
Perspectives on Managing Technical Debt
A Transition Point and Roadmap from Dagstuhl

Clemente Izurieta1, Ipek Ozkaya2, Carolyn Seaman3, Philippe Kruchten4, Robert Nord2, Will Snipes5, Paris Avgeriou6
1clemente.izurieta@montana.edu, Montana State University, Bozeman, MT, USA

2{ozkaya, rn}@sei.cmu.edu, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA
3cseaman@umbc.edu, University of Maryland Baltimore County, Maryland, MD, USA

4pbk@ece.ubc.ca, University of British Columbia, BC, Canada
5will.snipes@us.abb.com, ABB Corporate Research, Raleigh, NC, USA

6paris@cs.rug.nl, University of Groningen, Groningen, Netherlands

Abstract—Thirty-three practitioners, researchers, students,
and tool vendors gathered in Dagstuhl, Germany, for five days in
April 2016 to discuss the state of managing technical debt in
software engineering. Participants reflected on the significant
advances that the Managing Technical Debt (MTD) community
has made since its inception in 2010; reached a consensus on a
definition, called the Dagstuhl 16K technical debt definition; and
discussed avenues for future progress in the area. This paper
provides a brief history, summarizes current research, and offers
a roadmap and a vision that describe the areas of research where
significant challenges remain.

Keywords—technical debt; software quality; software decay;
software economics; software project management

I. INTRODUCTION
While other software engineering disciplines—such as

software sustainability, maintenance and evolution, refactoring,
software quality, and empirical software engineering—have
produced results relevant to managing technical debt, none of
them alone suffice to model, manage, and communicate the
different facets of the design trade-off problems involved in
managing technical debt. Although the technical debt metaphor
can be attributed to Cunningham [1], a community consensus
on a pithy and focused definition has been a barrier for
research progress that could address the most pressing
immediate needs of the software engineering community. The
technical debt metaphor describes a situation in which
developers accept quality compromises in the current release to
meet a deadline (e.g., delivering a release on time). A
subsequent release that has been compromised will incur a
higher cost in the form of higher maintenance efforts.

To date, the technical debt metaphor has served as a strong
communication and reference mechanism, but the community
now understands that technical debt is also a software
development artifact that is incurred (mostly) unintentionally
and discovered during later stages of software development.
Moreover, the community also recognizes that the key research
challenges ahead cannot be addressed by simply repurposing
code quality and maintainability analysis as technical debt
analytics. The Dagstuhl Seminar 16162 (Dagstuhl 16K)
definition of technical debt focuses on design and
implementation artifacts that affect maintainability and
evolvability of software. This definition also prompted the
community to address the problem of classifying artifacts in

the periphery of the definition. Examples of the latter include
social, documentation, process, and infrastructure debt. We
thus present a conceptual model that allows for extension and
context representation of various artifacts.

II. BACKGROUND
The Management of Technical Debt (MTD) community

has formally existed since 2010. Figure 1 depicts the timeline
of prior events and illustrates new meetings that represent an
increased level of activity. The outcome of these efforts has
been more than 200 research papers written by research
groups across the globe, systematic literature studies
organizing the space and demonstrating gaps, and special
issues in practitioner and research journals such as IEEE
Software and the Journal of Systems and Software. Possibly
the most welcomed and challenging outcome has been an
ever-increasing involvement of the practitioner community.
As a result, many tool vendors have started adding or
repurposing features to support technical debt analysis. Many
organizations are also looking into developing their own
internal best practices for managing technical debt, and they
need help.

Table 1 illustrates the topics on which technical debt
research has focused since 2006. We clearly see a sharp
distinction between artifacts that are easier to measure, such as
code, and those that are not, such as people. It also shows
which topics have received more and less research.

III. THE DAGSTUHL FORMAT
Dagstuhl brought together researchers, practitioners,

students, and tool vendors from academia and industry who are
interested in the theoretical foundations of technical debt and
how to manage it (e.g., techniques for measurement, analysis,
and prevention). The organizers created a blog where attendees
posted positions and started discussions to facilitate seeding of
ideas prior to the seminar. Organizers grouped discussions and
blog entries into relevant themes that included creating a
common definition and conceptual model of technical debt,
measurement and analysis of technical debt, management of
technical debt, and a research roadmap for managing technical
debt. No long talks were featured. Each day had three types of
sessions. There was a plenary session for “lightning talks,” in
which each presenter had 10 minutes for presentation and
questions on each day except for the last day of the seminar.

1st International Workshop on Technical Debt Analytics (TDA 2016)

84

Fig. 1. Technical debt community events [3]

 Table 1. Where is research focused? [4]

IV. TECHNICAL DEBT
The significant outcomes of the seminar include a

definition, a conceptual model, and a list of challenges that we
face moving forward on the research agenda and transition
prospects for managing technical debt. The definition and
model serve as starting points for the community to build on
and improve.

The Dagstuhl 16K definition presents an expansion over
past definitions by taking into account the concerns heard from
prior technical debt events and the thinking that has occurred
over the years. Specifically, this definition elevates the
concepts of evolvability and maintainability as the primary foci
of technical debt research, combines design and
implementation constructs, and highlights the context-specific
trade-offs that need to be made in an expedient manner.

A. Definition of Technical Debt
Attendees converged on the following (Dagstuhl 16K)

definition [2][5] for technical debt:

“In software-intensive systems, technical debt is a
collection of design or implementation constructs that are
expedient in the short term, but set up a technical context that
can make future changes more costly or impossible. Technical
debt presents an actual or contingent liability whose impact is
limited to internal system qualities, primarily maintainability
and evolvability.”

B. Conceptual Model and Related Activities of Technical
Debt
Another outcome of the seminar was the recognition that,

similar to other complex software engineering artifacts,
technical debt is best described through multiple viewpoints.
Concepts related to technical debt should be discussed based
on two related viewpoints:

a) the viewpoint describing the properties, artifacts, and
elements related to technical debt items (see Fig. 2)

b) the viewpoint articulating the management- and
process-related activities to perform or the different
states that debt may go through

1st International Workshop on Technical Debt Analytics (TDA 2016)

85

Fig. 2. Contextual figure of technical debt [2][5]

 Figure 2 shows the conceptual model in the form of a UML
class diagram, which focuses on the first viewpoint and helped
the group converge on key concepts. The technical debt
associated with a software-intensive system is composed of a
set of technical debt (TD) items, and this technical debt is one
of many concerns associated with a system. TD items have
both causes and consequences. The cause of technical debt can
be a process, a decision, an action (or lack thereof), or an event
that triggers the existence of that TD item, such as schedule
pressure, unavailability of a key person, or lack of information
about a technical feature. The consequences of a TD item are
many: technical debt can affect the value of the system, the
costs of future changes, the schedule, and system quality. The
business objectives of the sponsoring organization developing
or maintaining the software system are affected in several
ways: through delays, loss of quality for some features of the
system, and difficulties in maintaining the system operations
(continuance). A TD item is associated with one or more
concrete, tangible artifacts of the software development
process, primarily the code, but also to some extent the
documentation, known defects, and tests associated with the
system.

To keep with the financial metaphor, the cost impact of
technical debt can be seen as composed of principal and
interest. The principal is the cost savings gained by taking
some initial approach or shortcut in development (the initial
principal, often the initial benefit) or the cost that it would now
take to develop a different or better solution (the current
principal). The interest is comprised of costs that add up as
time passes. There is recurring interest: additional cost
incurred by the project in the presence of technical debt, due to
reduced velocity (or productivity), induced defects, and loss of
quality (maintainability is affected). And there is accruing
interest: the additional cost of developing new software
depending on not-quite-right code (evolvability is affected).

This view summarizing the elements related to technical
debt, however, does not capture the activities that need to be
conducted to manage technical debt or the states that debt may

go through. An activity-focused view would map out research
topics to be studied such as identifying, visualizing, assessing,
and making decisions about technical debt. The phenomena all
along the causal chain of causes and consequences are also
important to investigate.

C. Technical Debt Management
Managing technical debt includes recognizing, analyzing,

monitoring, and measuring it. Today many organizations do
not have established practices to manage technical debt, and
project managers and developers alike are asking for methods
and tools to help them strategically plan, track, and pay down
technical debt. We identified two broad high-priority
challenges:

1) Developing effective tooling (academia and industry) to
assist with assessing technical debt: A number of studies have
examined the relationship between software code quality and
technical debt. This work has applied detection of “code
smells” (low internal code quality), coupling and cohesion,
and dependency analysis to identify technical debt. However,
empirical examples collected from industry all point out that
the most significant technical debt is caused by design trade-
offs, which are not detectable by measuring code quality. For
example, an architectural decision encountered early in the
design stage is the selection of a Visitor pattern vs.
inheritance-based designs. Either design selection may be
appropriate in the current context and would not yield smells;
however, later evolutionary steps may reveal different
maintenance problems, depending on the choice. Furthermore,
several published case studies demonstrate that assessing
technical debt appropriately requires combining several
analysis techniques together.

2) Establishing an empirical basis and data science for
technical debt: Well-defined benchmarks (with uncertainty
levels) provide a basis for evaluating new approaches and

1st International Workshop on Technical Debt Analytics (TDA 2016)

86

ideas. They are also an essential first step toward creating an
empirical basis on which work in this area can grow more
effectively. Effective and well-accepted benchmarks allow
researchers to validate their work and tailor empirical studies
to be synergistic. Technical debt’s evolving definition and its
sensitivity to context have inhibited the development of
benchmarks so far. An ideal benchmark for technical debt
research would consist of a code base, architectural models
(perhaps with several versions), and known TD items. New
approaches could be run against these artifacts to see how well
the approaches reveal TD items. Industry needs guidance for
how and what data to collect and what artifacts they can make
available to enable progress in understanding, measuring, and
managing technical debt.

V. RESEARCH ROADMAP AND VISION
The Dagstuhl participants spent some time envisioning

what the world would be like if technical debt research were
as successful as we could ever hope it to be. The resulting
vision is summarized in the following points:

• Technical debt will be managed as well as we now
manage defects, vulnerabilities, and new features.

• We have a way to translate developer concerns to
manager concerns—a basis for making decisions about
allocating time for reducing technical debt.

• Technical debt will be mostly incurred intentionally.
• Projects that manage technical debt are more efficient,

effective, and sustainable than projects that don’t.
• There is support for up-front and continuous

architectural work (vs. emergent architecture) and
evidence that it helps avoid and manage technical debt.

• Tools support all aspects of technical debt management,
and all stakeholders adopt them and use them.

• Technical debt-aware development (practices and tools)
is an accepted way of producing software.

This vision set the stage for the beginnings of a research

roadmap to guide future research to establish a cohesive body
of knowledge about how to manage technical debt. The
research roadmap consists of three major parts:

1) The Core: Defining, understanding, and
operationalizing the concept of value with respect to technical
debt. Specific activities include

• investigating the role of opportunity cost to measure
the differences in value between a decision to
implement new features that incur technical debt or
make infrastructure improvements that avoid technical
debt while foregoing the features

• understanding the factors, beyond principal and
interest, that go into making decisions about incurring,
paying off, and managing technical debt

• understanding how to model technical debt
phenomena over time, which is not linear in software
development

2) The Essential Context: Understanding phenomena that
fall outside the core definition of technical debt and that have

an essential relationship with how technical debt plays out in
practice. Specific activities include

• identifying the important context factors (e.g., code
volatility, business context, development personnel)
that affect the evaluation of technical debt

• understanding the relationship of other types of debt
(e.g., social, infrastructure) as causes or consequences
of technical debt

• exploring the role of development methodologies to
manage technical debt

3) The Necessary Infrastructure: Building the shared
infrastructure that facilitates all our research activities.
Specific activities include

• sharing experimental data sets and study designs
• creating benchmarks in an effort to standardize tools

and measures
• developing techniques to inject different forms of

technical debt into data sets in order to evaluate,
predict, and validate techniques

CONCLUSION
Technical debt is an active field of research with a growing

community, as evidenced by the success of meetings and
increased research output such as papers, commercial tools,
and new projects. However, significant challenges remain to
meet effective tooling demands, to establish an empirical
basis, and to pinpoint artifacts that serve as inputs to
measurement and analysis and most importantly to be useful
in practice. The research roadmap is an evolving document
and activity that requires active involvement from the greater
community of academics and practitioners alike. The hope is
that it will continue to be refined and instantiated at gatherings
of researchers and engineers interested in future research in
technical debt management.

ACKNOWLEDGMENT
Copyright 2016 Carnegie Mellon University. This material is based upon

work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development
center. NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT. [Distribution Statement A] This material has
been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution. DM-0004135.

We thank Tamara Marshall-Keim for her expert input.

REFERENCES
[1] W. Cunningham, “The WyCash portfolio management system,”

SIGPLAN OOPS Mess., Vol. 4, No. 2, pp. 29-30, Dec 1992.
[2] Managing Technical Debt in Software Engineering, Dagstuhl Reports,

Vol. 6, Issue 4, April 17-22, 2016. http://www.dagstuhl.de/16162
[3] 8th International Workshop on Managing Technical Debt (MTD),

Raleigh, NC, October 4, 2016.
[4] NSR Alves et al., Information and Software Technology 2016, Vol. 70,

pp. 100-121.
[5] Dagstuhl Blog. https://mtd2016dagstuhl

1st International Workshop on Technical Debt Analytics (TDA 2016)

87

