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Abstract—The recall of a code search engine is reduced,
if feature-wise similar code fragments are not indexed under
common terms. In this paper, a technique named Similarity Based
Method Finder (SBMF) is proposed to alleviate this problem. The
technique extracts all the methods from a source code corpus and
converts these into reusable methods (i.e., program slice) through
resolving data dependency. Later, it finds similar methods by
checking signature (i.e., input and output types) and executing
methods for a randomly generated set of input values. Methods
are considered as feature-wise similar if these produce the same
output set. In order to index these methods against common and
proper terms, SBMF selects the terms that are found in most
of the methods. Finally, query expansion is performed before
searching the index to solve the vocabulary mismatch problem. In
order to evaluate SBMF, fifty open source projects implementing
nine different functionalities or features were used. The results
were compared with two types of techniques - Keyword Based
Code Search (KBCS) and Interface Driven Code Search (IDCS).
On an average, SBMF retrieves 38% and 58% more relevant
methods than KBCS and IDCS, respectively. Moreover, it is
successful for all the features by retrieving at least one relevant
method representing each feature whereas IDCS and KBCS are
successful for 3 and 7 features out of 9 respectively.

Index Terms—code search, code reuse, method search

I. INTRODUCTION

The recall of a code search engine, indicated by the number
of relevant codes that is retrieved from the code repository,
usually depends on the indexing mechanism and query for-
mulation techniques. Proper indexing and query understanding
help to retrieve relevant code snippets that satisfy user needs
[1]. Most of the code search engines employ Information
Retrieval (IR) centric approaches for indexing source code
[2]. The working principle behind these approaches is to
construct a term-based index, by extracting keywords from
source codes. A common problem of these approaches is
that a pair of codes - having same functionality, but written
using different keywords are indexed against different terms.
A traditional code search engine misses some important code
fragments, because of this keyword matching policy. It results
in a low recall code search engine with poor performance on
benchmark datasets [3].

To improve recall of a code search engine, similar code
fragments should be indexed under the same terms. However,
it is challenging to automatically and efficiently determine
that two code fragments are identical or similar [4]. Although
identical code fragments can be detected through keywords
matching [5], detecting feature wise similar code blocks is

difficult. The reason is that automatically perceiving the intent
of a code block is still a research challenge [6]. Another chal-
lenge is to select proper terms that best represent similar code
fragments. For example, assume that there are two methods
that perform bubble sort - “x” and “sort”. Here, between two
terms, “sort” is semantically more relevant name than “x”. It
is a challenging task to automatically determine that “sort” is
the better keyword to represent these methods. Again, a code
fragment may contain terms, which are not useful to express
its intent (i.e., implemented feature) properly. Indexing based
on these keywords reduces matching probability between user
query and these keywords. It happens because, user query
defines functionality but the extracted keywords do not express
the feature properly. So, instead of using these keywords, more
meaningful terms need to be selected that best match the query.

Researchers have proposed various techniques to improve
the performance of code search engines where recall is con-
sidered as one of the performance indicators. These techniques
can be broadly classified into four types like Keyword Based
Code Search (KBCS), Interface Driven Code Search (IDCS),
Test Driven Code Search (TDCS), and Semantic Based Code
Search (SBCS). In KBCS [2], [7], [8], [9], [10], source codes
are indexed based on the terms generated from the code and
searching is performed on the index. As this approach does
not consider similarity between source codes having different
keywords, it cannot retrieve more relevant codes. In order to
define required component interface as query, and find relevant
components, IDCS [11], [12], [13] was proposed. It is possible
to have two or more code fragments that contain different
interfaces but perform the same task. IDCS considers that
these code fragments are different due to having different
interfaces. Thus, it does not retrieve these all together. To
automatically find and adapt reusable components, TDCS [14],
[15] and SBCS [16], [17] were proposed. These are effective in
terms of precision as test cases are employed on the retrieved
codes. In these approaches, most of the test cases fail not only
for functional requirements mismatch but also for syntactic
mismatch of the interface definition [15]. For this reason,
semantically relevant code fragments cannot be retrieved and
the recall is decreased.

In this paper a technique named Similarity Based Method
Finder (SBMF) is proposed to retrieve more relevant methods
from code base. The technique first parses all the methods
from the source code to construct a repository of methods.
It generates data dependency graph for each method and
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converts the method into reusable method (i.e., program slice)
through resolving data dependency, and redefining parameters
and return type. Later, all the methods are clustered into a
number of clusters where methods in the same cluster perform
the same task. To detect feature-wise similarity among a set
of methods’ signatures (i.e., parameters and return types) of
these methods are checked. Methods having the same signature
are then executed against a set of randomly generated input
values. Among these methods, those which produce the same
output are considered as feature-wise similar and a cluster is
constructed to store these methods. To identify proper terms
for a cluster, keywords are obtained from the methods in the
cluster and method frequency is calculated for each term.
Such terms are considered as representative terms if these
are found in most of the methods of the cluster. All the
methods of the cluster are then indexed against the terms so
that these are retrieved all together if a query term matches
one of these methods. At last, user query is expanded by
adding synonyms of each query term to increase the matching
probability between the query terms and index terms [7].

In order to evaluate the proposed technique, a tool was
developed. Two types of code search techniques, KBCS and
IDCS, were compared with SBMF to show its efficiency.
An existing system named Sourcerer [8] was used for the
implementation of KBCS and IDCS. However, SBCS and
TDCS were not considered for comparison, because these
were proposed to improve precision rather than recall. For
comparative result analysis, three metrics were used which
are recall, number of methods retrieved and feature successful-
ness. Here, feature successfulness determines whether at least
one relevant method is retrieved or not against user queries
provided for a feature. In the context of this paper, A feature
can be considered as a requirement given to a developer to
implement. 50 open source projects were selected to carry out
the experiment. The result analysis shows that on an average
SBMF increases recall by 38% and 58% more than KBCS
and IDCS, respectively against 170 queries. Besides, SBMF
is successful for all the features whereas KBCS and IDCS are
successful for 7 and 3 features out of 9 respectively.

II. RELATED WORKS

Reusing existing code fragments reduces development time
and effort [18]. For this reason, searching for reusable code
snippets has become a common task among the developers
during software development [19]. Various techniques have
been proposed in the literature to improve the performance
of code search engine in terms of recall, precision, query
successfulness, etc. These techniques can be broadly classified
into four categories which are Keyword Based Code Search
(KBCS), Interface Driven Code Search (IDCS), Semantic
Based Code Search (SBCS), and Test Driven Code Search
(TDCS). Significant works related to each category are dis-
cussed in the following subsections.

A. Keyword based Code Search (KBCS)

In KBCS, source code is considered as plain text document
where traditional IR centric approaches are employed to in-
dex the code and query over the index [20]. Besides, other
metadata such as comments, file name, commit message, etc.
are used to retrieve relevant code fragments from a repository
of source codes. One of the techniques related to KBCS
is JSearch which indexes source code against the keywords
extracted from the code [2]. However, it cannot retrieve all
the code snippets that implement the same feature but contain
different keywords. This is because, it does not check feature-
wise similarity to detect common terms for these fragments.

Several techniques like Sourcerer [8], Codifier [9], krugle
[10], etc. were proposed to provide infrastructure for large
scale code search. These techniques use both structural and
semantic information of source code to construct index. Struc-
tural information comprises language, source file, related doc-
uments, classes, methods, dependencies, and so on. Semantic
information of a program is gathered by generating terms
from method name, class name, field name, comments, etc.
Although these techniques adopt both types of information
to fetch more relevant code fragments, these cannot retrieve
feature-wise similar code blocks simultaneously. The reason
is that all these information are stored following IR based
indexing mechanism, and no checking is performed to index
similar code snippets under common proper terms.

B. Semantic Based Code Search (SBCS)

As open source codes are increasing day by day, it is thought
that a significant amount of code that is written today, has
already been available in the internet. However, reusing these
existing codes often does not directly meet user needs or
requires modifications. In order to find existing codes that
support user requirements, a technique in form of SBCS was
proposed by Steven [16]. It takes keywords that represent user
requirements, and retrieves relevant code fragments containing
these keywords. Later, it runs user provided test cases on
the fetched code snippets and passed codes are delivered as
final search result. It performs well in terms of precision but
recall is reduced since proper terms are not determined while
indexing feature-wise similar codes. So, some semantically
similar code fragments cannot be fetched due to indexing these
under inappropriate terms.

Sometimes, developers need to convert one type of ob-
ject to another. To get example code implementing such
conversion, Niyana proposed a technique named XSnippet
[17]. It creates graph from source code by adopting code
mining algorithm. The graph represents data flow within the
corresponding source code. Moreover, user query is defined
by providing input type and output type. For a user query,
all the generated graphs are searched to find those code
fragments that convert the input type into the output type.
In this technique. developers need to provide exact input type
and output type for getting example code blocks. Otherwise,
it cannot retrieve code fragments that may satisfy user needs.
However, according to the searching behavior, developers are
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more interested in using keywords rather than concrete data
types to define their query [21].

C. Test Driven Code Search (TDCS)

TDCS is a special type of SBCS where test cases are
used to obtain program semantics. Lemos et al. proposed a
TDCS technique named CodeGenie to support method level
searching [14]. The technique takes method signature as query
from the test cases written by developers. It uses Sourcerer
infrastructure to retrieve relevant functions against the query.
Next, all the test cases are executed for each retrieved method.
Resultant methods are ranked based on the number of test
cases successfully passed. Although the technique increases
precision, it produces low recall. The reason is that it per-
forms keyword matching to fetch methods from index without
justifying the appropriateness of the keywords.

Usually retrieved methods may not pass corresponding
test cases due to different order of the parameters, return
type or parameter type. To resolve these issues, Janjic et al.
proposed a technique that refactors the code to adapt with the
program context [15]. It applies every possible adaptations like
reordering parameters, using super type or sub class type of
a given return or parameter type, converting primitive type to
reference type, etc. Thus, it improves TDCS by finding more
relevant methods. However, it produces low recall because it
does not index similar methods under common terms.

D. Inreface Driven Code Search (IDCS)

IDCS helps the developers to define their queries in a more
structured form rather than just a set of keywords joined by
boolean expression. Signature matching was the first proposed
IDCS technique to find relevant functions within a software
library [13]. The approach crawls all the methods in the library,
and uses signature of each method for indexing. Other code
search techniques such as Sourcecer, ParseWeb, and Strath-
cona also support IDCS to improve the performance in code
search [7]. Although IDCS assists to formulate user query,
it does not select appropriate terms during indexing similar
codes that perform the same functionality. Thus, functionally
related code fragments will not be retrieved all together since
these are indexed against inappropriate terms.

In order to find reusable code fragments, four types of
techniques have been proposed in the literature which are
KBCS, IDCS, TDCS, and SBCS. All these techniques extract
keywords from source code to generate terms, and index cor-
responding code against the terms. However, none of the tech-
niques checks the appropriateness of the terms with respect to
implemented feature. As a result, the number of relevant codes
retrieved is reduced due to indexing against improper term.
Moreover, if two or more code snippets implement similar
feature but contain different terms, existing techniques cannot
retrieve all these code fragments simultaneously. The reason is
that these are indexed against different terms. So, to improve
recall in code search, feature-wise similar codes should be
indexed under common appropriate terms.

III. PROPOSED TECHNIQUE

In this paper, a technique named Similarity based Method
Finder (SBMF) has been proposed to improve recall in
code search. The technique comprises several steps such as
Reusable Method Generation, Clustering Similar Methods,
Proper Term Selection, Handling Methods Having API/Library
Function call, Index Construction, and Query Expansion. Each
of the steps is discussed as follows.

A. Reusable Method Generation

In this step, the proposed technique first parses the source
code to identify all the methods in the code. For each method,
it checks whether the body of that method contains any API/-
function call statement or not. If no such statement is found,
the technique takes the method to convert it into reusable
method (i.e., program slice that can execute independently
without having any dependency on other methods). Later, a
data dependency graph is constructed for the corresponding
method to determine its input and output types. Although the
signature of the method expresses the input and output types,
this is not sufficient enough to convert into reusable function
for several scenarios. For example, a method may have return
type void but it may manipulate one or more variables that
are declared outside the body of the method. A method may
not have any parameter (i.e., void) but use variables that are
defined outside the body of the method. Again, the signature
of a method may explicitly state the input and output types
but some variables may be used or manipulated by it and
these are declared outside the method body. Considering all
of these scenarios, the technique generates data dependency
graph to redefine the signature and convert into reusable
method. Each node in the graph denotes the variable and an
edge from a to b (a → b) denotes variable a depends on
variable b. After constructing the graph, nodes that have in
degree zero and variables denoted by these nodes are declared
outside the method body, are considered as input parameters.
Besides, nodes that have out degree zero are considered as
output variables of the method. If multiple output nodes are
found, a complex data type is created where each field of
the type denotes each node. The reason is that a method
return type can be a single data type - either primitive or
complex data type. The technique uses the variables found in
the nodes containing in degree zero to generate parameters of
the method. If a single node is found which out degree is zero,
the type of the variable denoted by the node is used as return
type of the method. Otherwise, generated composite data type
as discussed earlier is used. The signature of the method is
redefined by combining the return type, method name, and
parameters. It is possible to have one or more variables that
are declared outside the method body. In the data dependency
graph, nodes representing these variables may have at least
one in degree and one out degree. In this case, the technique
parses the source code and checks the declaration statements
of the variables to determine the types of the variables. Using
this information, it adds declaration statement for each of the
variables at the beginning of the function body. Thus, the
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technique makes the method self-executable without having
any external data dependency.

B. Clustering Similar Methods

To improve code search, it is required to check the similarity
among methods found in the code base. Two or more methods
may perform the same task in different ways. So, feature-wise
similar methods needs to be detected to retrieve the similar
methods all together. In Algorithm 1, the procedure named
ClusterSimilarMethods takes a list of reusable methods
(M ) as input which is constructed following the previous step.
A variable C is declared to store different clusters of similar
methods where each cluster contains the methods that perform
the same functionality (Algorithm 1 Line 2). A for loop is
declared that iterates on M to construct cluster of similar
methods. The procedure IsInAnyCluster is invoked to check
whether each method m (belongs to M ) is added to any cluster
or not previously (Algorithm 1 Lines 4-5). If m does not
belong to any cluster, a variable cl is declared to contain all the
methods similar to m. A set of input data is generated based
on the type of parameters found in the signature of m and
corresponding output is generated by executing m (Algorithm
1 Lines 9-10). Here inputset and outputset determine the
intent of m. Another for loop is declared to identify other
methods that are similar to m. In each iteration, the signature
of each method m′ (in M ) is matched with the signature of
m to check whether the input data set can be fed into the
method and return type is identical to m (Algorithm 1 Line
15). If the signatures of both methods are identical, the method
m′ is executed for inputset and generated output is stored to
outputset′. If outputset and outputset′ are found the same,
m′ is considered similar to m as both methods produce same
output for the same input data set (Algorithm 1 Lines 17-19).
m′ is then added to cl to store all the methods similar to m.
At last, cl is inserted to the list of all identified clusters (C).

C. Proper Term Selection

In order to retrieve more relevant methods, it is required to
identify proper terms for each method before indexing. When
two or more methods have different names or signatures, but
implement the same functionality, these methods should be
indexed under common appropriate terms. As a result, all these
methods will be obtained against user query. So, after getting
all the clusters from the previous step, representative terms
are selected for each cluster. For a cluster, terms are obtained
from the methods found in the cluster through extracting,
tokenizing, and stemming keywords found in the methods.
Terms that are found in most of the methods are considered
as final representative terms for each of these methods.

D. Handling Methods Having API/Library Function call

As developers also search for example code to understand
the usage of an API, in this step, methods that have API call
statements are gathered. For each identified method, terms are
generated from API call statements to index against the terms.
As a result, if a query term does not match with the signature

Algorithm 1 Cluster Similar Methods
Require: A list of methods (M ) for which search index will

be constructed
1: procedure CLUSTERSIMILARMETHODS(M )
2: C = ∅;
3: for each m ∈ M do
4: if IsInAnyCluster(m,C) == true then
5: continue
6: end if
7: cl = ∅
8: cl.add(m)
9: inputset = generate a set of input data randomly

for m
10: outputset = execute m and generate correspond-

ing output for inputset
11: for each m′ ∈ M do
12: if IsInAnyCluster(m′, C) == true then
13: continue
14: end if
15: if m′.paramtersTypes ==

m.parametersTypes & m′.returnType =
m.returnType then

16: outputset′ = execute m′ and generate cor-
responding output for inputset

17: if outputset == outputset′ then
18: cl.add(m′)
19: end if
20: end if
21: end for
22: C.add(cl)
23: end for
24: end procedure
25: procedure ISINANYCLUSTER(m,C)
26: found = false
27: for c ∈ C do
28: if m ∈ c then
29: found = true
30: break;
31: end if
32: end for
33: return found
34: end procedure

of a method but matches with the API invocation statements,
the method is retrieved as API usage example code.

E. Index Construction and Query Expansion

After generating appropriate terms for each method and
merging similar ones, an index is built for searching desired
methods. A posting list is created to construct index, which
maps terms with corresponding methods. Later, user query is
expanded to retrieve more relevant methods against the query.

Two procedures named ConstructIndex and Query, are
presented in Algorithm 2 to build index of methods obtained
from the previous steps, and refine user query, respectively. To
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construct the index, an empty posting list is declared, which
maps each term to corresponding methods (Algorithm 2 Lines
2). A nested for loop is defined, where the outer loop iterates
on a list of methods (M ) given as input to the procedure
(Algorithm 2 Lines 3-4). The inner loop iterates to get all the
terms of each method in M . In addition, each term is checked
whether the posting list contains it or not to add a new term in
the list (Algorithm 2 Lines 5-7). Next, the method is added to
the posting list against the term so that, when a query term will
match with the term, the method will be retrieved (Algorithm
2 Lines 8). After adding all the methods, the list is returned
by the procedure (Algorithm 2 Lines 11).

In procedure Query, a boolean query is given as an argu-
ment, from which terms are separated and stored in a variable
named queryTerms to expand the query (Algorithm 2, Lines
13-14). A nested for loop is defined, where the outer loop
iterates on these terms (Algorithm 2, Lines 15-17). In each
iteration, a temporary variable (expandedTerm) initialized
with the corresponding term, is used to store synonyms of
the term. To expand each term, synonyms are appended
to expandedTerm in the inner loop (Algorithm 2, Lines
17-19). Later, each term in queryTerms is replaced with
corresponding expandedTerm for the expansion of the query
(Algorithm 2, Lines 20). As a result of the expansion, the
probability of matching a query string with the terms defined
in the index increases. Finally, the query is executed in the
index to retrieve intended methods, which are returned by the
procedure (Algorithm 2, Lines 22-23).

IV. IMPLEMENTATION AND RESULT ANALYSIS

In order to perform comparative result analysis, the pro-
posed technique (SBMF) was implemented in form of a
software tool. 50 open source projects were selected as data
sources for the experimental analysis. To evaluate the proposed
technique, 170 queries representing 9 different features were
executed by the tool. For comparative analysis, same queries
were also run on Sourcerer that supports KBCS and IDCS.

A. Environmental Setup

This section outlines the softwares and frameworks required
for the experimental analysis. SBMF was implemented using
C# programming language. Moreover, some other tools were
also used, which are addressed as follows:
• JavaParser: An open source library used to parse Java

source code (https://github.com/javaparser)
• Apache Lucene: A popular search engine infrastructure

used to index java methods and query over the index
(https://lucene.apache.org/)

• Luke: Open source lucene client used to execute query
on the lucene index and visualize the search results
(https://github.com/DmitryKey)

B. Dataset Selection

In order to perform experimental analysis, 50 open source
projects from sourceforge (https://sourceforge.net/) were se-
lected. Fraser and Arcuri showed that these projects are

Algorithm 2 Index Construction and Query Expansion
Require: A list of methods (M ) containing signature, body

and terms of each method
1: procedure CONSTRUCTINDEX(M )
2: Map < String, List < Method >> postingList
3: for each m ∈ M do
4: for each t ∈ m.terms do
5: if !postingList.keys.contains(t) then
6: postingList.keys.add(t)
7: end if
8: postingList[t].add(m)
9: end for

10: end for
11: return postingList
12: end procedure
13: procedure QUERY(booleanQueryStr)
14: queryTerms=get all terms from booleanQueryStr
15: for each qt ∈ queryTerms do
16: expandedTerm = qt
17: for each syn ∈ synonyms of qt do
18: expandedTerms+ =” OR ”+syn
19: end for
20: queryTerms.replace(qt, expandedTerm)
21: end for
22: methods = obtain method from the index satisfying

queryTerms
23: return methods
24: end procedure

statistically sound and representatives of open source projects
[22].

A set of features were selected from the existing works
in code search [7], [16], [23], [24] as shown in Table I. On
the other hand, to evaluate the proposed technique, a set of
queries is selected from [7]. Here, each query is related to a
particular functionality shown in Table I and all the queries
are created randomly. 15 subjects were employed to identify
relevant methods for the functionalities. Among 15 subjects,
5 of them were senior Java developers and rest 10 were
masters student. The reason of choosing students in this study
is that they can play important role in software engineering
experiments [25]. All the experimental datasets are available
in this link1.

C. Comparative Result Analysis

For comparative result analysis, SBMF was run on the
experimental datasets and the relevance of retrieved methods
were checked for each user query. Moreover, Sourcerer which
supports KBCS and IDCS, was also run on the same datasets
and search results obtained by this were compared to SBMF.
Three metrics were used to evaluate the performance of SBMF
in comparison with KBCS and IDCS. These were recall, num-
ber of retrieved methods, and feature successfulness. Detailed

1http://tinyurl.com/zdqmoqz
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TABLE I
SELECTED FUNCTIONALITIES WITH FREQUENCY

# Functionality # methods # queries
1 decoding String 13 20
2 encrypting password 3 27
3 decoding a URL 3 21
4 generating MD5 hash 3 16
5 rotating array 2 25
6 resizing image 3 25
7 scaling Image 3 19
8 encoding string to html 2 6
9 joining string 47 36

result analysis with respect to each of the metrics is discussed
as follows.

Recall Analysis: Recall is one of the most commonly used
metrics to measure the performance of traditional IR system.
As the intent of the paper is to improve recall in code search, it
is considered as an important metric to evaluate the proposed
technique. In this experiment, recall is defined as follows.

recall =
number of retrieved relevant methods

number of relevant methods in the repository

Fig. 1 depicts a comparative recall analysis among SBMF,
KBCS, and IDCS where X axis denotes the feature no. as
shown in TABLE I and Y axis represents the measured
recall. For feature 1 (Decoding String), approximately 15%
recall is shown in Fig. 1 for both KBCS and IDCS whereas
100% recall is found for SBMF. There are 13 methods in
the repository that implement the feature. Among these, two
methods are found which contain keywords decode and string
in method name and parameter respectively. As a result, these
methods are retrieved by both KBCS and IDCS. However,
these techniques cannot retrieve other 11 methods because
signatures of these methods do not contain any term related to
decode. While analyzing the source code of these methods, it
is seen that the bodies of these methods use third party APIs
like URLDecoder.decode(String, String), Hex.decode(String),
Base64.decode(base64), etc. to implement the feature. SMBF
takes terms from API call statements and indexes against the
terms to provide example codes regarding API usage. So, it
retrieves all these 13 methods.

For feature 2 (Encrypting Password), IDCS cannot find any
methods but 66.67% and 33.3% relevant methods are retrieved
by SBMF and KBCS respectively as shown in Fig. 1. To get
the methods that implement this feature, the following query
is provided to IDCS.

name:(encrypt) AND return:(String) AND parameter:(String)

Although there is a single method found in the code base that
has encrypt keyword in its name but does not have String in
its parameter. So, IDCS cannot obtain this method but KBCS
retrieves because query keyword matches with the method
name. However, SBMF retrieves one more method having
signature crypt(String strpw,String strsalt). The reason is that
encrypt and crypt both express the same intent as detected by
the query expansion part of SBMF (Algorithm 2).

Fig. 1. Recall Analysis

Fig. 2. Number of Retrieved Methods

There are 3 relevant methods in the experimental projects
that implement feature no. 3 (Decoding a URL). According to
Fig. 1 only a single method is retrieved by SBMF that produces
recall 33.33%. On the contrary, KBCS and IDCS cannot
retrieve any method related to the feature. This is because
no method contains decode and URL simultaneously in the
signature. Although one of these methods named getPath does
not provide any semantic information representing the fea-
ture, it invokes a library method - URLDecoder.decode(path,
”UTF-8”) which implements the feature. SBMF considers the
invocation statement for getting more relevant terms and thus,
retrieves this method. Two other methods cannot be retrieved
by SBMF due to finding no structural similarity among these
and no keywords representing the feature.

According to Fig. 1, 100% recall is obtained for SBMF,
and 33.33% for KBCS and IDCS individually with respect to
feature no. 4 (Generating MD5 hash). It is clear that SBMF

Fig. 3. Feature Successfulness Analysis
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has higher recall than other two approaches. The reason is that
most of the methods implementing this feature do not have
proper names to represent their intent. There are 5 methods
relevant to this feature and only one method is found having
name consistent with the feature. KBCS and IDCS fail to re-
trieve all these methods because both techniques extract terms
from individual method and do not consider appropriateness
of the terms. However, SBMF finds that these methods are
semantically similar. So, these methods are indexed under
common terms. As a result, when user query matches with
one of these methods, other three methods are also retrieved
with this.

For feature no. 5, 6 and 7, IDCS cannot retrieve any
method from the code base used in this experiment. The
reason is that appropriate parameter type is not determined
in the user queries used for this feature. However, KBCS
shows 50%, 33.33%, and 66.67% recall for feature no. 5, 6
and 7 respectively. On the other hand, SBMF shows 100%
for features no. 5 and 7, and 33.33% for feature no. 6 as
illustrated in Fig. 1. For feature no. 5, two relevant methods are
found which names are transpose and rotate correspondingly.
These two methods are feature-wise similar which is detected
by SBMF and indexed under common terms (i.e., rotate and
transpose). On the other hand, KBCS does not check similarity,
and analyzes each method individually during indexing. So,
only rotate method is retrieved by KBCS. For feature no. 7,
SBMF retrieves one more method than KBCS because this
method does not contain any term related to image but it uses
a field of type Image. SBMF considers this usage since scaling
operation is performed on this field by the method, and adds
additional term Image against the method.

SBMF, KBCS, and IDCS show equal performance for
feature no. 8 (Encoding String to HTML) in terms of recall.
However, 50% relevant methods cannot be retrieved because
no HTML keyword is found in these method.

Only SBMF is able to retrieve 21 relevant methods whereas
other techniques cannot fetch a single method for feature no. 9
(Joining String). Here, SBMF outperforms because it identifies
many structurally similar methods which have different names
but all these perform string concatenation. Among these,
several methods are found which have proper keywords in
their body. These keywords are attached to the term list of
each similar method by SBMF. As a result, these are indexed
under common appropriate terms and all these are retrieved
simultaneously. However, other 26 relevant methods cannot be
retrieved since no signature matching is found among these.

Number of Retrieved Methods (NRM) and Feature
Successfulness Analysis: As NRM is an important measure to
perceive recall of a search engine, a comparative result analysis
with respect to NRM is performed here. A bar diagram is
shown in Fig. 2 depicting feature-wise NRM by SBMF, KBCS,
and IDCS. According to the diagram, SBMF retrieves more
methods than KBCS and IDCS because of adding common
terms to each method.

Although IDCS produces better precision than KBCS and
SBMF, it cannot retrieve a single method for some features

(such as feature No, 2, 3, 5, 6, 7, 9). The reason is that
user queries do not have proper parameter type or return
type. This scenario is common when developers have little or
no knowledge about the implementation of a feature. KBCS
and SBMF mitigate the problem by retrieving more relevant
methods adopting free text search. In order to determine
whether a feature is successful or not, a metric named feature
successfulness is introduced. A feature is said to be successful
if at least one relevant method is retrieved that implements
the feature. Fig. 3 presents the number of successful features
among SBMF, KBCS, and IDCS. According to this figure,
SBMF is successful for all the 9 features whereas 7 and 3
successful features are found for KBCS and IDCS respectively.
This measure provides a notion that having higher precision
is not effective if number of successful feature is low. In
addition, improving recall increases the chances of having
higher number of successful feature. For this reason, SBMF
performs better than KBCS and IDCS.

V. THREATS TO VALIDITY

In this section, limitations of the experimental study are
discussed in terms of internal, external, and construct validity.

a) Internal Validity: In the experiment, there was no
control over the skills of the subjects. However, the risks of
this threat are reduced by applying repetitive measurement
approach because same user created queries for KBCS, IDCS,
and SBMF and evaluated the search results.

b) External Validity: The set of features selected may not
generalize to the population of software functions. However,
these features are among the most common features used for
the evaluation in code search. Another possible threat is that
projects used in the experiment may not be sufficient enough.
However, these projects are statistically representative of open
source projects as highlighted in [7].

c) Construct Validity: Existing code clone detection
technique can be used to improve recall in code search.
However, SBMF differs from code clone detection in several
points. SBMF can detect similar methods written in different
programming languages and only the execution of method is
platform dependent. Another point is that code clone detection
technique may provide false positive results to feature-wise
clone detection (usually known as Type IV) if values of certain
parameters are not defined properly [26]. As a result search en-
gine may retrieve irrelevant methods. However, SBMF checks
dynamic behavior through executing method and matches the
output for corresponding input to detect feature-wise similar
methods. Such mechanism ensures that methods providing the
same output, are feature-wise similar and thus no irrelevant
method is added to these methods. Besides recall, two other
metrics are used in the study to observe the effectiveness of
the technique. Although precision is not shown directly in the
result analysis due to space limitation, it can be obtained by
using data given in TABLE I and Fig. 2.

VI. CONCLUSION

The recall of a code search engine reduces if similar code
fragments are indexed under common proper terms. So, a
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technique named SBMF is proposed in this paper which
indexes both syntactically and semantically similar methods
under common terms. The technique is implemented as a
complete software, that constructs index and retrieves relevant
methods against the user query.

SBMF first identifies all the methods in the code base by
parsing the source code. It converts the methods into reusable
methods by resolving data dependency and redefining method
signature. Feature-wise similar methods are detected through
checking signature and executing methods. Here, methods that
produce the same output set for a randomly generated set of
input values, are considered as similar methods and these are
kept under a cluster. Thus, all the methods are distributed
into a set of clusters where each cluster contains feature-wise
similar methods and any two clusters differ from one another
in implemented feature. All these methods are indexed against
the terms that are found in more than half of the methods in
the cluster. At last, query expansion is performed to increase
the probability of retrieving more methods.

For experimental analysis of the technique, 50 open source
projects were selected to build the code base and 9 features
were chosen to generate queries. An existing technique named
Sourcerer was used to compare the results to SBMF. While
analyzing the results it has been seen that SBMF shows 38%
improvement in recall than KBCS and 58% than IDCS. It
also retrieves relevant methods for all the 9 features, whereas
KBCS and IDCS retrieves for 7 and 3 features, respectively.
In future, the experiment will be conducted on a large scale
dataset to observe the behavior of the technique.
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