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ABSTRACT 

The	 paper	 deals	 with	 the	 transportation	 logistics	 problems	 in	 the	 conditions	 of	 incomplete	
information.	The	research	includes	several	formulations	of	the	stochastic	optimization	problem	
for	different	variants	of	the	relationship	"Resources	reserves	–	Resources	consumption".	For	the	
solvability	of	these	problems	we	propose	two-stage	scheme	for	solving	stochastic	transportation	
problem.	The	novelty	of	the	two-stage	problem	stochastic	programming	formulation	has	been	
contained	 in	 the	 statement	 of	 the	 second	 stage	 problem.	 Choosing	 of	 compensation	 plan	 is	
determined	from	the	solution	of	the	linear	complementarity	problem.	
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СТОХАСТИЧЕСКИЕ МОДЕЛИ ОПТИМИЗАЦИИ В ТРАНСПОРТНОЙ ЛОГИСТИКЕ 
АННОТАЦИЯ 

В	 статье	 рассматриваются	задачи	транспортной	логистики	 в	 условиях	 неполноты	
информации.	Для	 различных	 вариантов	 взаимосвязи	 «запасы	ресурсов	 –	 потребление	
ресурсов»	 предлагаются	 постановки	 стохастических	 оптимизационных	 задач.	 Для	
решения	 поставленных	 задач	 предлагается	 двухэтапная	 схема	 решения	
стохастической	 транспортной	 задачи.	 Новизна	 постановки	 двухэтапной	 задачи	
стохастического	 программирования	 содержится	 в	 формулировке	 задачи	 второго	
этапа.	 Выбор	 плана	 компенсации	 определяется	 из	 решения	 линейной	 задачи	
дополнительности.	
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Introduction 

Stochastic optimization models in transportation logistics in recent years become increasingly 
important. Such models are close to the practical criteria of solutions selection and more correctly reflect 
the economic reality. Actually, not always we have possibility to accurately determine the parameters of the 
problem (resources consumption cost of product costs, the value of future demand, reserves of raw 
materials, etc.). 

In applications that use a classical transportation problem (F.L. Hitchcock [1], T.C. Koopmans [2]), 
significant interest is paid for stochastic formulation of the transportation problem with random demand 
(A.C. Williams [3]). In this case objective function represents the mathematical expectation of total losses 
during transportation of the product, damages on poor demand and the costs of storing excess product [4–
6]. 

Transport problem with random demandand continuous distribution functioncan be turned to 
deterministic problem of convex programming with linear constraints. However, such transformation does 
not always give an acceptable solution; therefore it is necessary to use other approaches to study the 
problem. 
Another approach for solving the stochastic optimization problems is a two-stage scheme of solutions, in 
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another word stochastic problem with compensation of residuals [7]. The process of solving the problem 
can be divided into two stages: on the first stage we select the preliminary plan from deterministic 
conditions, on the second stage we implement compensation discrepancies, that have been identified after 
the implementation of random events. This approach can be used for stochastic problems where a 
preliminary decision should be taken and put into the implementation before we have know the value of 
random parameters. For the transportation problem with random demand the preliminary decision can be 
determined by the distribution of materials supplies taking into account the determined reserves of the 
materials. 

In general the difficulties with the analysis of the two-stage stochastic transport problems are 
determined by the need to choose the best preliminary plan of the original problem, which would guarantee 
the existence of residual compensation for all implementations of parameters of uncertainty.  

In this paper a two-stage stochastic transport problem is considered, where the choice of 
compensation plan subjects to the terms which are determined by a linear complementarity problem. 

Statement of the Linear Complementarity Problem 

It is important to consider the linear complementarity problem in the form [8]: 
,qBzv  ,z,v jj 00  .,...,1,0 pjzv jj                                    (1) 

There B – given a square matrix with size р, ),( jj zv  – is a couple of additional variables. 

Condition ,,...,1,0 pjzv jj  analogous to the condition of complementarity in the duality theory for 

inequalities 0 qBz and .0z This means that in a pair of conjugate inequalities at least one should 
be implanted as equality. 

Non-negative definiteness of the matrix B  ensures the solvability of problem (1). When the 
positive definiteness of the matrix B  there is a unique solution z  of problem (1). 

For the solution building of problem (1) algorithm can be used as an additionalconversion Lemke 
[8], it can be demonstrated as an analogue of the simplex algorithms for linear programming problem. 

Mathematical Model of the Transport Problem 

It is necessary to consider the classical transport problem: minimize the total cost 
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for specified volumes of transportation of a homogeneous product ,n,...,j,m,...,i,xX ij 11}{   with 
restrictions: 
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.n,...,j,m,...,i,xij 110                                                                  (5) 

Conditions (3) determine the distribution of transportation X  in accordance with reserves 
miai ,...,1,  . 

Conditions (4) ensure the fulfillment of the demand n,...,j,b j 1 . 
It is necessary to introduce the vector representation of the transportation plan x and vectorc  

with the matrix representation of the transportation plan X and matricesC , by sticking rows of matrix to 
vector  

,))1(( jniij xx  .))1(( jniij cc   

Then a group of equations (3) is denoted as aAx  , where vector )( 1 ma,...,aa  , and matrixA  
corresponds to constraints (3). 

Two-stage StochasticTransport Problem 
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It is important to consider the stochastic formulation of the transportation problem(2)–(5). 
Let the demand )(bb   is a random variable. Also )(CC  – the cost of transportation of 

product is also random. 

Define by njbj ,...,1,~
  – some implication of a random variable jb , using 

,,...,1,,...,1,~ njmixij   – a transportation plan that satisfies to the deterministic conditions (3) 

and (5). 
Then there are two cases of the choice of compensation plan from the terms and conditions 

determined by the linear problem of complementarity (1). 
Case 1. For some  n,...,J,Jj 1   following inequality holds: 

.b~x~ j

m

i
ij 

1
      (6) 

Condition (6) means that at the point 
Jj  the demand is not satisfied. 

For such constraintsit is necessary to introduce a penalty ,
js

Jj  for one unit of 

compensation plan of the product deficit and carry out compensation of obtained discrepancy as follows: 
.yMb~x~E        (7) 

Where E  – is a matrix and b~  – a vector which were composed by the restrictions (4) which 

correspond to set J , M  – is positive definite matrix and y  – is a nonnegative vector of the 
compensation plan of corresponding dimensions. 

Labeling 
,b~x~Eq,MB,yz     

we will receive linear complementarity problem (1) for conditions (7). 
Case 2. For some  n,...,J,Jj 1   the following inequality is satisfied 
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The condition (8) means that at the point 
 Jj  there is a need to store excess product. 

For such constraints we introduce a penalty ,
js

 Jj  for one unit of compensation plan 

excess product and hold compensation of obtained discrepancy by following: 
.yMb~x~E        (9) 

Where E  – is a matrix and b~  – a vector which were composed by the restrictions (4) which 

correspond to set J , M  – is positive definite matrix and y  – is a nonnegative vector of the 
compensation plan of corresponding dimensions. 

By analogy in case 1, when 
  b~x~Eq,MB,yz  , 

we will receive linear complementarity problem (1) for conditions (9). 
Transportation problem with random demand can be presented as the following two-stage 

stochastic programming problem:  
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,x,aAx 0      (11) 

,b~xEyMv   ,y,v 00   .,0   Jjyv jj    (12) 
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,b~xEyMv   ,0,0   yv .,0   Jjyv jj    (13) 

For the solvability of the second stage with all implementations of a random variable b  and with 
any preliminary plan x  it is necessary and sufficient that the matrix M  and M  was positive definite. 
Under such conditions, there is a unique solution )( b,xy  and )( b,xy  for each complementarity problem 
(12) and (13) respectively. In this case problem (10)–(13) is a nonlinear problem of stochastic programming 
with linear constraints: 
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 0 x,aAx|xD      (15) 

where )()( b,xy,b,xy   – solutions of the corresponding complementarity problems, the objective 
function is an expectation of a random function depending on a random vector from a certain probability 
space, and the feasible set  0 x,aAx|xD  is a bounded and convex linear set.  

For solving the problem (14) – (15) can use the methods of stochastic approximation [9, 10]. 

Algorithm 

Let the initial approximation of the solution Dx 0  and some initial Monte-Carlo sample size 
0N  be given. Put 0k  and move on to the main stage. 

Step	1. Let the vector kx  is known. We generate kN values of a random variable b andcalculated 

Monte-Carlo estimators of the objective function and kd  is an  -feasible direction at the point kx  (i.e., 
projection of the gradient estimate to the  -feasible set). 

Step 2. Go to the next point  
).dx(x kkk

x
k  1  

If 1kx is not optimal, then replace k  by 1k  and go to step 1.Otherwise the algorithm STOP. 
If the sample size regulation Monte-Carlo method in accordance with the: 
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Where C  is a certain constant )d( k
x

k
k  , kd  is an  -feasible direction at the point kx  (i.e., 

projection of the gradient estimate to the  -feasible set). 

Conclusion 

The novelty of the two-stage schemes stochastic transportation problem formulation contains in 
the statement of the second stage problem. Two-stage scheme can be applied for solving the stochastic 
transportation problem in following case. Conditions (15) give the distribution of the known deterministic 
reserves. This is a preliminary plan. After the values of the random demand becomes known, we have a 
possibility of the occurring residuals. 

On the first stage we look for a preliminary plan without taking into account the random 
parameters. On the second stage the residual vector is searched for correction. The residual is 
parameterized with using of a compensation matrix in new formulation which is proposed in the article,. 
Basically it allows us to interpret the correcting process of the residuals in the following way – with the 
emerging shortage of resources. An additional purchase is carried out without excess. 

The construction of the linear complementarity problem (12) and (13) for the second stage in a 
new production of non-linear two-stage schemes stochastic transportation problem ensures the solvability 
of the problem for the positive semi definite matrix M  and M under all implementations b  and any 
preliminary plan x . 

If matrix M  and M is positive defined, then there is a unique solution of the linear 
complementarity problem (12) and (13) in all implementations of the uncertainty parameters and 
preliminary plan. 
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