coverage required for urban simulation. Applying mobile data for 
air quality models is more reasonable due to the spatial coverage of 
the urban model. Yet academic research has been scarce on the 
integration of city models and spatio-temporal varying sensor data. 
To close the gap, this paper proposes a novel approach to integrate 
city model data and spatio-temporal data in an interoperable and 
standardized way. The geometry aspects of a city are described by 
those defined in CityGML and the air spatio-temporal varying data 
is retrieved by OGC Sensor Observation Service. The approach 
uses Cesium JS, a JavaScript library for visualizing the semantical 
city model stored in CityGML and the OGC SOS observation 
service from 52°North for the air quality data transmission.  

Keywords—CityGML; SOS; Spatio-Temporal; Varying Data; 
Air Quality  

 
I. INTRODUCTION 

Cities have to navigate around different concepts for urban 
planning to solve problems they are facing today and tomorrow. 
The smart city vision involves the integration of solutions for 
information and communication technologies to help in 
providing municipal services, such as. sanitation, water supply, 
street network, public libraries, schools, food inspection, fire 
department, police, ambulance, other health department issues 
and transportation. The integration of classical municipal ser-
vices and Web services is a big challenge for many players 
worldwide, e.g. IT services providers, urban systems operators, 
energy providers. Open interoperable standards and the use of 
geo-spatial information provides an environment filled with 
opportunities for cities as they empower them to use their 
socioeconomical data for different applications in the domains of 
analysis and modeling, visualization, semantics and metadata. 
An important component of a city’s success is the perceived 
quality of life. Citizens and companies expect to have better 
access to services, health facilities and consumption goods. 

These are often associated to the notion of common wealth. 
The environmental effects are often associated with 
urbanization and affect the quality of life. Air pollution is one 
of the most important side effects of urbanization. In Europe, 
3D city models have become readily available and it is only 
the next logical step to link them to air quality sensor data.  

A. Serving CityGML via WFS 

1) Concept of CityGML: The City Geography Markup 
Language (CityGML) is a comprehensive concept for the 
modeling and exchange of 3D city and landscape models. As 
an open data model, CityGML defines full-blown classes and 
relations describing 3D objects regarding their geometry, 
topology, semantics and appearance properties. This allows the 
employment of virtual 3D city models for complicated 
analytical tasks in different domains such as simulations, urban 
data mining and facility management [1].  

CityGML defines five consecutive Levels of Detail (LOD), 
from terrain alone to architectural models (outside and inte-
rior). With increasing LOD, objects become more detailed 
both at the geometric and thematic level [2]. In addition to 
their attributes, objects in CityGML can have external 
references to corresponding objects in other databases or data 
sets. CityGML also provides an extension mechanism with the 
Application Domain Extension (ADE) in order to enrich data 
for specific domain areas. That is where different kinds of 
models, such as environmental noise models, energy models 
and air quality models, can come into play. The most 
important development for using CityGML and energy related 
data together has been built through the ADE mechanism and 
is called the EnergyADE [3].  

The objective of the EnergyADE is the storing and 
managing of data needed for simulating complex urban energy 
models, which consider existing international building and 
energy data specifications (INSPIRE, BEDES). An important 
feature of this ADE is the possibility to handle different data 
qualities regarding level of details and complexity of energy 
models (E.g. monthly energy balance of ISO 13790, 



sub-hourly dynamic simulation of software such as CitySim or 
EnergyPlus) [4].  

CityGML is released and implemented as a GML application 
schema for the Geography Markup Language version 3.1.1, 
issued by the Open Geospatial Consortium (OGC) and the ISO 
TC211 [5]. This allows CityGML to be used with the whole 
family of GML compatible OGC Web Services for data 
accessing, processing and cataloging like Web Feature Service 
(WFS), Web Processing Service (WPS) and the Catalog Service 
[6].  

2) Advantages of a WFS: Since CityGML is quickly being 
adopted on an international level, serving and retrieving 
CityGML data over the web becomes more appealing than any 
time before. This is also a focus of this paper. Using traditional 
communication techniques, such as File Transfer Protocol (FTP), 
to share CityGML data led to some underlying problems. The 
major one is that CityGML data size can become rather large 
even for a small geographical region, when the CityGML model 
is at a high level of detail. This causes issues for users or clients 
uploading and downloading data. To solve this problem, the Web 
Feature Service (WFS) Standard, first published with version 
1.0.0 in 2002, comes into play. The key characteristic of the 
WFS is to allow users to share geographic information at 
fine-grained feature and feature property level rather than at the 
file level. That completely changes the way in which geographic 
information is created, modified and exchanged via the Internet 
[7]. There are multiple advantages to serving CityGML via a 
WFS. One of the most important advantages is that the WFS is a 
standardized interface. Rather than sharing the whole dataset of 
CityGML data, which is stored on a relational geodatabase using 
the 3DCityDb structure [8], data can be exchanged based on 
specific feature types, such as buildings, transportation or others 
defined by the CityGML public schema. This allows CityGML 
data to be queried by using various filters depending on 
implementation of conformance of the WFS. For example, a user 
could request all buildings based on a given Bounding Box by 
using a WFS instance, which supports the spatial filter query.  

3) Obstacles of Implementation: As depicted above, serving 
CityGML via a WFS improves the performance of exchanging 
data. However, a number of technical challenges arise from the 
characteristics of the CityGML model. In the first place, the 
CityGML model makes extensive use of complex data types for 
properties and nesting of features within feature collections. 
This, in consequence, causes CityGML to have a deep nested 
data structure. In addition, the geometry types supported in 
relational databases are often more limited than those used in 
CityGML, which could be a restriction for those WFS 
implemented on top of a relational database [9].  

Despite the technical challenge mentioned before, at least two 
commercial solutions have appeared to cover the existing market 
demand. The Project 3D City DB, which provides a 3D 
geodatabase based on CityGML, released an implementation for 
the 2.0 version of the OGC Web Feature Service. However, this 
satisfies only the simple WFS conformance class and the 

advanced version including more WFS operations is com-
mercially available from the company virtualcity SYSTEMS 
GmbH Berlin [8]. Another example is the WFS integrated with 
CityGML offered by Snowflake. It supports both the OGC 
WFS 1.0 and 1.1 specifications [1]. These products satisfied 
the need of the market to some extent, but open source projects 
and free products with full functionality for users in research 
and development are currently limited.  

One of the goals of this paper is to search for an open 
source solution to serve CityGML via a WFS with advanced 
functionality. Thus, to achieve this objective, all software used 
should be open source, and, as such, an open mechanism to 
provide CityGML data is needed. One of those solutions tested 
for this paper was GeoServer in combination with its 
“Application Schema” extension. The main reason for 
choosing GeoServer to serve CityGML is that it has 
implemented the OGC WFS standard. This is considered a 
reference implementation of the WFS and provides 
full-fledged WFS functionality including discovery, query, 
locking, transaction and stored query operations [10]. In 
addition, its “Application Schema” extension allows users to 
define complex feature types by “Feature Chaining” [11], in 
which feature types are configured independently, with 
relationships specified in the mapping file [12]. This implies 
that using GeoServer with the Application Schema satisfies not 
only the complexity of feature types defined in the CityGML 
model, but also provides WFS operations, as well as various 
query filters.  

The GeoServer Application Schema is made up of two 
concepts called “Feature Mapping” and “Feature Chaining”. 
“Feature Mapping” defines the relationships between a source 
feature type (in most cases tables in a relational database) and 
a target feature type, which is declared in a public GML 
application schema. “Feature Chaining” helps to construct a 
complex feature type, in which simple features can be 
structured in a hierarchical way. These two concepts allow the 
Application Schema to map complex feature types defined in 
CityGML. However, there are some restrictions to how this 
works. The most important one is that all public GML 
application schemas used for mapping with the GeoServer 
Application Schema must satisfy the GML encoding rule, 
known as the “Striping” rule. The “Striping” rule requires that 
a complex type is never the direct property of another complex 
type. The complex types are always contained in a property 
type to ensure that their specific type is encoded in a 
surrounding element or container element. In other words, the 
GeoServer Application Schema supports those schemas, which 
enforce all the GML encoding rules. In terms of CityGML, a 
couple of schemas are involved to describe feature types of 
city objects. However, not all schemas obey the GML 
encoding rules. One of them is the generic.xsd, which defines 
the generic attributes of city objects. It is pivotal to storing 
additional information about all kinds of models, such as 
energy models and heat models. This is the main reason why 
GeoServer with Application Schema can’t completely satisfy 
the need.  



B. Serving Spatio-Temporal Air Quality Data via SOS  

1) Concept of SOS: The Sensor Observation Service (SOS) 
standard provides a standardized interface for managing and 
retrieving metadata and observations from heterogeneous sensor 
systems, which include a variety of sensor types, such as in-situ 
and remote sensors, mobile sensor platforms or networks of 
static sensors. In particular, this standard specifies how the 
observation, sensor description, as well as computational 
representation of observed features are accessed in an 
interoperable way. It further defines means to register new 
sensors and delete old ones. This standard also provides a 
mechanism to insert new observations and remove existing ones 
[13]. SOS 2.0 relies on the Sensor Model Language (SensorML) 
standard to encode meta description of sensor and the 
Observation and Measurement standard (O&M Model) to encode 
data gathered by sensors. The SOS is an OGC standard and 
ultimately only defines a service interface but not an 
implementation. There are currently several Open Source 
implementations of this service, such as 52°North SOS, deegree 
SOS and istSOS. To achieve the goal of air quality data 
integration with CityGML, 52°North SOS was chosen for our 
SOS deployment. 52°North SOS is standardized, interoperable 
and has a consistent implementation [14].  

2) Description of Air Quality Data: The air quality data used 
in this paper is supplied by the “AERO-TRAM” project, 
sponsored by environmental ministry of Baden-Württemberg and 
realized by the Karlsruhe Institute of Technology. The latter’s 
aim is an extensively automated, long-term study of 
concentration, spatial distribution of parameters such as O3, NO, 
NOx, CO, CO2, H2O(g), particle size distribution and total 
particle count in the area of Karlsruhe. In this project, the spatial 
distribution of air particles was continuously measured by an 
inlet sensor system, which is carried by the S-Bahn’s (the local 
train system) two trams, the S1 and S2 in Karlsruhe. The 
selection of the actual running line depends on the internal 
scheduling procedure of the municipal transport service. Line S1 
characterizes a specific height profile and Line S2 has a complete 
flat profile [15]. Each observation of air quality took place in a 
short time interval when the trams moved along their paths. In 
other words, the air quality sensor data varied both in spatial and 
temporal domains.  

3) Encoding mobile Sensor Data: In order to provide the air 
quality data via SOS, two key processes should be undertaken, 
which include (1) encoding data in a standardized format and (2) 
populating an O&M database with data behind the SOS instance. 
Encoding data in a standard format is, more specifically, the 
encoding of the description of sensors and the sensor 
measurements based on the SensorML Model and O&M Model 
specifications respectively. The encoded file format should be 
compliant to the binding mechanisms supported by the SOS 
instance, such as XML, JSON and SOAP. Since the inlet sensor 
system is carried by the tram vehicle and the observation is 
measured during its movement, our sensor system falls into the 
category of mobile sensor platforms. Thus, the air quality sensor 

data should be considered as time series sampling. The part of 
encoding sensor metadata according to the SensorML 2.0 
includes the description of our physical sensor systems. The 
following information has to be defined: sensor identifier, 
definition of sensor input and output, sensors’ constraints and 
their connections within the sensor system . On the other hand, 
the part of encoding sensor data is to actually convert the 
sensor measurements into the concept “Observation”. To 
define an observation, six elements should be involved 
according to the O&M Model. These are: “procedure”, 
“phenomenon time”, “result time”, “observed property”, 
“feature of interest” and “result”. Listing 1 demonstrates how 
these six elements of one single observation are defined in our 
case. The “procedure” should be linked to a specific sensor 
identifier defined in the sensor metadata part and the 
“phenomenon time” is considered to be equal to “result time”. 
This is represented by the sampling timestamps, with a 
temporal resolution of recording varying every second. The 
measurement of each timestamp is represented by a centered 
one-minute mean over a window of 60 data points. “Feature of 
interest” represents the geometric information of the 
observation, which for a static sensor system like weather 
stations can be depicted by the location of the relevant sensor. 
In this case, the “feature of interest” is considered a sampling 
feature, analyzing the “bubble of air”. As for a mobile sensor 
platform, the geolocation of each observation varies all the 
time during the movement of the sensors. Thus, “feature of 
interest” in this case should be used as a domain feature 
(known as sampled feature). The street on which our tram 
passed along and the geometry point of each observation is 
described as a sampling feature. The second process is the 
import of the encoded data into the database. To that end a data 
feeder is needed. The SOS instance used in this paper, the 
52°North SOS, has released a tool called “SOS Importer”, 
which supports the import of data into the database suitable 
both for mobile and static sensor platforms.  

 
1 <om:OM_Observation gml:id="o_01">  
2   <gml:description>NO</gml:description>  
3   <gml:identifier codeSpace="">s1-no1-observation  
        -0</gml:identifier>  
4   <om:type xlink:href="http://www.opengis.net/def/  
        observationType/OGC-OM/2.0/OM_Measurement"/>  
5   <om:phenomenonTime>  
6      <gml:TimeInstant gml:id="phenomenonTime_0">  
7         <gml:timePosition>2015-12-13T05:59:40</gml 
              :timePosition>  
8      </gml:TimeInstant>  
9   </om:phenomenonTime> 
10  <om:resultTime xlink:href="#phenomenonTime_0"/> 
11  <om:procedure xlink:href="cld_66"/> 
12  <om:parameter> 
13     <om:NamedValue>  
14        <om:name xlink:href="http://www.opengis. 
              net/def/param-name/OGC-OM/2.0/ 
              samplingGeometry"/>  
15        <om:value xsi:type="gml:  
                   GeometryPropertyType">  



16          <gml:Point gml:id="sp_01">  
17              <gml:pos srsName="http://www.opengis  
                    .net/def/crs/EPSG/0/4326">  
                    49.052822 8.388629</gml:pos>  
18          </gml:Point>  
19         </om:value>  
20      </om:NamedValue>  
21   </om:parameter>  
22   <om:observedProperty xlink:href="http://sweet.  
         jpl.nasa.gov/2.0/chemCompound.owl#NO"/>  
23   <om:featureOfInterest xlink:href="http://  
         localhost/geoserver/wfs?request=GetFeature& 
         typeNames=tram:tram&featureID=s1"/> 
24   <om:result xsi:type="gml:MeasureType" uom="ppb"  
         >3.08</om:result>  
25 </om:OM_Observation> 

Listing 1. Sample XML excerpt of a single observation  

4) Serving Mobile Sensor Data with the 52°North SOS’s 
Sensor Web RESTful API 2.0: The Representational State 
Transfer (RESTful) Web services are considered much more 
lightweight and often better integrated with HTTP than 
SOAP-based Web services, because RESTful Web services do 
not require XML messages or WSDL service descriptions [16]. 
Thus, all the data used for this paper are designed to be accessed 
by RESTful services and then are used on the client side. The 
52°North SOS supports the RESTful API, whose current stable 
version is 1.0 and it supports HTTP GET as well as POST 
methods. This RESTful API provides easy access to time series 
information from the SOS instances. However, there are 
limitations to serving air quality data via this API. It currently 
only supports time series data from static sensors and not yet 
from mobile sensor platforms. One of the core query parameters 
named “station” is designed for orientation of resources and only 
considers the “feature of interest” of observation as a sampling 
feature. This means the stations can only represent the location of 
a static sensor. In our case, the “feature of interest” is designed as 
a domain feature, which is not a simple geometry point. The 
geometry information of each observation, which is encoded as a 
sampling feature, will not be accessible using the current API. In 
order to supply sensor data from heterogeneous sensor systems, 
the 52°North SOS has released a new beta version of the Sensor 
Web REST API 2.0, which aims to support mobile sensor 
systems. With the extension of this API, the mobile air quality 
data can be accessed and later integrated with CityGML data on 
the client side.  

C. Integration of CityGML and Air Quality Data  

In this paper, the JavaScript library “Cesium” was chosen for 
visualization on the client side. Cesium is a WebGL virtual globe 
and map engine, which is capable of displaying KML and 
COLLADA/gITF files built on CityGML data [17]. There are 
several approaches considered for the integration of CityGML 
and air quality data via SOS. The first one is to display the urban 
model described by CityGML on Cesium and visualize the 
observation data as sampling points overlaying the city objects. 
The workflow of this approach is depicted by Figure 1. The 
second approach is to couple SOS by referencingthe WFS 

request of CityGML to the “feature of interest” of 
observations. This approach works because the 52°North SOS 
can handle the features both in an internal and external way. 
The third approach is the use of Dynamizers [18]. Dynamizers 
are a mechanism that allows the storing of dynamic values 
separately from the original attributes in CityGML. This 
approach is contrary to the second one. The new CityGML 
data type “SensorConnection” defined in Dynamizers can be 
linked by various SOS requests for sensor metadata and the 
observations. For our work we used the first approach. Figure 
2 and Figure 3 illustrate a Web demo based on the current 
infrastructure. As Figure 2 depicts, tram vehicle S1’s 
observations, whose observed property is NO, are visualized as 
a track of color-coded dots (see legend in the second floating 
window on the right of Figure 2). The observations are 
previously classified into different groups based on their 
values. A semantic 3D model of north-west Karlsruhe is also 
loaded to the platform. The track information, such as its 
platform, procedure and observed property etc. is displayed on 
the info box of the Web demo. Figure 3 shows a time slot 
interface, which allows the user to observe how the results of 
the track varies in a specific interval.  

II. CONCLUSION 

The workflow of this paper can be summarized into two 
stages, namely data acquisition and data fusion. In terms of 
data acquisition, the OGC WFS and SOS standards are applied 
to retrieve CityGML and spatio-temporal varying air quality 
data respectively. It has been proved that GeoServer and its ex-
tension Application Schema is not a complete solution to serve 
CityGML via WFS, due to the issues with CityGML and the 
encoding rules of GML. A solution would be a more advanced 
CityGML WFS with RESTful API. As for the air quality data, 
the 52°North SOS SNAPSHOT 4.4.0 release modified the 
database schema to support mobile sensor platforms and 
provides a beta 2.0 RESTful API to extend query for ”tracks”. 
This has proven to be suitable to store observations whose 

 
Fig. 1. Workflow of Integration between CityGML and Air Quality Data 



 
Fig. 2. Web Demo of Integration between CityGML and Air Quality Data on 
Cesium. The dotted line shows color coded NO values along the tram line.  

 

 
Fig. 3. Web Demo of Integration between CityGML and Air Quality Data on 
Cesium. The graph shows the variation of NO values within a specific interval. 
 

“feature of interest” is a domain feature. This can satisfy the 
demand of mobile sensor data provision. The second stage, data 
fusion or data integration, is achieved by accessing 
heterogeneous data with the RESTful API. The approach used in 
this paper is appropriate when only visualization is needed. The 
downside of this approach is the lack of relationships between 
city objects in the model and observation data. 
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