
Optimizing Inconsistency-tolerant Description Logic

Reasoning

Mokarrom Hossain and Wendy MacCaull

Department of Mathematics, Statistics and Computer Science
St. Francis Xavier University, Antigonish, NS, Canada

{mokarrom.hossain, wmaccaul}@stfx.ca

Abstract

The study of inconsistency-tolerant description logic reasoning is of growing importance for the

Semantic Web since knowledge within it may not be logically consistent. The recently developed

quasi-classical description logic has proved successful in handling inconsistency in description logic. To

achieve a high level of performance when using tableau-based algorithms requires the incorporation

of a wide range of optimizations. In our previous work, we developed a naive inconsistency-tolerant

reasoner that can handle inconsistency directly. Here, we investigate a set of well known, state-of-

the-art optimization techniques for inconsistency-tolerant reasoning. Our experimental results show

significant performance improvements over our naive reasoner for several well-known ontologies. To

the best of our knowledge, this is the first attempt to apply optimizations for inconsistency-tolerant

tableau-based reasoning.

1 Introduction

Since the environment of the Semantic Web (SW) is open, constantly changing and collabora-
tive, it is unreasonable to expect knowledge bases (KBs) to be always logically consistent [1].
With the explosive growth of the SW the probability of introducing inconsistencies in ontologies
is increasing day by day due to ontology merging, ontology evolution, ontologies created using
machine learning or data mining, migration from other formalisms, modeling errors, knowledge
from distributed sources, etc. [2]. The Web Ontology Language (OWL) is a family of knowledge
representation languages for authoring ontologies in SW applications. The family of descrip-
tion logics (DLs), decidable fragments of First Order Logic, is the logical foundation of OWL.
Classical DLs are unable to tolerate inconsistencies occurring in ontologies due to the principle
of explosion [3]. Therefore, it is important to study the ways of dealing with inconsistencies in
DL based ontologies [4, 5, 6].

There are several approaches to deal with inconsistencies. These approaches may be roughly
categorized into two different classes. One class assumes that inconsistencies indicate errors in
data. The main view of this class is that an ontology should not be inconsistent, and thus
researchers try to eliminate inconsistency from an ontology in order to obtain a consistent on-
tology [7]. In this approach the idea, therefore, is, first detect and then, repair, inconsistencies.
This class of approaches could be called “removing inconsistencies”. In this approach, incon-
sistency could be removed by pinpointing the part of the ontology which causes inconsistencies
and removing or weakening axioms in these parts to restore consistency. The main assumption
of the other class of approaches is that inconsistency is a natural phenomenon of realistic data
and should be tolerated in reasoning [3, 8, 9]. In this class of approaches, inconsistency is not
simply avoided, rather, the idea is to employ non standard reasoning methods in order to ob-
tain meaningful information from an inconsistent KB. This class of approaches could be called
“living with inconsistencies”. Though inconsistency in small ontologies may be dealt with using
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the former approach, the latter one is better for large and complex ontologies [10]. Moreover,
in the first class of approaches, we may lose useful information during the process of removing
inconsistencies [3]. In this work we focus on the second class of approaches.

In the last decades, a number of researchers have extended DL in different ways in order to
cope with inconsistency [3, 8, 10]. Nguyen et al. studied three-valued DL based on Kleene’s
three-valued semantics [8]. Another three-valued DL is paradoxical DL [11] based on Priest’s
paradoxical semantics. Kaminski et al. presented a paraconsistent version of the three-valued
semantics for hybrid knowledge bases which allows full paraconsistent reasoning [12]. Indeed,
three-valued DLs are usually appropriate for handling the inconsistency but not the incom-
pleteness of a KB. In many KBs, information is not only inconsistent but is also incomplete.
Four-valued DL, based on four-valued logic [13], is studied by Ma et al. in [3] and has received a
lot of attention. Though it can handle both inconsistent and incomplete KBs, it is not widely ac-
cepted due to its weak inference power [10]. For example, four-valued DL does not fully support
a few important properties about inference such as modus tollens (MT), disjunctive syllogism
(DS), resolution, etc. Recently, Zhang et al., proposed a paraconsistent version of DL, called
QCDL, in [10], based on quasi-classical propositional logic (QC-logic) originally presented in
[14]. Weak inference power, one of the common problems of the family of paraconsistent logics,
is overcome by QCDL. Most inference rules like MT, DS are valid in QCDL.

In the previous work [15], we presented a sound, complete, and decidable tableau algorithm
for QCDL and implemented a tableau based paraconsistent reasoner called QC-OWL based
on this algorithm. However, we did not address any optimization techniques in QC-OWL.
Most modern reasoners implement a set of state-of-the-art optimization techniques and these
techniques are the keys to the enhanced performance of a modern tableau-based reasoner.
Here, we extend a set of state-of-the-art optimization techniques for classical tableau based
reasoner, namely normalization and simplification, unfolding, absorption, semantic branching,
and dependency directed backtracking, to paraconsistent reasoning (background and motivation
of these well-known techniques may be found in [16]). We implement those techniques on top of
QC-OWL and compare the performance with that of our previous work, where no optimizations
were addressed.

The rest of this paper is organized as follows: Section 2 briefly introduces the syntax and
semantics of QCDL, Section 3 describes the optimization techniques, Section 4 presents the
implementation and evaluation of those optimizations, Section 5 outlines some related works
and future research directions, and finally, Section 6 concludes the paper.

2 Preliminaries

In this section we briefly introduce the syntax and semantics of QCDL. We focus on an expressive
DL fragment, SHIQ, and call it quasi-classical SHIQ (in short, QC-SHIQ). We assume that
the readers are familiar with the basic DL formalism; for more comprehensive background
knowledge of DLs and QCDL, the reader is referred to [10, 15, 16].

2.1 QCDL syntax and semantics

The syntax and semantics of QCDL is presented in [10] by extending the semantics of quasi-
classical logic (QC-logic) proposed in [14]. The syntax of QC-SHIQ is slightly different from
the syntax of classical SHIQ. In QC-SHIQ, the negation of a concept, i.e., ¬C, is taken
as a different concept from C, rather than the complement of C. QC-negation, denoted by
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C, is used to represent the complement (set-theoretic complement) concept of C [10]. For a
comprehensive background and motivation of QC-negation, the reader is referred to [10, 17].

Let NC , NR and NI be non-empty and pair-wise disjoint sets of concept names, role names,
and individual names, respectively. Let R be a set of role names with a subset R+ ⊆ R of
transitive role names. The set of roles is R∪{R− | R ∈ R}. The function Inv(.) is defined on
roles such that Inv(R) = R− and Inv(R−) = R, where R is a role name.

Let R1, R2 ∈ R. A role axiom is a role inclusion of the form R1 v R2. An RBox or role
hierarchy R is a finite set of role axioms. For a role hierarchy R, the relation v∗ is defined to
be the transitive-reflexive closure of v on R ∪ {Inv(R) v Inv(S) | R v S ∈ R}. A role R is
called sub-role (respectively, super-role) of a role S if R v∗ S (respectively, S v∗ R). A role S is
simple if it is neither transitive nor has any transitive sub-roles.

The set of complex concepts is the smallest set such that

• each concept name A ∈ NC is a concept;
• if C,D are concepts, R is a role, S is a simple role, and n is a nonnegative integer,

then C uD | C tD | ¬C | C | ∀R.C | ∃R.C | > nS.C | 6 nS.C are also concepts.

A general concept inclusion (GCI) is an expression in the form C v D, where C, D are
concepts. A TBox is a finite set of GCIs. An assertion is of the form C(a) (concept assertion),
R(a, b) (role assertion), or a 6=· b (inequality assertion), where a, b ∈ NI . An ABox contains a
finite set of assertions. A QC-SHIQ KB is a triple K = (T ,R,A) where T , A, and R are the
TBox, ABox, and RBox, respectively.

Two types of interpretations, called weak interpretations and strong interpretations, are pro-
posed by QCDL semantics. The former is the reformulation of that for four-valued logic. Before
introducing these two types of interpretations, we first define a notion called base interpretations
[10].

A base interpretation I is a pair (∆I , .I) where the domain ∆I is a set of individuals and
the assignment function, .I , assigns:

• each concept name A to an ordered pair 〈+A,−A〉 where ±A ⊆ ∆I ;

• each role R to an ordered pair 〈+R,−R〉 where ±R ⊆ ∆I ×∆I ;

• each inverse role R− to an ordered pair 〈+R−,−R−〉 where ±R− = {(y, x) | (x, y) ∈
±R};

Note that each base interpretation maps an object X, when X ∈ {A,R,R−}, to a pair of sets
of elements, unlike classical interpretation where an object is mapped to a set of elements. +X
and −X are not necessarily disjoint. Intutively, +X is the set of elements known to be in X
while −X is the set of elements known to be not in X.

A weak interpretation I is a base interpretation (∆I , .I) such that the assignment function
.I satisfies the following conditions [15], where #M denotes the cardinality of a set M :
>I = 〈 ∆I , ∅ 〉; ⊥I = 〈 ∅, ∆I 〉;
(¬C)I = 〈 −C, +C 〉; (C)I = 〈 ∆I \+ C, ∆I \ − C 〉;
(C uD)I = 〈 +C ∩+D, −C ∪ −D 〉; (C tD)I = 〈 +C ∪+D, −C ∩ −D 〉;
(∀R.C)I = 〈 {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ +R implies y ∈ +C},

{x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ +R and y ∈ −C} 〉;
(∃R.C)I = 〈 {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ +R and y ∈ +C},

{x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ +R implies y ∈ −C} 〉;
(> nS.C)I = 〈 {x ∈ ∆I | #{y ∈ ∆I : (x, y) ∈ +S and y ∈ +C} > n},

{x ∈ ∆I | #{y ∈ ∆I : (x, y) ∈ +S and y ∈ (∆I\ − C)} < n} 〉;
(6 nS.C)I = 〈 {x ∈ ∆I | #{y ∈ ∆I : (x, y) ∈ +S and y ∈ (∆I\ − C)} 6 n},

{x ∈ ∆I | #{y ∈ ∆I : (x, y) ∈ +S and y ∈ +C} > n} 〉.
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Let I be a weak interpretation. A weak satisfaction relation, denoted by |=w, is defined as
follows: I |=w C(a) if aI ∈ +C; I |=w R(a, b) if (aI , bI) ∈ +R; I |=w C v D if +C ⊆ +D;
I |=w R1 v R2 if +R1 ⊆ +R2; and I |=w a 6=· b if aI 6= bI ; where XI = 〈+X,−X〉 for any
X ∈ {C, D, R, R1, R2} [15].

A strong interpretation is as similar to a weak interpretation except that the conjunction
and disjunction of concepts are interpreted as follows [15]:

(C uD)I = 〈+C ∩+D, (−C ∪ −D) ∩ (−C ∪+D) ∩ (+C ∪ −D)〉;
(C tD)I = 〈(+C ∪+D) ∩ (−C ∪+D) ∩ (+C ∪ −D), −C ∩ −D〉.
The definition of strong satisfaction relation, denoted by |=s, is the same as that of the

weak satisfaction relation except for GCIs [15]. For GCIs, |=s is defined as I |=s C v D if
−C ⊆ +D, +C ⊆ +D, −D ⊆ −C.

Let K be a KB and φ be an axiom. K quasi-classically entails (QC entails) φ, denoted by
K |=Q φ, if for every base interpretation I, I |=s K implies I |=w φ. In this case, |=Q is called
QC-entailment. A base interpretation I is a QC-model of K if for all axioms ϕ in K, I |=s ϕ.
K is QC-consistent if there exists some QC-model I of K, else it is QC-inconsistent [15].

2.2 A tableau algorithm for QC-SHIQ Abox

State of the art DL systems typically use tableaux algorithms [18] to decide the consistency of a
KB, i.e., to determine whether a given KB has a model. Consistency checking is one of the main
inference problems to which all other inferences can be reduced [16]. A sound, complete and
decidable tableau algorithm (called QC-tableau) for checking the QC-consistency of an ABox
is proposed in [15] by modifying and extending the standard tableau algorithm for SHIQ [19].
We outline the main steps as follows.

First we note that, in order to work efficiently, the TBox is reduced to an empty TBox with
the internalization technique and the ABox is transformed into Negation Normal Form (NNF).

Internalization: Let U be a universal role, that is, a transitive super role consisting of all
roles occurring in T together with their respective inverses. The base interpretation of U is
defined as follows: UI = 〈∆I ×∆I , ∅〉 for any base interpretation I. Given T , a concept CT
is defined as

CT :=
l

CivDi ∈T
(¬Ci tDi).

Any individual x in any model of T will be an instance of CT . Let RU = R∪{R v U, Inv(R) v
U | R occurs in C,D, T ,A or R}. Now, A is QC-consistent w.r.t. R and T iff A ∪ {CT u
∀U.CT (a) | a occurs in A} is QC-consistent w.r.t. RU .

Negation Normal Form (NNF): A concept expressions is in NNF if all the negations
directly precede concept names. Let C,D be two concepts. We say C is equivalent to D,
denoted by C ≡s D, if for any strong interpretation I, CI = DI . That is, +C = +D and
−C = −D where CI = 〈+C,−C〉 and DI = 〈+D,−D〉. Each QCDL concept is equivalent to
a QCDL concept in NNF. NNF of a concept expression in QCDL can be computed by applying
the equivalences from Table 1.

The QC-tableau algorithm works on a data structure called a completion forest. The algo-
rithm starts with the input ABox, A, and applies consistency preserving expansion rules from
Table 2 (due to space limitation only five rules are presented here; for the remaining rules the
reader is referred to [15, 17]) until no more rules are applicable (the tableau is complete) or
an obvious contradiction (called a clash) is found in every branch. If a complete and clash-
free completion forest is obtained, A is QC-consistent; otherwise it is QC-inconsistent. In the
completion forest, the label of a node x is denoted by L(x).
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C ≡s C
¬C ≡s ¬C ¬¬C ≡s C

¬(C tD) ≡s ¬C u ¬D ¬(C uD) ≡s ¬C t ¬D
¬∃R.C ≡s ∀R.¬C ¬∀R.C ≡s ∃R.¬C
∃R.C ≡s ∀R.C ∀R.C ≡s ∃R.C

¬(6 nS.C) ≡s > n+ 1S.C ¬(> n+ 1S.C) ≡s 6 nS.C

(6 nS.C) ≡s > (n+ 1)S.¬C (> n+ 1) S.C ≡s 6 nS.¬C

Table 1: QC-NNF equivalences.

u-rule if (1) C1 u C2 ∈ L(x), x is not blocked, and
(2) {C1, C2} * L(x),

then L(x) := L(x) ∪ {C1, C2}.
R-rule if (1) C1 t C2 ∈ L(x), x is not blocked, and

(2) ∼ Ci ∈ L(x) for some i ∈ {1, 2},
then L(x) := L(x) ∪ {C3−i}.

t-rule if (1) C1 t C2 ∈ L(x), x is not blocked, and
(2) {C1, C2,∼ C1,∼ C2} ∩ L(x) = ∅,

then L(x) := L(x) ∪ {E} for some E ∈ {C1, C2}.
u-rule if (1) C1 u C2 ∈ L(x), x is not blocked, and

(2) {C1, C2} * L(x),
then L(x) := L(x) ∪ {E} for some E ∈ {C1, C2}.

t-rule if (2) C1 t C2 ∈ L(x), and x is not blocked,
then L(x) := L(x) ∪W

for some W ∈ {{C1, C2}, {∼ C1, C2}, {C1,∼ C2}}

Table 2: QC-tableau expansion rules.

3 Optimizations

The basic algorithm for inconsistency-tolerant reasoning discussed in the previous section is
too slow for use in practice. We have investigated and employed a range of optimizations
that improve the performance of standard tableau algorithms. These optimizations include:
normalization and simplification, unfolding, absorption, semantic branching search, dependency
directed backtracking. The first three techniques are performed directly on the input which
serve to pre-process and simplify the input into a form more amenable to later processing,
while the remaining techniques are applied during the search for a model. In the following
subsections, each of these techniques will be revised for QCDL by modifying and extending the
techniques presented in [16] for classical DLs.

3.1 Normalization and Simplification

Normalization is an optimization technique performed in pre-processing. It allows the detection
of contradictions involving complex concepts early during tableaux expansion. Theoretical
descriptions of tableau algorithms generally assume that the concept expression to be tested is
in negation normal form. Though it simplifies the algorithm, this means that a contradiction
will be detected only when an atomic concept and its negation occur in the same node label.

Example 1 Consider the concept expression ∃R.(C u D) u ∃R.C, where C is an atomic
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concept. When the algorithm creates an R-successor using the ∃-rule and applies the ∃-rule to
∃R.C, a clash will be detected due to the fact that {C, C} ∈ L(y). However, if C is a concept
expression then C will be transformed into NNF. Thence, the clash would not be detected
immediately. If C is a complex concept this may cause a lot of unnecessary expansion. It
is possible to detect contradictions caused by non-atomic concepts early by transforming all
concepts into a syntactic normal form, which we define here.

Logics that include full negation often provide pairs of operators, either one of which can be
eliminated in favor of the other, by using negation. In syntactic normal form, all concepts are
transformed so that only one of each such pair appears in the KB. In QC-SHIQ, as in classical
SHIQ, all concepts could be transformed into atomic concepts, negations, conjunctions, value
restrictions and QC-negations. For example, ∃R.C is transformed into ¬∀R.¬C. It is important
to note that within the normalization process, conjunctions are considered as sets; this simplifies
the elimination of redundant conjuncts. For example, ¬C t¬D is transformed into ¬u{C,D}.
The normalization process can also include a range of simplifications that detect obvious clashes
during the normalization process and also gets rid of redundant elements of a concept expression.

Norm(A) = A for an atomic concept A
Norm(¬C) = Simp(¬(Norm(C)))

Norm(C) = Simp(Norm(C))
Norm(C1 u ... u Cn) = Simp(u({Norm(C1)} ∪ ... ∪ {Norm(Cn)}))
Norm(C1 t ... t Cn) = Norm(¬(¬C1 u ... u ¬Cn))

Norm(∀R.C) = Simp(∀R.Norm(C))
Norm(∃R.C) = Norm(¬∀R.¬C)

Norm(> nR.C) = Simp(> nR.Norm(C))
Norm(6 nR.C) = Norm(¬ > (n+ 1)R.C)

Simp(A) = A for an atomic concept A

Simp(¬C) =





Simp(D) if C = ¬D
Simp(¬D) if C = D
¬C otherwise.

Simp(C) =

{
Simp(D) if C = D
C otherwise.

Simp(uS) =





Simp(uP ∪ S\{u{P}}) if u {P} ∈ S
clash if {C, C} ⊆ S
uS otherwise.

Simp(∀R.C) = ∀R.C
Simp(> nR.C) = > nR.C [S,P are sets of concepts]

Table 3: Norm and Simp functions for QC-SHIQ.

Table 3 describes normalization and simplification functions Norm and Simp for QC-SHIQ.
Normalized and simplified concepts may not be in negation normal form, but they can be dealt
with by treating them exactly like their non-negated counterparts. For example, ¬ u {C,D}
can be treated as ¬C t¬D and ¬∀R.¬C can be treated as ∃R.C during the tableau expansion.
The normalization and simplification procedure is implemented by a recursive function, applied
to the concept expression to check. The normalized and simplified concepts for QC-SHIQ are
presented in Table 4.

Example 2 Consider the Example 1 again. The expression ∃R.(CuD)u∃R.C is transformed
into u{¬(∀R.¬ u {C,D}),¬∀R.¬C}. The term ¬(∀R.¬ u {C,D}) allows the creation of an R-
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Expression Normalized & Simplified Expression Normalized & Simplified
¬¬C C

¬C ¬C C C

C1 u C2 u{C1, C2} C1 u C2 u{C1, C2}
C1 t C2 ¬ u {¬C1,¬C2} C1 t C2 ¬ u {¬C1,¬C2}
∀R.C ∀R.C ∀R.C ∀R.C
∃R.C ¬∀R.¬C ∃R.C ¬∀R.¬C
> nR.C > nR.C 6 nR.C ¬ > (n+ 1)R.C

> nR.C > nR.C 6 nR.C ¬ > (n+ 1)R.C

Table 4: Normalized and simplified concepts in QC-SHIQ

successor using the ∃-rule whose label contains both C and C (by applying the ∃-rule to the
term ¬∀R.¬C). Since the two occurrences of C are in the syntactic normal form, a clash will
be detected immediately, regardless of the structure of C.

3.2 Unfolding

Unfolding is a recursive substitution procedure that allows the testing of the satisfiability of
a given concept C w.r.t. T by eliminating from C all concept names occurring in T [16]. If
A ≡ D is an axiom in T , where A is a non-primitive (defined in T ) concept name, the procedure
simply substitutes (i.e., unfolds) A with D wherever it occurs in C, and then recursively unfolds
D in the same manner. If A v D is an axiom in T , where A is a primitive concept name, A
is substituted by A′ u D, where A′ is a new concept name that does not occur in T or C.
The concept name A′ represents the primitiveness of A, i.e., the unspecified characteristics that
differentiate A from D. Unfold(C, T ) denotes the concept C after unfolding w.r.t. T [16].

Subsumption testing can be made independent of T using the same technique. The problem
of determining if C is subsumed by D w.r.t. a TBox T is the same as the problem of determining
if Unfold(C, T ) is subsumed by Unfold(D, T ) w.r.t. an empty TBox; in other words, T |= C v
D iff ∅ |= Unfold(C, T ) v Unfold(D, T ) [16].

Generally there are two problems regarding concept unfolding: (1) an unrestricted recursive
unfolding could possibly produce a resulting concept expression of exponential size; (2) unfolding
would not be possible if T contains (i) multiple definitions for some concept name A, e.g., if
{A ≡ C, A ≡ D} ⊆ T , or (ii) cyclical axioms, e.g., if (A v ∃R.A) ∈ T . The former problem can
be addressed by a technique called lazy unfolding which unfolds concepts only when required
during the progress of the algorithm. In other words, lazy unfolding does not expand the
occurrences of concept names which follow ∃ or ∀. For example, when testing the satisfiability
of an expression ∃R.E, where E is a concept name, the unfolding of E can be delayed until
the ∃-rule has created an R-successor y with L(y) = {E}. By imposing this restriction, lazy
unfolding may prevent the exponential increase of a concept expression.

Example 3 Consider, testing the satisfiability of the concept expression: ∃R.E u ∀R.E.
The optimized algorithm will detect a contradiction immediately when the ∃-rule creates an
R-successor y and applies the ∀-rule because {E,E} ⊆ L(y). This may save a lot of unnecessary
work if unfolding E produces a large and complex expression.

As we have just noticed, all axioms in an arbitrary TBox are not amenable to unfolding.
The solution to this problem is to divide the Tbox T into two components, a general part Tg
and an unfoldable part Tu such that T = Tu∪Tg; where Tu contains unique, acyclical, definition
axioms and Tg contains the rest of T . This can be achieved easily by initializing Tu to ∅, then
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for each axiom X in T , adding X to Tu if Tu ∪X is still unfoldable, adding X to Tg otherwise.
In this way, reasoning tasks w.r.t. T can be considered as reasoning tasks w.r.t. Tu and Tg:
use lazy unfolding to deal with Tu and internalization to deal with Tg [16].

3.3 Absorption

As we have seen in the previous section, an arbitrary TBox T is divided into two parts, Tu and
Tg; unfolding is applied to Tu and internalization is applied to Tg. The reasoning performance
for Tu can be very good, while the reasoning performance for Tg might be bad, because inter-
nalization may introduce many disjunctions which increases the search space exponentially. For
example, if a Tg contains 10 GCIs with 10 nodes, there are already 100 disjunctions, and they
can be non-deterministically expanded in 2100 different ways. Therefore, it is a good strategy
to eliminate as many GCIs from Tg as possible.

Absorption is a technique that tries to eliminate GCIs by absorbing them into primitive
definitions. By considering Tu and Tg, if one can move axioms from Tg to Tu while keeping
the semantics of T unchanged, one should be able to improve the reasoning performance. The
absorption technique presented here is analogous to that of classical DL described in [16] except
for handling the QC-negations. The basic idea is that a GCI of the form C v D, where C may
be a non-atomic concept, is transformed into the form of a primitive definition A v D′, where
A is an atomic concept, using the axiom equivalences (1) and (2) below. Then, A v D′ together
with an existing primitive definition A v C ′ may be replaced by A v C ′ uD′.

C1 u C2 v D ⇐⇒ C1 v D t ¬C2 (1)

C v D1 uD2 ⇐⇒ C v D1 and C v D2 (2)

Given Tu and Tg, absorbing the axioms from Tg into the primitive definitions in Tu can be
done according to the following procedure. First, each axiom of the form C ≡ D is replaced by
an equivalent pair of axioms C v D and ¬C v ¬D, and T ′g is set to ∅. Then for each axiom
(C v D) ∈ Tg [16]:

(A) Initialize a set G = {¬D,C}, which represents the axiom in the form T v ¬ u
{¬D,C} (i.e., T v D t ¬C).

(B) If there is a primitive definition axiom (A v C) ∈ Tu for some A ∈ G, then
absorb the general axiom into the primitive definition axiom so that it becomes
A v u{C,¬ u (G\{A})}, and exit.

(C) If there is a primitive definition axiom (A ≡ D) ∈ Tu for some A ∈ G, then
substitute A with D, G→ {D} ∪G\{A}, and return to step (B).

(D) If there is a primitive definition axiom (A ≡ D) ∈ Tu for some ¬A ∈ G, then
substitute ¬A with ¬D, G→ {¬D} ∪G\{¬A}, and return to step (B).

(E) If there is a primitive definition axiom (A ≡ D) ∈ Tu for some A ∈ G, then
substitute A with D, G→ {D} ∪G\{A}, and return to step (B).

(F) If there is some C ∈ G such that C is of the form uS, then use associativity to
simplify G, G→ S ∪G\{uS}, and return to step (B).

(G) If there is some C ∈ G such that C is of the form ¬ u S, then for every D ∈ S
determine if C can be absorbed (recursively) in G, {¬D} ∪G\{¬ u S}, and exit.

(H) Otherwise, the axiom could not be absorbed, so add ¬uG to T ′g , T ′g → T ′g ∪¬uG,
and exit.

In the above absorption technique, step (E) is new and has been added to the technique in [16]
to handle QC-negations.
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3.4 Semantic branching

Standard tableau algorithms are inherently inefficient because they use a search technique based
on syntactic branching. When expanding the label of a node x, L(x), syntactic branching works
by choosing an unexpanded disjunction (C1 tC2 t ...tCn) in L(x) and searching the different
models obtained by adding each of the disjuncts C1, C2, ..., Cn to L(x) [16]. Since the alternative
branches of the search tree are not disjoint, the recurrence of an unsatisfiable disjunct in different
branches can occur. This can lead to a lot of wasted expansions. For example, consider the
tableau expansion of a node x, where L(x) = {(C t D1), (C t D2)} and C leads to a clash.
The syntactic branching technique could lead a wasted expansion as shown in Figure 1, where
a clash due to C must be demonstrated twice. This problem can be dealt with by using a
semantic branching technique analogous to that of classical DL [16].

L(x) = {(C tD1), (C tD2)}

L(x) ∪ {D1}

L(x) ∪ {D2} ⇒ OKL(x) ∪ {C}

⇒ clash

...

t t
L(x) ∪ {C}

⇒ clash

...

t t

Figure 1: Syntactic branching with wasted expansion.

With semantic branching, a single disjunct D is chosen from one of the unexpanded disjunc-
tions in L(x). The two possible sub-trees obtained by adding either D or D to L(x) are then
searched (recall, D is the QC-negation of D, i.e., D ∩ D = ∅ w.r.t. the domain, and {D,D}
is the clash). Now we have two disjoint subtrees and the possibility of wasted expansions such
as in syntactic branching is avoided. As shown in Figure 2, with the semantic branching, only
one exploration of the expression C was needed whereas, with the syntactic branching, two
explorations are needed.

L(x) = {(C tD1), (C tD2)}

L(x) ∪ {C, D1}

L(x) ∪ {D2} ⇒ OKL(x) ∪ {C} ⇒ clash

t t
L(x) ∪ {C} ⇒ clash

⇒ clash

...

t t

Figure 2: Semantic branching search.

3.5 Dependency directed backtracking

If a sub-problem leads to a clash, this clash can be detected only when the sub-problem is
expanded. So inherent unsatisfiability concealed in sub-problems can lead to large amounts
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Figure 3: Thrashing with normal backtracking.

of unproductive backtracking search known as thrashing. The problem becomes worse when
blocking is used to guarantee termination, because blocking may require that sub-problems be
expanded only after all other forms of expansions have been performed. For example, expanding
a node x, where L(x) = {(C1tD1), ..., (CntDn),∃R.(AuB),∀R.A} could lead to the fruitless
exploration of 2n possible R successors of x until the inherent unsatisfiability is discovered. The
search tree created by tableau algorithm (using semantic branching) is presented in Figure 3.
This problem can be addressed by adopting a form of dependency-directed backtracking called
backjumping. The technique is essentially the same as that for classical DL presented in [16];
here we review the techniques for handling the QC-negations.

Backjumping is a crucial optimization technique that can effectively prune irrelevant alter-
natives of non-deterministic branching decisions. If a branching point is not involved in a clash,
other alternatives of the branching point may be bypassed, because they cannot eliminate the
cause of clash. So the challenge is to locate the cause of a clash which will allow one to downsize
the search space. In order to identify the branching point involved in a clash, all concepts are
labeled with a dependency set containing information about the branching points on which
they depend. A concept C ∈ L(x) depends on a branching point if C was added to L(x) at the
branching point or if C depends on another concept D and D depends on that branching point.
A concept C ∈ L(x) depends on a concept D when C was added to L(x) by the application
of a deterministic expansion rule that used D. For example, if A ∈ L(x) was derived from the
expansion of (A uB) ∈ L(x), then A ∈ L(x) depends on (A uB) ∈ L(x) [16].

When a concept is added to a node by applying the tableau expansion rules, it inherits the
dependencies from the concepts it was generated by. If the concept is added by the application
of a non-deterministic rule, a dependency from the new branching point is also added. When
a clash is discovered, a new dependency set is created by the union of dependency sets of the
clashing concepts and backtracking is initiated. In the backtracking, each branching point is
checked against the dependency set to see whether it is in the dependency set. If a branching
point is not in the dependency set, then the other branching points are ignored and backtracking
continues. If the branching point is in the dependency set, and the other branches are not
explored yet, then backtracking stops and searching proceeds with the exploration of the other
branches. When all branches of a branching point are explored, the union of the dependency
sets from the branches is taken and backtracking continues [16].
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Figure 4: Pruning the search using backjumping.

For example, consider the previous example; when expanding a node x, where L(x) =
{(C1tD1), ..., (CntDn),∃R.(AuB),∀R.A}, by using backjumping we could reduce the search
space dramatically. In the search algorithm, after creating n branches, the label of the nth node
xn will contain {∃R.(A uB),∀R.A}. When ∃R.(A uB) is expanded, the algorithm creates an
R-successor y1 with L(y1) = {(A u B)} using the ∃-rule, and then applies the ∀-rule to ∀R.A
which results with L(y1) = {(A u B), A}. Now, applying the u-rule to A u B leads to a clash,
because {A,A} ⊂ L(y1). Since neither A nor A in L(y1) depend on the branching point from x
to xn, the algorithm backtracks to the most recent branching point on which one of A or A did
depend without exploring alternative branches at any branching point between x to xn. We
show in Figure 4 how the search tree below x is pruned by backjumping, and thus the number
of R-successors explored is reduced by 2n - 1.

4 Evaluation

To check the effectiveness of the optimization techniques discussed in the previous section for
inconsistency-tolerant reasoning, i.e., QCDL, we implemented those techniques top of QC-OWL.
QC-OWL [17] is an inconsistency-tolerant reasoner that can handle inconsistency directly with
reasonable inference power. It can perform reasoning over both consistent and inconsistent
ontologies with acceptable performance for the DL SHIQ. It was designed and developed by
following the Strategy Pattern, a behavioral design pattern, and is based on the core framework
of Pellet [20], a widely used complete OWL-DL reasoner.

In this section, we compare our results with those of our previous version of QC-OWL. The
benchmark ontologies used in the experiments are presented in Table 5. The first 12 ontologies
(ID# 1 to ID# 12) were found in [15] while 13 (ID# 13) was found in [10]. The ontologies 14,
15, 16, 17, 18 (ID# 14 to ID# 18) were collected from the TONES Ontology Repository [21]
while the remaining two (ID# 19 to ID# 20) were collected from ISG Ontology Repository [22].
For the experiments each ontology was processed five times and the time required to perform
QC-consistency test was recorded. The average time of the five independent runs is displayed
in the table. In the table, the column Con is for the consistency and Opt with optimizations
in QC-OWL. All experiments were performed on a Notebook with Intel Core i7 CPU and 8G
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ID KB name DL expressivity
Concept
count

Axiom
count

1 amino-acid ALCF(D) 46 563
2 heart SHI 75 448
3 bad-food ALCO(D) 18 52
4 buggyPolicy ALCHO 15 41
5 tambis-patched SHIN 395 1090
6 uma-025-arctan ALCRIF(D) 366 153403
7 0.01-arctan ALCRF(D) 366 14816
8 0.03-arctan ALCRIF(D) 366 26421
9 0.01-arctan-inc ALCRIF(D) 366 14829
10 0.03-arctan-inc ALCRIF(D) 366 26421
11 0.04-arctan-inc ALCRF(D) 366 32231
12 0.07-arctan-inc ALCRIF(D) 366 49592
13 chem-a ALCHOF(D) 48 196
14 goslim AL 161 485
15 transportation ALCH(D) 445 2364
16 economy ALCH(D) 339 2817
17 numerics SHIF(D) 2364 7268
18 yowl-complex SHIF(D) 336 2212
19 00390 SHIF 16311 366495
20 00786 SH(D) 93413 1212604

Table 5: Characteristics of the benchmark KBs.

memory on Windows 8 platform. The maximum allocated memory for JVM was 512M.

KB name Con QC-OWL QC-OWL(Opt)
amino-acid.owl Y 33 26
0.01-arctan.owl Y 36 33
0.03-arctan.owl Y 39 36
heart.owl Y 27 25
tambis-patched.owl Y 39 27
uma-025-arctan.owl Y 30 24

Table 6: QC-consistency test results (consistent ontologies).

KB name Con QC-OWL QC-OWL(Opt)
bad-food.owl N 34 26
buggyPolicy.owl N 22 19
0.01-arctan-inc.owl N 14761 44
0.03-arctan-inc.owl N 10342 38
0.04-arctan-inc.owl N 20044 32
0.07-arctan-inc.owl N 185803 202

Table 7: QC-consistency test results (inconsistent ontologies).

The experiments were conducted in two steps. In the first step, QC-consistency tests were
performed for the same set of ontologies as found in [15]. The results are presented in Table 6
and Table 7 for consistent and inconsistent ontologies, respectively. As it is shown in Table 6,
QC-OWL(Opt) marginally outperforms QC-OWL for consistent ontologies. Since QC-OWL
already shows good performance for this set of ontologies, the performance improvement is not
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significant. Indeed, the search spaces of these ontologies are small due to the characteristics of
these ontologies. However, the results presented in Table 7 show that QC-OWL(Opt) signifi-
cantly outperforms QC-OWL for inconsistent ontologies. For example, in the case of the 0.04-
arctan-inc ontology, QC-OWL takes around 20 seconds whereas QC-OWL(Opt) takes only 32
milliseconds. It is important to note that the performance improvement through optimization is
greater for inconsistent ontologies than consistent ontologies. The reason is, for an inconsistent
ontology, every branch must be explored before returning the result. However, in the case of
a consistent ontology, a model can be found before exploring all alternative branches. When a
model is found in a branch, the algorithm returns immediately without exploring the remaining
branches. Therefore in general, the performance improvement for inconsistent ontologies can
be expected to be greater than that for consistent ontologies.

In the second step, QC-consistency test were performed for another set of popular ontologies
and the results are presented in Table 8. For this experiments, the maximum allocated memory
for JVM was 2G and mem-out stands for OutOfMemoryError in Java. The results presented
in Table 8 show that optimizations play a significant role for the performance improvement.
As an example, for the transportation ontology, QC-OWL takes 470 milliseconds whereas QC-
OWL(Opt) takes only 45 milliseconds. It is motivating to note for the 00786 ontology, QC-
OWL gets mem-out while QC-OWL(Opt) gets result in 325 milliseconds. The performance
improvement in Table 8 is significant because the search spaces of these ontologies are larger
than the ontologies in Table 6 (i.e., the ontologies in Table 8 contain more individuals than the
ontologies in Table 6).

KB name Con QC-OWL QC-OWL(Opt)
chem-a.owl N 94 32
goslim.owl Y 260 44
transportation.owl Y 470 45
economy.owl Y 661 71
numerics.owl Y 2075 100
yowl-complex.owl Y 12262 96
00390.owl Y mem-out 32
00786.owl Y mem-out 325

Table 8: QC-consistency test results.

5 Related and Future Work

In the past decades, numerous techniques have been developed for optimizing standard tableau-
based reasoning, but none of them are directed to inconsistency-tolerant reasoning. In this
section, we outline some work that is related to optimizing the tableau-based reasoning for
classical DLs and discuss some future research directions for improving the performance of an
inconsistency-tolerant tableau-based reasoner.

Most state-of-the-art optimization techniques in tableau-based DL reasoning have been dis-
cussed in [16]. Apart from optimizing the tableau algorithm, a few researchers also attempted to
parallelize the tableau algorithm itself by applying a thread-based strategy in a shared-memory
environment (see, for example [17]). Although thread-based strategies such as multi-threading
in a multi-cored processor are often the easiest and simplest way to achieve high performance,
speed gain via thread-level parallelism is limited by the number of available cores. A process-
based strategy discussed in [17] is another option for achieving scalable performance.
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In order to provide efficiency in reasoning, 3 profiles for OWL 2 offer important advantages
depending on the application scenario: OWL 2 EL, OWL 2 QL and OWL 2 RL [23]. For
example, OWL 2 EL is useful for ontologies that contain very large numbers of properties
and/or classes, while OWL 2 QL is useful for dealing with ontologies with very large volumes
of instance data, and where query answering is the most important reasoning task. OWL 2 RL
is aimed at applications that require scalable reasoning without sacrificing expressivity [23].

For the experiments, our reasoner has been implemented on top of Pellet using Java. Al-
though Java has many appealing features, it is not strongly recommended for high performance
computing due to some design features associated with this language, such as garbage collec-
tion, etc. Better performance can be achieved by implementing this algorithm in C or C++.
Prolog, a general purpose logic programming language, could be another good choice. Prolog’s
backtracking strategy may be well suited implementing the dependency-directed backtracking.

Recently, Faddoul and MacCaull [24] investigated algebraic tableau reasoning for the DL
ALCQ. Preliminary results motivate the application of algebraic reasoning for paraconsistent
reasoning. However, in order to work with an algebraic reasoning component, a standard
tableau calculus needs to be modified and extended.

6 Conclusion

In this work, we discuss a set of widely used optimization techniques developed for classical
tableau-based reasoners which we implemented on top of QC-OWL, our inconsistency-tolerant
reasoner, and compare its performance with our naive implementation. The experimental results
show a significant runtime improvement for a wide range of both consistent and inconsistent
ontologies. While it is possible to measure the performance of each optimization individually,
we did not do so, as these optimizations are benchmarked for classical DLs. In future, we shall
investigate other optimizations for QC-OWL, e.g., boolean constraint propagation, heuristic
guided search, etc. We also plan to parallelize the QC-tableau algorithm itself incorporating a
set of optimization techniques which is hoped to significantly improve the performance of the
QC-tableau algorithm.

Acknowledgments: The second author wishes to thank the Natural Sciences and Engi-
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