
Learning sequential control in a Neural Blackboard

Architecture for in situ concept reasoning

Frank van der Velde

University of Twente, CPE-CTIT; IOP, Leiden University, The Netherlands
f.vandervelde@utwente.nl

Abstract. Simulations are presented and discussed of learning sequential control in a Neural

Blackboard Architecture (NBA) for in situ concept-based reasoning. Sequential control is learned

in a reservoir network, consisting of columns with neural circuits. This allows the reservoir to

control the dynamics of processing by responding to information given by questions and the

activations in the NBA. The in situ nature of concept representation directly influences the

reasoning process and learning in the architecture.

Keywords. Learning Neural blackboard architecture In situ concepts Reasoning Reservoir

 Wilson-Cowan dynamics

1 Introduction
Neural representation and processing of symbol-like structures as presented here takes

its inspiration from the observation that concept representations in the brain are ‘in situ’,

in line with the neural assemblies as proposed by Hebb ([1]). Neural assemblies, as

Hebb argued, will develop over time when neurons that process information about, for

example, a concept become interconnected. Such concept representations could be

distributed, but parts of the assembly could also consist of more local representations.

They will generally consist of neurons involved in processing information but also of

neurons involved in actions. In this way, in situ concepts representations are always

grounded in perception or action, so that the neural connection structure underlying a

concept is determined by both its ‘incoming’ (perception-based) connections and its

‘outgoing’ (action-generating) connections [2].

The in situ nature of neuronal concept representations imposes constraints on the

way they can be combined to represent and process more complex forms of information.

However, complex conceptual structures (e.g., sentences with hierarchical structures)

can be represented and processed when the neural assemblies underlying in situ concept

representation are embedded in a ‘Neural Blackboard Architecture’ or NBA [3].

In general, “in-situ concept-based computing” would be achieved by embedding in

situ concepts in several NBAs, each needed for a specific form of processing.

Blackboards are also used in computer domains, e.g., to store arbitrary forms of

(symbolic) information. NBAs as intended here, however, are fundamentally different.

They possess structural information, (e.g., related to sentence structures as in [3]), and

are implemented with dedicated structures (e.g., neural circuits, as in the brain). In this

way they cannot store arbitrary information, but they can process specific forms of

(high-level cognitive) information, e.g., by the interactions between the structured

representations in the blackboards. Fig 1. illustrates that there will be NBAs for sentence

Copyright © 2016 for this paper by its authors. Copying permitted for private and academic purposes.

structures, phonological structures (e.g., forming new words), sequential structures based

on in situ concept representations, relation structures as used in reasoning, and

potentially other NBAs (blackboards) as well. The interaction between these NBAs

derives from the in situ concept representations they share. For example, a word

(concept) would be shared by the sentence, phonology, sequential and relation

blackboards (and potentially more). In turn, concepts are also related to each other in

several “feature spaces”, which can influence processing in the NBAs as well.

Figure 1. Overview of in situ concept-based computing with Neural Blackboard Architectures (NBAs).

The NBA in [3] can account for sentence structure and processing, including

sentence learning [4] and examples of ambiguity resolution and garden path modelling

[5]. A recent extension of the NBA approach to symbol-like processing is the NBA for

(basic forms of) reasoning presented in [6], which can be used in basic reasoning

processes, such as BABI reasoning tasks as presented in [7].

Figure 2. (A) BABI task for reasoning (after [7]). (B) Propositions in a relation blackboard (A = agent, O
= object). Grey nodes activated by the question Where is milk?. <localizer> and <location> are concept

features, belonging to feature space.

Fig. 2A presents an example of a BABI reasoning task. A set of relations is given

and a question has to be answered on the basis of these relations (propositions). So, the

question Where is milk? can be answered by first retrieving John drop milk (providing a

location for milk) and then retrieving John go office as the last location of John before

John drop milk. This would provide office as the location of milk. Fig. 2B presents the

representations of these relations in the relation NBA, and the representations activated

by the question Where is milk? are illustrated in grey.

Here, a first set of simulations will be presented and discussed that address the way

NBAs can learn to perform reasoning processes of this kind. This paper focusses on the

fundamental issue of whether questions can retrieve information needed for reasoning in

NBAs. Simulations of other aspects of the NBAs and reasoning process are outside the

scope of this paper, or under development (e.g., the selection of the more recent

activated relation in the sequence blackboard, which is assumed here). A further

description of how BABI tasks can be solved in NBAs is presented in [6].

2 Learning control of reasoning in an NBA
A key element of in situ concept processing in NBAs is that the information provided by

a question is directly used in the activation of the concepts involved. In Fig. 2B, for

example, the question Where is milk? directly activates the in situ concepts is and milk.

In turn, they will activate their features (e.g. <localizer> for is) in feature space. Due to

the activation of the in situ concept milk, all relations in Fig. 2A in which milk occurs

can be activated as well, because they share the same in situ concept (milk). So, John

drop milk and John get milk can be directly activated in this way.

Figure 3. (A). Conditional connection in Fig. 2B. (B) Conditional connections with disinhibition circuits .

(C) A connection matrix of conditional connections for binding.

Activation of concept structures (here relations) in an NBA depends on the nature of

the structure representations, and the control and binding circuits in the NBA. In [3] an

extensive discussion of these is given for the sentence NBA, but they are the same in the

relation NBA of Fig. 2. Fig. 3 illustrates a basic overview. Each connection in Fig. 2B

represents a conditional connection. These connections can operate only when they are

activated. In this way, relations can be represented and processed in NBAs (instead of

just associations as with unconditional connections). A conditional connection can be

implemented with a disinhibition circuit, as illustrated in Fig. 3B. The circuit can be

activated by a control circuit or by a memory circuit. The latter produces (temporal)

bindings in the NBA. The process of binding and (re)activation is determined by the

control circuits.

For example, the binding and (re)activation of John drop milk in Fig. 2B proceeds as

follows. First, John is activated. To achieve the representation of John as agent, John

and an (arbitrary) Agent node in the NBA (e.g., A4) are bound by activating the memory

circuit between them ([3]). This results in the binding of John and A4. In the same way,

drop binds to V4 and milk as object to O4. Then, a control circuit activates the

conditional connections between A4 and V4 to represent John drop. To achieve a

binding between arbitrary A and O nodes, all A and O nodes are connected to each other

in a connection matrix, as illustrated in Fig. 3C. A connection matrix is a matrix of

circuits (‘columns’) that regulate the binding process. To bind A4 with V4, the control

circuit activates the conditional connections between A4 and V4 and their corresponding

column in the connection matrix. This, in turn results in the activation of the memory

circuit in that column. As long as this circuit remains active (with sustained or ‘delay’

activation), A4 and V4 are bound, even when they themselves are deactivated again.

This binding process is used for all bindings in the NBA.

The relation John drop milk can be reactivated by activating one of the in situ

concepts involved and the required conditional connections. For example, the question

Where is milk? activates milk. Because of their binding with milk, O4 (and O2) are

activated as well. By activating the conditional connections for Object between Object

and Verb nodes, O4 activates V4, which activates drop. A4 can be activated by

activating (enabling) the Agent conditional connections between Verb nodes and Agent

nodes. This results in the reactivation of John drop milk. In Fig. 2B, this process also

results in the reactivation of John get milk, because these binding are active as well (i.e.,

this relation is also stored in the NBA). A distinction between these two relations can be

made by a sequential ordering in a sequence blackboard (assumed here, e.g., see [6]).

The reactivation of stored relations is crucial for a reasoning process as illustrated in

Fig. 2A. For example, Where is milk? can be answered by first activating John drop milk

and John get milk, using the activation of milk by the question. Then by selecting John

drop milk as the more recent relation. In this case, drop indicates a location for milk,

given by the <localizer> feature of drop in Fig. 2. This would initiate a second question

Where is agent-drop?, i.e., Where is John? here. This question would activate John go

office, selected as the most recent location of John. This produces office as the location

of milk. In other words, new questions in the reasoning process derive from activations

in the NBA initiated by previous questions.

Hence, the activations initiated by the (first) question and the resulting interactions

with the blackboard determine the process of answering questions like Where is milk?

Here, this interaction is simulated by using a control network to recognize the (first)

question and initiate the required interaction (e.g., further questions) with the

blackboard. The control network consists of a form of reservoir computing (e.g., [8]).

2.1 Reservoir for control
A reservoir is a set of neurons or ‘nodes’ that are sparsely interconnected in a random

(fixed) fashion. Also, the nodes are connected (randomly) to input neurons providing

external information. A reservoir can learn to activate specific output neurons in

response to a sequence presented to it. In this way, they can learn to process and

recognize sequential information [8].

Hinaut and Dominey [9] used a reservoir to recognize sets of sentences. However, in

a reservoir the nodes activate each other based on their (node) activation dynamics.

When a sequence with a specific sequential dynamics is presented to the reservoir, it can

learn to ‘resonate’ to the external dynamics because that is predictable [8]. This is

typically more difficult for language, because timing differences between words can

vary. In [9] this was solved by adjusting the dynamics of the reservoir nodes to regular

word presentation timing. Here, however, the sequence to be learned is not only

determined by the presented question but also by the interactions with and within the

neural blackboard, which could vary given the amount of information stored and

processed in it. So, a direct adjustment of timing of node activation is not possible.

Therefore, the reservoir presented and simulated here is more complex.

Fig. 4 illustrates that the reservoir consists of columns, which in turn consist of

neural circuits. The sequential activation as produced by the reservoir is given by the

‘sequence’ (S) nodes. They are randomly and sparsely connected to each other, in a

fixed manner. However, S nodes do not directly activate each other. Instead, an active

node Si will activate a ‘delay’ population in the column of a node Sj to which it is

connected. The delay population remains active (unless inhibited). It activates Sj but also

an inhibitory node i, which inhibits Sj. In this way, the timing of the sequence in the

reservoir is under control. Sj can be activated only when node i is inhibited. As

indicated, this will happen when an ‘Item’ node activates another inhibitory node that

inhibits i. When this happens, Sj will be activated and it will in turn activate other S

nodes in the sequence in the same manner.

Figure 4. Reservoir of columns. Circles and ovals represent neural populations. Double lined ovals

remain active (sustained or delay activity). I = inhibition, e = excitation. S = sequence. Dashed
connections are modifiable by learning (e.g. LTP).

Item nodes represent the external inputs to the reservoir. Here, they consist of

sentence information and/or information derived from the blackboard. Hence, the

sequential dynamics produced by the reservoir is under control by the information given

by the question and the interactions produced in the blackboard.

The aim of the reasoning NBA is to simulate and learn reasoning in this way. That is,

the reservoir will learn to recognize sequential information given by the question and by

activations in the blackboard to initiate new activations in the blackboard, until the

question can be answered. Learning can be achieved by the adaptive connections

between S nodes and nodes that control the binding and (re)activation process in the

blackboard. So, Sj could learn to activate a specific control in the blackboard, such as the

control to activate the Agent or Object conditional connections.

Here, basic aspects of this process are simulated for answering the questions Where

is John and Where is milk? in the task illustrated in Fig. 2A.

3 Simulation of reservoir activity

All the populations in the NBA are modelled with Wilson Cowan population dynamics

[10]. Each population consist of groups of interacting excitatory (E) in inhibitory (I)

neurons. The behavior of the E and I groups are each modeled with an ODE at

population level. Both ODEs interact and they receive input from outside. A working

memory (or delay) population consists of two interacting populations, say A and B. The

output results from A. The role of B is to sustain the activity by its interaction with A. It

is assumed that B has a lower activation maximum than other populations. This results

in a reduced activity of a working memory population when it relies on delay activity

only (i.e., does not receive input). The E neurons are used for output to other

populations. Populations are excitatory when their output connection has a positive

weight. They are inhibitory when their output connection has a negative weight. All

populations operate with the same parameters and all weights are the same (as in [5]).

The behavior of the populations is simulated with a fourth order Runge Kutta numerical

integration (with h = 0.1).

The question Where is John? is presented to the reservoir word by word. However,

for the reservoir word type and feature information is used. Words like is and go are

represented as <localizer>, words like John and milk are presented as nouns. The

specific words in the questions are used to activate their (in situ) representations in the

backboard. So, the active concept John activates the nodes A4 and A2 in the blackboard.

This provides information that John is the agent in the relations stored in the blackboard.

In turn, this information can be used to learn that the blackboard should provide the

object information related to (bound to) John is.

The reservoir can learn to do this by recognizing the item sequence Where -

<localizer> - noun – Agent and producing the activation of the Object conditional

connections in the blackboard. This will produce the activations of John go kitchen,

John go office, and John go room, from which John go room can be selected as the most

recent, using the sequential blackboard in Fig. 1 (see [6]).

Fig. 5 presents the activations of sets of S nodes in a reservoir of 750 columns with

sparse connectivity in response to the item sequence Where - <localizer> - noun –

Agent. The first three items (Where - <localizer> - noun) are based on the question, the

fourth item (Agent) is derived from the blackboard. Each color represents a different set

of S nodes in the reservoir. The blue set are S nodes that are initially activated by start

nodes (not shown), that respond to the start of a question. They also respond to the item

Where (specifically). However, as the figure shows, some of these nodes also respond to

the other items in the item sequence presented to the reservoir.

The red S nodes are activated by the blue S nodes (columns) and also specifically

respond to the second item <localizer>. But some of them also respond to the other

items at other steps in the sequence. Likewise, the green S nodes specifically respond to

the third item because they are activated by the combination of the active red S nodes

and the item noun. Again, however, some of them respond to other items at other

sequence steps as well. The magenta S nodes specifically respond to the fourth item,

because they are activated by the green S nodes and the item Agent.

The active magenta S nodes could be used to learn that the blackboard should

activate the Object conditional connection, because John (noun) is an Agent and the

question asks for an object bound to that agent (and a localizer word). Here, that would

be possible when the magenta S nodes dominate the activation in the reservoir at the

fourth step. However, a substantial amount of other nodes are active as well. But

reservoir nodes can learn specific responses based on their distributed activation ([9].

But when the activation of S nodes is more specific, such learning could be achieved

by direct adjustments of neural weights (the dashed connections in Fig. 4), which would

allow rapid forms of learning. To achieve more specific activation of S nodes it is

important to look more closely at the activations produced in the columns.

Fig. 6A shows the activations of the red S nodes and the delay populations in their

columns. The delay populations remain active. So, when a new item is presented, some

of the red S nodes respond to that item because it is connected to their column. This

accounts for the repeated activation of some of the S nodes of all color in Fig. 5.

Delay activity can be stopped, however, by a neural circuit illustrated in Fig. 4. To

this end, the S node is connected to a ‘stop’ population (consisting of sustained

activation). When Sj is active it will activate this population. But it will also activate an

inhibitory neuron that prevents the effect of the stop population. The stop population can

inhibit the delay population only when Sj is deactivated, and it continues to do so as long

as it is active. The Sj node is deactivated when the Item node is deactivated, which will

occur with the presentation of a new item in the sequence. It that case, the delay

population ensures the deactivation of the Sj node, which in turn ensures the deactivation

of the delay population.

Fig. 6B shows the effect of stopping the delay activation. After the red S nodes are

deactivated, the delay activation is deactivated as well. This prevents further activation

of the red S nodes. Yet, some of the red S nodes are active at the first step, even though

they are not activated by the start nodes. This activation results from the rapid activation

of their delay nodes by the blue S nodes (Figure 5) and the fact that these red S nodes

also respond to the first item (Where). However, due to their activation at the first step,

these red S nodes are no longer activated at the second step (unlike in Fig. 5) because

their delay populations are deactivated. So, the S nodes in the second step are now

specifically active for the second step in the sequence. Similarly, the first step in the

sequence is now given by the blue S nodes and the red S nodes active at that step. In this

way, specific sets of S nodes are activated at specific steps in the sequence. This allows

for rapid learning by direct synaptic modification.

Fig. 7 shows the results for all S nodes presented in Fig. 5. The colored nodes are

specifically active at the step in the sequence that is related to the item they represent.

Activation after that step is prevented. In some cases, some of the S nodes are active

before that step. In that case, however, they will not be activated again. So, at each step a

specific set of S nodes will be active that uniquely represents the item of that step.

Specifically, the magenta S nodes can learn to produce the activation of Object

conditional connections by direct synaptic modification.

3.1 Learning more complex control
The question Where is John? generates a direct answer by the reactivation of John go

room. The question Where is milk?, however, does not directly produce an answer in this

way. To answer this question, a second representation needs to be activated after John

drop milk. In turn, this requires a longer and more complex sequential sequence to be

learned by the reservoir and a longer interaction process with the blackboard. A reservoir

can indeed learn such a process and interaction with the blackboard to produce the

answer. Here, however, only a few aspects of that can be illustrated.

First, the question Where is milk? generates Object instead of Agent as response

from the blackboard in the fourth step. Yet, the first three steps are the same as with

Where is John?. Fig. 8A illustrates the activation of S nodes in the fourth step of Where

is milk? These nodes are thus activated by the S nodes active at the third step and by the

item Object, derived from the activation of O4 and O2 in the blackboard (Fig. 3). Fig.

8B illustrates the activation of the same S nodes when, at the fourth step, the item Agent

is presented. It is clear that the S nodes selectively respond to the item Object, instead of

Agent. This allows them to learn to activate the Agent conditional connections in the

blackboard, to reactivate the relation John drop milk.

Second, the question Where is milk? gives location information (is) at step two, but it

also requires location information at step five in the process, to retrieve the location of

John after John drop milk has been reactivated. Fig. 9 illustrates the activation in the

reservoir related to the same information at different steps.

The red S nodes in Fig. 9A respond to the first activation of <localizer> in the

process. The cyan S nodes in Fig. 9B respond to the second activation of <localizer> in

the process. That is, these S nodes would all be activated by the active S nodes in the

fourth step and by the item <localizer>. Some of them are already activated in some of

the previous steps, however, which prevents their activation in the fifth step. Hence, the

control (stop) of activation in the reservoir results in a set of S nodes that selectively

respond to the item <localizer> in the fifth step, irrespective of the presence of that item

in a previous step. Such a selective response to repeated activation of item information

will be crucial for the success of learning reasoning in a neural reasoning architecture as

presented here.

5 Conclusions

Simulations of the learning of sequential control in a neural blackboard architecture

(NBA) for reasoning were presented. The NBA is based on in situ concept

representation. This entails that concepts are always represented by the same underlying

neural assemblies (although different parts of them might be activated at different

occasions). The in situ nature of concepts imposes constraints on the ways they can be

used to represent and process complex forms of conceptual information, as found in

language or reasoning.

But it also provides distinctive benefits. First, in situ concepts are content

addressable. Thus, as illustrated here, the concept and other information given by a

question will directly select the related information stored in the neural blackboard by

reactivating the in situ concept representations. This, in turn, can guide the reasoning

process by interactions between the neural blackboard and a reservoir network that

selectively responds to sequential information.

The interaction between neural blackboards and control networks (e.g., reservoirs)

also offers new forms of learning, in which the distinction between structured neural

blackboards, control circuits and content addressable activation by in situ concepts

strongly reduces the number of contingencies that have to be learned.

Furthermore, in situ representations are not moved or copied. And, as noted, they are

content addressable. Therefore, neural blackboard architectures of reasoning and other

forms of (high-level) cognitive processing with in situ representations would be very

suitable for implementation in (e.g., new) forms of parallel and power reduced hardware.

Acknowledgements

The work of the author was funded by the project ConCreTe. The project ConCreTe

acknowledges the financial support of the Future and Emerging Technologies (FET)

programme within the Seventh Framework Programme for Research of the European

Commission, under FET grant number 611733.

References
1. Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.

2 van der Velde, F (2015). Communication, concepts and grounding. Neural networks, 62 ,

112 - 117.

3 van der Velde, F. and de Kamps, M. (2006). Neural blackboard architectures of

combinatorial structures in cognition. Behavioral and Brain Sciences, 29, 37-70.

4. van der Velde, F & de Kamps, M. (2010). Learning of control in a neural architecture of

grounded language processing. Cognitive Systems Research, 11, 93–107.

5 van der Velde, F., and de Kamps, M. (2015). Combinatorial structures and processing in

neural blackboard architectures. In Proceedings of the Workshop on Cognitive Computation:

Integrating Neural and Symbolic Approaches (CoCo@NIPS 2015), eds T. R. Besold, A.

d’Avila Garcez, G. F. Marcus, and R. Miikkulainen (Montreal). CEUR Workshop

Proceedings (pp. 1-9).

6. van der Velde, F. (2016). Concepts and relations in neurally inspired in situ concept-based

computing. Frontiers in Neurorobotics. 10:4. doi: 10.3389/fnbot.2016.00004

7 Bordes, A., Weston, J., Chopra, S., Mikolov, T., Joulin, A., Rush, S., & Bottou, L. (2015).

Artificial Tasks for Artificial Intelligence. Facebook AI Research. ICLR – San Diego – May

7, 2015. http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:abordes-iclr2015.pdf

8. Jaeger, H and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and

saving energy in wireless communication. Science, 304, 78-80.

9. Hinaut X, Dominey PF (2013) Real-Time Parallel Processing of Grammatical Structure in

the Fronto-Striatal System: A Recurrent Network Simulation Study Using Reservoir

Computing. PLoS ONE 8(2): e52946. doi:10.1371/journal.pone.0052946

10 Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations

of model neurons. Biophysical Journal, 12, 1–24

