
Automatic Partitions Extraction
to Distribute the Runtime Verification

of a Global Specification

Angelo Ferrando?

DIBRIS, University of Genova, Italy
angelo.ferrando@dibris.unige.it

Abstract. Trace expressions are a compact and expressive formalism,
initially devised for runtime verification of agent interactions in multia-
gent systems (MAS), which has been successfully employed to model real
protocols, and to generate monitors for mainstream multiagent system
platforms, and generalized to support runtime verification of different
kinds of properties and systems. In this paper we present the trace ex-
pression formalism and its use in the runtime verification context focus-
ing on future works related to the distribution aspects.

Key words: Distributed Runtime Verification, Multiagent Systems, Distributed
Monitoring, Trace expressions

1 Introduction and Motivations

Runtime verification (RV) is a software verification technique that complements
formal static verification (as model checking) and testing. In RV dynamic check-
ing of the correct behavior of a system can be performed by a monitor which is
generated from a formal specification of the properties to be verified. A possible
way to specify the monitor behavior is through the set of all correct traces (finite
or infinite sequences of events) which can be generated during the system execu-
tion. Sets of traces may be represented in many different ways. In this extended
abstract we present trace expressions [3, 4], a formalism inspired to session types
[8, 12] which can be used to design monitors for the RV of centralized and decen-
tralized software systems. Distributed runtime verification (DRV), as described
by S. Rajsbaum in his keynote speech at the SSS 2015 Symposium [10], tackles
the problem of building a decentralized runtime monitor for a distributed system
and involves designing a distributed algorithm that coordinates the monitors in
order for them to correctly verify the dynamic behavior of the whole system.
Once the formal specification of the global pattern of events is given, however,
distributing the monitoring activity can be resorted to decomposing the global
specification into “sub-specifications”, involving less events than the global one,
which can be monitored in an independent way from each other and such that

? Prof. Viviana Mascardi and Davide Ancona are the author’s advisors.

the union of their independent monitoring gives the same guarantees as the mon-
itoring of the whole system w.r.t. the original specification. The trace expression
formalism can be used to construct protocols representing sequences on generic
events. Since we focus on its distributed aspects, we limit the set of the events
to the subset corresponding to the interaction events, where interactions are
intended as exchange of messages among agents in a MAS. Trace expressions
are already used for centralized runtime verification (no distribution) [4] and
for the automatic generation of protocol-driven agents (total distribution) [2]
through projection on each single agent involved in the protocol. This work lays
the foundations to fill the gap between these two projects obtaining a middle
way approach between the centralization (bottleneck) and the total distribution
(inefficient) implementations.

2 Trace Expressions

A trace expression τ represents a set of possibly infinite event traces, and is
defined on top of the following operators: (1) ε (empty trace), denoting the
singleton set {ε} containing the empty event trace ε; (2) ϑ:τ (prefix), denoting
the set of all traces whose first event e matches the event type1 ϑ (e ∈ ϑ), and
the remaining part is a trace of τ ; (3) τ1·τ2 (concatenation), denoting the set
of all traces obtained by concatenating the traces of τ1 with those of τ2; (4)
τ1∧τ2 (intersection), denoting the intersection of the traces of τ1 and τ2; (5)
τ1∨τ2 (union), denoting the union of the traces of τ1 and τ2; (6) τ1|τ2 (shuffle),
denoting the set obtained by shuffling the traces of τ1 with the traces of τ2; (7)
ϑ�τ (filter), a derived operator denoting the set of all traces contained in τ ,
when deprived of all events that do not match ϑ. Event types represent sets of
generic events; in the following when we consider interaction types, which are a
special case of event types related to the exchange of messages among agents,
we denote them as α and we represent the interaction events contained inside as
es→r meaning that the sender s sends the message e to the receiver r. To support
recursion without introducing an explicit construct, trace expressions are regular
(a.k.a. rational or cyclic) terms: they correspond to trees where nodes2 are either
the leaf ε, or the node (corresponding to the prefix operator) ϑ with one child,
or the nodes ·, ∧, ∨, and | all having two children. According to the standard
definition of rational trees, their depth is allowed to be infinite, but the number
of their subtrees must be finite. The semantics of trace expressions is specified
by the transition relation δ ⊆ T × E× T, where T and E denote the set of trace
expressions and of events, respectively. As it is customary, we write τ1

e→ τ2 to
mean (τ1, e, τ2) ∈ δ. If the trace expression τ1 specifies the current valid state
of the system, then an event e is considered valid iff there exists a transition
τ1

e→ τ2; in such a case, τ2 will specify the next valid state of the system after

1 To be more general, trace expressions are built on top of event types (chosen from
a set ET), rather than of single events; an event type denotes a subset of E.

2 Since the filter is a derived operator it can be rewritten and there is not a corre-
spondence on the tree.

event e. Otherwise, the event e is not considered to be valid in the current state
represented by τ1.

Example 1. Let E = {e1, . . . , e7}, and ϑi, i = 1, . . . , 7, be the event types such
that e ∈ ϑi iff e = ei (that is, JϑiK = {ei}); then the trace expression τ1 =
((ϑ1:ε|ϑ2:ε)∨(ϑ3:ε|ϑ4:ε))·(ϑ5:ϑ6:ε|ϑ7:ε) denotes the following set of event traces:{

e1e2e5e6e7, e1e2e5e7e6, e1e2e7e5e6, e2e1e5e6e7, e2e1e5e7e6, e2e1e7e5e6,
e3e4e5e6e7, e3e4e5e7e6, e3e4e7e5e6, e4e3e5e6e7, e4e3e5e7e6, e4e3e7e5e6

}
Example 2. Let the set of interaction types ET = {αping, αpong} and E =
{pingA→B , pongB→A}, JαpingK = {pingA→B} and JαpongK = {pongB→A}; then
the trace expression PingPong = (αping:PingPong ·αpong:ε)∨ε denotes the fol-
lowing set of interaction events:
{pingA→BpongB→A, pingA→BpingA→BpongB→ApongB→A, ..., pingnA→BpongnB→A}.

2.1 Projection

The projection function was first introduced in [1]. Given the finite set AGS of all
the agents that could play a role in the MAS and an interaction type α (an event
type containing only interaction events), senders(α) is the set of all the agents
in AGS that could play the role of sender in actual interactions having type α,
and receivers(α) is the set of all the agents in AGS that could play the role of
receiver in interactions of type α. The involves predicate holds on one interaction
type α and one set of agents Ags, involves(α,Ags), iff (senders(α) ∩ Ags 6=
∅) ∨ (receivers(α) ∩Ags 6= ∅).

We define two auxiliary functions first : T → P(ET) (last : T → P(ET)),
first(τ) = {ϑ1, ϑ2, ..., ϑn} (last(τ) = {ϑ1, ϑ2, ..., ϑn}) iff ∀ϑi .∃e∈ϑi s.t. e is
one of the first (last) events which can be consumed by the δ transition re-
lation called on τ . In this way we can introduce the derived sets involved(α) =
Ags ⇐⇒ senders(α)∪receivers(α) = Ags and involved(ε) = ∅, involved(τ) =
involved(α1)∪...∪involved(αn)∪involved(τ1)∪...∪involved(τm), with first(τ) =

{α1, ..., αn} and ∀1≤i≤m.τ
e→ τi, for some e. Projection can be described as a

function Π : T×P(AGS)→ T. Π is driven by the syntax of the trace expression
to project; since Π is defined on cyclic terms, the simplest way to define it is
by coinduction as follows: (i) Π(ε, Ags) = ε, (ii) Π(α : τ,Ags) = α : Π(τ,Ags)
if involves(α,Ags), (iii) Π(α : τ,Ags) = Π(τ,Ags) if ¬involves(α,Ags), (iv)
Π(τ ′ op τ ′′, Ags) = Π(τ ′, Ags) op Π(τ ′′, Ags), where op ∈ {·,∧,∨, |}.

3 Trace Expression Distribution

As already anticipated, we consider trace expressions to model interaction proto-
cols inside a MAS. With respect to the centralized runtime verification approach
proposed in [4], we want to reason about the trace expression distribution in
order to obtain a set of trace expressions where each one represents the proto-
col subset related to a fixed set of agents. The main problem of this approach
is to understand which agents can be monitored separately and which must

be monitored together (unsplittable) in order to guarantee that the distributed
monitoring gives the same results as the centralized one. This notion is strongly
related to the correctness definition in the Choreographies research field [9] where
a choreography can be projected on each single entity (agent for us) only if it
satisfies three conditions (for trace expressions the first two are enough). We
report these two conditions adapted for the trace expression formalism.

Definition 1. The two conditions which a trace expression τ must satisfy in
order to be correctly projected on each single agent involved in its event types
are:
1. Connectedness for sequence.

For each sub-expression α:τ1, with first(τ1) = {α1, α2, ..., αn}, we have
∀αi∈first(τ1).involved(α) ∩ involved(αi) 6=∅. For each sub-expression τ1·τ2,
with last(τ1) = {α1, α2, ..., αn} and first(τ2) = {α′1, α′2, ..., α′n}, we have
∀α∈last(τ1).∀α′∈first(τ2).involved(α) ∩ involved(α′) 6= ∅.

2. Unique point of choice.
For each sub-expression τ1∨τ2, with first(τ1) = {α1, α2, ..., αn} and first(τ2)
= {α′1, α′2, ..., α′n}, we have ∀α∈first(τ1).∀α′∈first(τ2).involved(α) ∩ involved(α′)
6= ∅ and involved(τ1) = involved(τ2).

Without loss of generality we consider only trace expressions where all inter-
action types represent finite sets of events. Thus, we can have interaction types
like α = {i1A→B , i2B→A, i3A→B , ...} and not interaction types like α = {i1A→B ,
i2C→D, ...} or α = {i1A→B , i2A→D, ...}.

We can observe that the two conditions are too restrictive when we want
to distribute our protocols on sets of agents. In particular, we can easily find
protocols that cannot be projected on a single agent but can be projected on a set
of agents. Considering for instance the trace expression τ = ...(αping:αpong:ε)...
where ... means that τ contains also other terms and JαpingK = {pingA→B},
JαpongK = {pongC→D}, can immediately note that it does not satisfy the first
condition (the connectedness for sequence). Since τ can be a very large trace
expression we would like to distribute it anyway. Even if we cannot distribute
it on each single agent {{A}, {B}, {C}, {D}}, in this particular case a possible
choice for the distribution could be {{A}, {B,C}, {D}} obtaining three different
projections of the global protocol in three separated parts where B and C are
projected and monitored together.
Example 3. Given the trace expression τ = (αm1:ε)∨(αm2:ε) where AGS =
{A,B,C,D}, Jαm1K = {msg1A→B} and Jαm2K = {msg2C→D}. Π(τ, {A}) =
Π(τ, {B}) = Π((αm1:ε)∨(αm2:ε)) = (αm1:Π(ε))∨(Π(ε)) = (αm1:ε)∨(ε) = αm1:ε
and Π(τ, {C}) = Π(τ, {D}) = Π((αm1:ε)∨(αm2:ε)) = (Π(ε))∨(αm2:Π(ε)) =
(ε)∨(αm2:ε) = αm2:ε The two local versions of the protocol have lost the unique
point of choice information.

3.1 Automatic Partitions Extraction

An important feature in order to distribute a trace expression is the automatic
generation of the set of all possible partitions of agents that preserve the seman-
tics during the projection phase. Since we know that a trace expression must

satisfy the two conditions (Definition 1) to be correctly projected on each single
agents involved in the protocol, we can use this information to guide our analysis.
From an high level point of view, given a trace expression τ , for each subterm of
τ we can check if the two conditions are satisfied; if a condition is not satisfied
on a singular agent, we try to evaluate it on a set of agents containing the agent.
Considering for instance the first condition (connectedness for sequence), if we
find a subterm α1 : α2 : ..., with involved(α1) ∩ involved(α2) = ∅, it does not
satisfy the condition, but we can generate the set of all possible correct partitions
{{a, b}|a ∈ involved(α1), b ∈ involved(α2)} forcing in this way the connected-
ness property. A similar thing should be done for the other condition. Once we
have obtained the set with all correct partitions we can choose the one that best
meets our distribution requirements.

We are working on the implementation of the corresponding algorithm focus-
ing on the correctness and completeness proofs. The intuition is that forcing the
preservation of the two conditions (Definition 1) we preserve all critical points
of the trace expression, where the critical points are all points of the protocol
where it could be necessary monitor some agents together.

4 Related and Future Work

In this extended abstract we have presented a possible approach for the distri-
bution of a trace expression on a set of agents. Following the conditions deriving
from Choreographies (Definition 1) we can extract the partitions of agents which
allow us to obtain the semantic preservation during the projection phase. Once
we have the set of all possible valid partitions we can use them to generate the
monitors to perform the distributed runtime verification of our MAS.

We can find works on distributed runtime monitoring like [7, 6, 11] but w.r.t.
DRV of MASs we were not able to find any related work, except for the one
which spun off from [1], namely [5]. Another relevant work is [13] where an
interesting distributed approach to process mining is presented. Considering the
conformance checking, that work is extremely related to ours and it can be useful
to study the possible connections. For instance using trace expressions instead
of Petri nets for the conformance checking of event logs.

Future work will be to implement the algorithm corresponding to this intu-
ition using the programming language Prolog whereby we have already imple-
mented the semantics of trace expressions and the projection function. Once we
will have implemented the distribution algorithm we will be able to project the
global protocol on each single partition in order to automatically generate dis-
tributed monitors. A possible implementation could be using a MASs framework
based on logic programming, in this way we will be able to generate monitors di-
rectly by the projected trace expressions. We will try our approach first on some
well known communicative protocols (as Contract Net Protocol, Alternating Bit
Protocol, and so on) and after on a real case study concerning the distributed
runtime verification of a MAS.

References

1. D. Ancona, D. Briola, A. El Fallah Seghrouchni, V. Mascardi, and P. Taillibert. Ef-
ficient verification of MASs with projections. In Engineering Multi-Agent Systems
- Second International Workshop, EMAS 2014, Revised Selected Papers, Lecture
Notes in Computer Science, 2014.

2. D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. Global protocols as first
class entities for self-adaptive agents. In Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, pages
1019–1029, 2015.

3. D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In DALT 2012,
volume 7784 of LNAI, pages 76–95. Springer International Publishing, 2012.

4. D. Ancona, A. Ferrando, and V. Mascardi. Theory and Practice of Formal Methods:
Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday, chapter
Comparing Trace Expressions and Linear Temporal Logic for Runtime Verification,
pages 47–64. Springer International Publishing, Cham, 2016.

5. D. Briola, V. Mascardi, and D. Ancona. Distributed runtime verification of JADE
multiagent systems. In D. Camacho, L. Braubach, S. Venticinque, and C. Badica,
editors, IDC 2014, volume 570 of Studies in Computational Intelligence, pages
81–91. Springer International Publishing, 2014.

6. T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida. Asynchronous
Distributed Monitoring for Multiparty Session Enforcement, pages 25–45. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

7. A. Francalanza, A. Gauci, and G. Pace. Runtime monitoring of distributed systems
(extended abstract). Technical report, University of Malta, 2010. WICT.

8. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In Proceedings of the
7th European Symposium on Programming: Programming Languages and Systems,
ESOP ’98, pages 122–138, London, UK, UK, 1998. Springer-Verlag.

9. I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the gap between
interaction-and process-oriented choreographies. In 2008 Sixth IEEE International
Conference on Software Engineering and Formal Methods, pages 323–332. IEEE,
2008.

10. S. Rajsbaum. Distributed runtime verification – where combinatorics, fault-
tolerance and formal methods meet. Keynote Talk at the SSS 2015, August 2015,
2015.

11. T. Scheffel and M. Schmitz. Three-valued asynchronous distributed runtime veri-
fication. In Twelfth ACM/IEEE International Conference on Formal Methods and
Models for Codesign, MEMOCODE 2014, Lausanne, Switzerland, October 19-21,
2014, pages 52–61, 2014.

12. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In In PARLE?94, volume 817 of LNCS, pages 398–413. Springer-
Verlag, 1994.

13. W. M. P. van der Aalst. Distributed Process Discovery and Conformance Checking,
pages 1–25. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

