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1 Extended abstract

Heterotic models of computation were introduced in 2012 by Stepney et al. in
[2011]. Heterotic models of computation seamlessly combine computational mod-
els such as classical/quantum, digital/analog, synchronous/asynchronous, impera-
tive/functional/relational, etc. to obtain increased computational power, both prac-
tically and theoretically.

Although much greater generality is possible – we have previously reported on
heterotic quantum/classical dynamical systems, [2014] – we here concentrate on
heterotic dynamical systems that are given by continuous time real-valued/boolean-
valued networks, which in the sequel we refer to as a heterotic Boolean network
(HBN). A network of this kind is a finite directed graph with a reflexive edge rela-
tion where each vertex is of type real or of type boolean. Each vertex updates its
value in continuous time according to a dynamics specified by a set of autonomous
first-order differential equations{

d xi /d t = fi (x1, . . . , xn) | i = 1, . . . , n
}

(1)
where each variable xi corresponds to a vertex in the network.

Nearly all continuous time dynamical systems can be expressed as a system of
1st-order differential equations provided a differential calculus satisfying a functorial
chain rule is available for functions mapping between the spaces corresponding to
the types of the variables involved in the system. The purpose of the proposed differ-
ential calculus in this application to HBN’s is to allow for the uniform and seamless
specification of an HBN via such systems of 1st-order differential equations. Since
the calculus is mathematically rigorous it provides a formal semantics for such spec-
ifications and therefore a rigorous basis for verification and validation of an HBN
with respect to those specifications. In the HBN applications we need to have a dif-
ferential calculus that agrees with the familiar calculus on Euclidean spaces that ex-
tends to functions mapping reals to Booleans, and Booleans to Booleans. We use the
apparatus of convergence spaces, [2016].

To conservatively extend the notion of differentiation to general convergence
spaces, we note first that the set of continuous functions from X to Y which we
denote here by Y X has a convergence structure uniformly constructible from the
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convergence structures on X and Y such that the category of convergence spaces is
Cartesian-closed; the details of the convergence structure on the exponential spaces
Y X need not concern us at present; it is enough that we have convergence struc-
tures available on the exponential spaces sufficient for obtaining a chain rule. Also
for the present application of convergence spaces differences x0−x are needed; they
are constructible from an Abelian regular action on the convergence space, [1995],
which renders the space as a module over a ring. Modules are nearly vector spaces
where non-zero scalars are not guaranteed to have inverses.

Suppose convergence spaces Y and X are each equipped with regular actions
and the sum and difference of pairs of points in X and Y have been determined. Then
choose a subspace Diff(X ,Y ) of Y X to serve as values of the derivative operation on
these functions spaces. For example, we choose Diff(Rm ,R) to be the space of linear
functionals on Rm , and similarly for Diff(Bm ,B). Then g ∈Diff(X ,Y ) is a differential
of f at x0 iff for every filter F ↓X x0 there is a filter G ↓Y X g such for each W ∈G there
is a V ∈ F such that for each x ∈V , there is h ∈W such that h(x − x0) = f (x)− f (x0).

In this application we also need to choose DIff(R,B). We identify B with {0,1} with
the indiscrete convergence structure. We take Diff(R,B) to be the discrete space of
the following four functions: (1) the constant function mapping all real number to
0, (2) the “step” function f (x) = (x ≤ 0) ? 0 : 1, (3) f (x) = (x ≥ 0) ? 0 : 1 and (4) f (x) =
(x = 0) ? 0 : 1. Under these definitions the system (1) is well-defined, but may or may
not have a solution. After all, even with a rigorous denotational semantics, not every
syntactically correct program in an ordinary programming language has a solution
in the sense that it will produce a well-defined trajectory (i.e. no run-time errors.)

We conclude with a small example of an HBN:
d x/d t = ((b = 1) ? [−sin x] : [sin x]), d y/d t = ((b = 1) ? [cos x] : [−cos x])

db/d t = (prime(t ) ? (λt ′.((t ′ ≤ t ) ? 0 : 1) : λt ′.0)
The solutions to this equation have the boolean value of b changing whenever t is
a prime nonnegative integer and have point given by cordinates (x, y) traversing a
circle of radius 1 centered at the origin. The point reverses direction whenever t is
prime.
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