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Abstract—Combinatorial t-way testing with small t is known as
an e�cient black-box testing technique to detect parameter inter-
action failures. So far, several empirical studies have reported the
e↵ectiveness of t-way testing on fault detection abilities. However,
few studies have investigated the e↵ectiveness of t-way testing
on code coverage, which is one of the most important coverage
criteria widely used for software testing. This paper presents a
quantitative analysis to evaluate the code-coverage e↵ectiveness
of t-way testing. Using three open source utility programs, we
compare t-way testing with exhaustive (all combination) testing
w. r. t. code coverage and test suite sizes.

Keywords-Combinatorial testing; t-way testing; Exhaustive test-
ing; Code coverage; Line coverage; Branch coverage.

I. Introduction

Combinatorial testing [15], [20] is a common black-box
testing to detect failures caused by parameter interactions.
Modern software systems have a lot of parameters, and thus
their interactions are too numerous to be exhaustively tested.
Combinatorial t-way testing [15], [20], where t is called an
interaction strength, addresses this problem by testing all value
combinations of t parameters with small t, instead of testing all
parameter-value combinations exhaustively. t-way testing has
been applied to e. g. conformance testing for DOM (Document
Object Model) Events standard [19], rich web applications
[18], commercial MP3 players [25], and a ticket gate system
for transportation companies [14].

Kuhn et al. [16] investigated the fault detection e↵ectiveness
of t-way testing; their result showed that t-way testing with
small interaction strength t ( 4) can e�ciently detect most
interaction failures while significantly reducing the number
of test cases compared to exhaustive testing, which tests all
parameter-value combinations. Other studies [2], [8], [25] also
supported the result by Kuhn et al. [16].

On the other hand, as far as we know, the only work by
Giannakopoulou et al. [10] reported the e↵ectiveness of t-
way testing on code coverage. They compared code coverage
between their model-checker based exhaustive testing and
3-way testing with two program modules for a NASA air
transportation system.

Code coverage, which measures what percentage of source
code is executed by a test suite, has been considered as one of
the most important coverage metrics for software testing and
is required by many industrial software development standards
(e. g. [1]). Therefore, the code coverage e↵ectiveness of t-way

testing would be of big interest to practitioners who consider
applying t-way testing to their software testing.

Note that t-way testing is a black-box testing and thus is
di�cult to achieve 100% code coverage and its code coverage
depends on the system under test (SUT) model, e. g. parameters
and their values, designed for t-way testing. Therefore, in order
to evaluate the code coverage e↵ectiveness of t-way testing,
we compare code coverage obtained by t-way testing with that
by exhaustive testing, similarly to [10].

In order to quantitatively analyze the code coverage e↵ec-
tiveness of t-way testing compared to exhaustive testing, we
set up the following two research questions:
• RQ1: How high code coverage can t-way testing achieve

compared to exhaustive testing? Can t-way testing obtain
higher code coverage earlier compared to exhaustive
testing? How large interaction strength t is necessary for
t-way testing to achieve the code coverage close to that
by exhaustive testing?

• RQ2: With the same number of test cases, how di↵erent
are t-way testing and exhaustive testing on code coverage?

For evaluating the code coverage e↵ectiveness of t-way
testing, RQ1 compares t-way testing and exhaustive testing
in their original sizes, while RQ2 compares t-way testing and
exhaustive testing in the same sizes.

To answer the above research questions, we perform a case
study that analyzes t-way test suites with 1  t  4 on two kinds
of widely used code coverage; line coverage (i. e., statement
coverage) and branch coverage (i. e., decision coverage). For
an empirical case study, we use seventeen versions of three
C program projects, flex, grep, and make, from the Software-
artifact Infrastructure Repository (SIR) [7]. To prepare t-way
test suites, we first construct SUT models with constraints
from test plans in Test Specification Language (TSL) [21]
of the repository. We next generate t-way test suites for the
SUT models using two state-of-the-art t-way test generation
tools, ACTS [3], [26] and PICT [6], [31]. We evaluate the
code coverage e↵ectiveness of t-way testing by comparing the
t-way test suites and exhaustive test suites on the examining
line coverage and branch coverage with test suite sizes.

Paper Organization: Section II-A explains combinatorial
t-way testing and Section II-B describes related work on
the e↵ectiveness evaluation of t-way testing. Section III
describes our experimental setting, and Section IV explains
experimental results which answer the research questions.
Section V concludes this paper.
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TABLE I
An example SUT model.

Parameter Values

Debug mode (= p1) on, o↵
Bypass use (= p2) on, o↵
Fast scanner (= p3) FastScan (= 1), FullScan (= 2), o↵

Constraint:
(Fast scanner = FullScan) ! (Bypass use , on)

TABLE II
An example of all possible pairs of parameter-values.

Param. pairs Parameter-value pairs

(p1, p2) (on, on), (on, o↵), (o↵, on), (o↵, o↵)
(p1, p3) (on, 1), (on, 2), (on, o↵), (o↵, 1), (o↵, 2), (o↵, o↵)
(p2, p3) (on, 1), (on, o↵), (o↵, 1), (o↵, 2), (o↵, o↵)

II. Background and RelatedWork
A. Combinatorial t-way Testing

The System Under Test (SUT) for combinatorial testing
is modeled from parameters, their associated values from
finite sets, and constraints between parameter-values. For
instance, the SUT model shown in Table I, has three parameters
(p1, p2, p3); the first two parameters have two possible values
and the other has three possibilities. Constraints among
parameter-values exist when some parameter-value combina-
tions cannot occur. The example SUT has a constraint such
that p2 , on if p3 = 1, i. e., the combination of p2 = on and
p3 = 1 is not allowed.

More formally, a model of an SUT is defined as follows:

Definition 1 (SUT model). An SUT model is a triple hP,V, �i,
where

• P is a finite set of parameters p1, . . . , p|P|,
• V is a family that assigns a finite value domain V

i

for

each parameter p

i

(1  i  |P|), and

• � is a constraint on parameter-value combinations.

A test case is a value assignment for the parameters that
satisfies the SUT constraint. For example, a 3-tuple (p1 =on,

p2 =on, p3 =1) is a test case for our example SUT model. We
call a sequence of test cases a test suite.

An exhaustive test suite (i. e. all combination test suite) is
a sequence of all possible test cases, i. e., a test suite that
covers all parameter-value combinations satisfying the SUT
constraint. In general, exhaustive testing is impractical since it
stipulates to test all possible test cases and thus its size (the
number of test cases) increases exponentially with the number
of parameters.

Combinatorial t-way testing (e. g., pairwise, when t = 2)
alternatively stipulates to test all t-way parameter-value combi-
nations satisfying the SUT constraint at least once. We call t

an interaction strength. An exhaustive test suite corresponds
to a t-way test suite with t = |P|.
Definition 2 (t-way test suite). Let hP,V, �i be an SUT model.

TABLE III
A 2-way test suite T1.

p1 p2 p3

1 on on 1
2 on o↵ o↵
3 o↵ o↵ 1
4 o↵ on o↵
5 o↵ o↵ 2
6 on o↵ 1

TABLE IV
An exhaustive test suite T2.

p1 p2 p3

1 on on 1
2 on on o↵
3 on o↵ 1
4 on o↵ 2
5 on o↵ o↵
6 o↵ on 1
7 o↵ on o↵
8 o↵ o↵ 1
9 o↵ o↵ 2

10 o↵ o↵ o↵

TABLE V
Related work.

Metrics studied

Code coverage Fault detection

Kuhn et al. (2004) [16] X
Zhang et al. (2012) [25] X
Petke et al. (2015) [22] X
Henard et al. (2015) [11] X

Choi et al. (2016) [4] X
Giannakopoulou et al. (2011) [10] X

This paper X

We say that a tuple of t (1  t  |P|) parameter-values is

possible i↵ it does not contradict the SUT constraint �. A

t-way test suite for the SUT model is a test suite that covers

all possible t-tuples of parameter-values in the SUT model.

Example 1. Consider the SUT model in Table I and t = 2.

There exist 15 possible t-tuples (pairs) of parameter-values, as

shown in Table II. The test suites T1 in Table III is a 2-way

(pairwise) test suite since it covers all the possible parameter-

value pairs in Table II. T2 in Table IV is a 3-way test suite

and corresponds to the exhaustive test suite since the number

of parameters in the example model is three .

Many algorithms to e�ciently construct t-way test suites
have been proposed so far. Approaches to generate t-way
test suites for SUT models with constraints include greedy
algorithms (e. g., AETG [5], PICT [6], [31], and ACTS [3],
[26]), heuristic search (e. g., CASA [9], HHSA [12], and
TCA [17]), and SAT-based approaches (e. g., Calot [23], [24]).

B. Related Work: E↵ectiveness evaluation of t-way testing

The e↵ectiveness of t-way testing with small interaction
strength t on fault detection have been reported by several
empirical studies so far [13], [15], but the code coverage of
t-way testing has not been studied well. Table V summarizes
the e↵ectiveness metrics studied in related work.

Kuhn et al. [16] investigated parameter interactions inducing
actual failures of four systems; a software for medical devices,
a browser, a server, and a database system. As a result, 29–68%
of the faults involved a single parameter; 70–97% (89–99%)
of the faults involved up to two (three) parameter interactions;
96–100% of the faults involved up to four and five parameter
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interactions; no fault involved more than six parameters. From
the result, the authors concluded that most failures are triggered
by parameter interactions with small t (at most four to six)
and thus t-way testing with 4  t  6 could provide the fault
detection ability of “pseudo-exhaustive” testing.

Zhang et al. [25] also explored that failures of actual
commercial MP3 players are triggered by t-way parameter
interactions with at most t = 4.

Petke et al. [22] more thoroughly studied the e�ciency of
early fault detection by t-way testing with 2  t  6. They
used six projects, flex, make, grep, gzip, nanoxml, and siena,
from the Software artifact Infrastructure Repository (SIR) and
showed the number of faults detected after 25%, 50%, 70%,
and 100% of test cases are executed.

Henard et al. [11] used five projects, grep, sed, flex, make,
and gzip, also from SIR and compared the number of faults
detected by test suite prioritization with t-way coverage (2 
t  4) and other black-box and white-box prioritization.

Choi et al. [4] used three projects, flex, grep, and make,
from SIR and investigated a correlation of the fault detection ef-
fectiveness with two evaluation metrics, called weight coverage
and KL divergence, for prioritized t (= 2)-way testing.

To our knowledge, the only work by Giannakopoulou et
al. [10] reported code coverage of t-way testing. Their target
system is a component of the Tactical Separation Assisted
Flight Environment (TSAFE) of the Next Generation Air
Transportation System (NextGen) by the NASA Ames Research
Center. In their work, t (= 3)-way testing and their model-
checker (JPF [30]) based exhaustive testing are compared
w. r. t. code coverage; line coverage, branch coverage, loop
coverage, and strict condition coverage, which are computed
using CodeCover [28].

Giannakopoulou et al. reported that for two program mod-
ules, the di↵erences of code coverage by 3-way testing and
exhaustive testing are 0–2% for the four coverage metrics they
used, while the numbers of test cases are 6,047 for 3-way
testing but 9.9 ⇥ 106 for exhaustive testing. In this paper, we
more thoroughly analyze the code coverage e↵ectiveness of
t-way testing with 1  t  4 using three open source utility
programs.

III. Experiments

A. Subject Programs

To investigate code coverage of t-way testing, we use three
open source projects of C programs, flex, grep, and make,
from the Software artifact Infrastructure Repository (SIR) [32].
flex is a lexical analysis generator. grep is a program to search
for text matching regular expressions. make is a program to
control the compile and build process. The programs have
been widely used to evaluate testing techniques by researchers
in studies including [4], [11], [22]. Table VI shows for each
version of programs we use, the version identifier, the year
released, and the lines of code (LoC) calculated using cloc [27].

TABLE VI
Subject programs.

Proj. Ver. Identifier Year of release LoC

flex

v0 2.4.3 1993 10,163
v1 2.4.7 1994 10,546
v2 2.5.1 1995 13,000
v3 2.5.2 1996 13,048
v4 2.5.3 1996 13,142
v5 2.5.4 1997 13,144

grep

v0 2.0 1996 8,163
v1 2.2 1998 11,945
v2 2.3 1999 12,681
v3 2.4 1999 12,780
v4 2.4.1 2000 13,280
v5 2.4.2 2000 13,275

make

v0 3.75 1996 17,424
v1 3.76.1 1997 18,525
v2 3.77 1998 19,610
v3 3.78.1 1999 20,401
v4 3.79.1 2000 23,188

Parameters:

...

Debug mode: # -d

Debug_on.

Debug_off.

Bypass use: # -Cr

Bypass_on. [property Bypass]

Bypass_off.

Fast scanner: # -f, -Cf

FastScan. [property FastScan]

FullScan. [if !Bypass][property FullScan]

off. [property f&Cfoff]

...

Fig. 1. A part of the test plan for flex in TSL.

B. Subject Test Suites

1) SUT Models: For each project, flex, grep, and make, we
construct an SUT model for t-way testing whose parameters,
values, and constraints are fully extracted from the test plan in
TSL (Test Specification Language), which is included in SIR.
For example, Figure 1 shows a part of the test plan in TSL for
project flex. From the TSL specification, we construct the SUT
model for flex whose parameters include Debug mode(= p1),
Bypass use(= p2) and Fast scanner(= p3), p2 has two values
including Bypass on(= on), p3 has three values including
FullScan(= 2), and constraints include (p3 = 2)! (p2 , on).
Table I corresponds to a part of the SUT model for flex, which
is constructed from the part of the test plan in Figure 1.

Table VII shows the size of the SUT model constructed
for each project. In the table, the size of parameter-values is
expressed as k; g

k1
1 g

k2
2 . . . g

k

n

n

, which indicates that the number of
parameters is k and for each i there are k

i

parameters that have
g

i

values. The size of constraints is expressed as l; l

h1
1 l

h2
2 . . . l

h

m

m

,
which indicates that the constraint is described in conjunctive
normal form (CNF) with l variables whose Boolean value
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TABLE VII
Constructed SUT models.

Proj. Model size

flex

Parameter-values 29; 3234462

Constraints 97; 27122212422517269

grep

Parameter-values 14; 243143516191111131201

Constraints 87; 243332748751612412712813110

make

Parameter-values 22; 2231244526171

Constraints 79; 2526211221231243257269

TABLE VIII
Sizes and code coverage of exhaustive test suites.

Proj. Size Line coverage Branch coverage

flex 525
Avg. 0.7968 0.8544
Min. 0.7789 0.8151
Max. 0.8312 0.9316

grep 470
Avg. 0.4961 0.4948
Min. 0.4726 0.4746
Max. 0.5900 0.5826

make 793
Avg. 0.4543 0.5373
Min. 0.4234 0.5126
Max. 0.4726 0.5494

represents an assignment of a value to a parameter and for
each j there are h

j

clauses that have l

j

literals. For the example
SUT model in Figure 1, the size of parameter-values is 3; 2231

and the size of constraints is 2; 21.
2) Test Suites: We use t-way test suites with 1  t  4 that

are generated by ACTS [3], [26] and PICT [6], [31] for our
constructed SUT models with constraints. The tools ACTS and
PICT are state-of-the-art open source t-way test generation
tools developed by NIST (National Institute of Standards and
Technology) and Microsoft, respectively. For comparison, we
also use exhaustive test suites each of which obtains all possible
test cases. The exhaustive test suite for the test plan of each
project is included in SIR.

3) Evaluation Metrics: To evaluate code coverage of each
test suite, we analyze the following two kinds of code coverage,
which are computed using gcov [29]:
• Line coverage: the percentage of program lines executed.
• Branch coverage: the percentage of branches of conditional

statements executed.
gcov is a source code analysis tool, which is a standard utility
delivered with the GNU C/C++ Compiler and reports how
many lines and branches are executed.

IV. Results
Table VIII shows the size, i. e. the number of test cases,

and the code coverage (line coverage and branch coverage) of
the exhaustive test suite for each project, while Table IX and
Table X show those of the subject t-way test suites (1  t  4)
generated by ACTS and PICT. Table IX shows the sizes of the
subject t-way test suites with the ratio of them over the sizes of
exhaustive test suites. Table X summarizes line coverage and
branch coverage of the subject t-way test suites for each project.

Line Branch

●

● ● ●

●●●●

●

●

●
●

0.96

0.97

0.98

0.99

1.00

1−way 2−way 3−way 4−way 1−way 2−way 3−way 4−way

Fig. 2. Ratio of code coverage of t-way testing (1  t  4) over that of
exhaustive testing for all versions of projects.

Line Branch

0.2

0.3

0.4

0.5

0 100 200 300 400 0 100 200 300 400
Test cases

1−way
2−way
3−way
4−way
Exhaustive

Fig. 3. Example code coverage growths of t-way testing (1  t  4) and
exhaustive testing for one version (v1) of grep.

In Table VIII and Table X, we show the average, minimum,
and maximum values of code coverage for versions of each
project.

For example, for project flex, the sizes of 2-way test suites
(52 by ACTS and 51 by PICT) are less than 10% of the size
of the exhaustive test suite (525) from Table VIII and Table IX.
On the other hand, for flex, line coverage and branch coverage
of 2-way test suites (the exhaustive test suite) are on average
0.7927 (0.7968) and 0.8522 (0.8544) from Table VIII and
Table X.

A. RQ1: t-way testing vs. exhaustive testing

To compare the code coverage between t-way testing and
exhaustive testing, we investigate the following metric

R

Cov

(T
t

, EX) = Cov(T
t

) / Cov(EX),

which denotes the ratio of code coverage of t-way test suite
T

t

over that of exhaustive test suite EX.
Table XI summarizes the values of R

Cov

(T
t

, EX) with 1  t 
4 for line coverage and branch coverage for each project and
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TABLE IX
Sizes of t-way test suites (1  t  4).

Proj. # of test cases (ratio over # of the exhaustive test cases)

1-way 2-way 3-way 4-way

flex

ACTS 30 (5.71 %) 52 (9.90 %) 91 (17.33 %) 155 (29.52 %)
PICT 30 (5.71 %) 51 (9.71 %) 90 (17.14 %) 154 (29.33 %)

grep

ACTS 40 (8.51 %) 76 (16.17 %) 183 (38.94 %) 328 (69.79 %)
PICT 40 (8.51 %) 77 (16.38 %) 180 (38.30 %) 326 (69.36 %)

make

ACTS 27 (3.40 %) 34 (4.29 %) 44 (5.55 %) 68 (8.58 %)
PICT 27 (3.40 %) 34 (4.29 %) 45 (5.67 %) 69 (8.70 %)

TABLE X
Code coverage of t-way test suites (1  t  4).

Proj. Line coverage Branch coverage

1-way 2-way 3-way 4-way 1-way 2-way 3-way 4-way

flex

Avg. 0.7683 0.7927 0.7934 0.7931 0.8407 0.8522 0.8522 0.8522
Min. 0.7481 0.7755 0.7763 0.7755 0.8018 0.8136 0.8136 0.8136
Max. 0.8145 0.8264 0.8267 0.8267 0.9225 0.9281 0.9281 0.9281

grep

Avg. 0.4917 0.4959 0.4961 0.4961 0.4769 0.4880 0.4933 0.4948
Min. 0.4668 0.4723 0.4726 0.4726 0.4549 0.4676 0.4712 0.4746
Max. 0.5875 0.5897 0.5900 0.5900 0.5726 0.5786 0.5845 0.5826

make

Avg. 0.4451 0.4539 0.4540 0.4540 0.5321 0.5364 0.5366 0.5366
Min. 0.4168 0.4230 0.4230 0.4230 0.5053 0.5117 0.5117 0.5117
Max. 0.4628 0.4724 0.4724 0.4726 0.5442 0.5484 0.5484 0.5484

TABLE XI
Comparison of code coverage between t-way testing (1  t  4) and exhaustive testing.

Proj. Line coverage Branch coverage

1-way 2-way 3-way 4-way 1-way 2-way 3-way 4-way

flex 96.41 % 99.49 % 99.58 % 99.54 % 98.40 % 99.74 % 99.74 % 99.74 %
Avg. of R

Cov

(T
t

, EX) grep 99.11 % 99.95 % 100.00 % 100.00 % 96.32 % 98.58 % 99.67 % 100.00 %
(R = Cov(T

t

)/Cov(EX)) make 97.97 % 99.91 % 99.93 % 99.92 % 99.03 % 99.84 % 99.88 % 99.87 %
Avg. 97.82 % 99.77 % 99.83 % 99.81 % 97.85 % 99.36 % 99.76 % 99.87 %

flex 0 / 12 8 / 12 8 / 12 8 / 12 0 / 12 12 / 12 12 / 12 12 / 12
# (R � 99.5 %) grep 4 / 12 12 / 12 12 / 12 12 / 12 0 / 12 0 / 12 7 / 12 12 / 12
/ # all cases make 0 / 10 10 / 10 10 / 10 10 / 10 0 / 10 10 / 10 10 / 10 10 / 10

Total 4 / 34 30 / 34 30 / 34 30 / 34 0 / 34 22 / 34 29 / 34 34 / 34

all projects. In the table, we also show the numbers of cases
where R

Cov

(T
t

, EX) � 99.5%, i. e. t-way testing achieves more
than 99.5% of the coverage obtained by exhaustive testing,
over the numbers of all cases (versions) for projects.

Figure 2 presents the box plots for the results of R

Cov

(T
t

, EX)
for all projects. Each box plot shows the mean (circle in the
box), median (thick horizontal line), the first/third quartiles
(hinges), and highest/lowest values within 1.5 ⇥ the inter-
quartile range of the hinge (whiskers).
• How high code coverage can t-way testing achieve

compared to exhaustive testing?
From Table XI and Figure 2, we can see that t-way testing

with even small t can achieve high values of R

Cov

(T
t

, EX),
i. e. high ratios of code coverage over the code coverage of
exhaustive testing.

In the result of our case study, 1-way (2-way) testing covers
avg. 97.82% (99.77%) of line coverage of exhaustive testing and

avg. 97.85% (99.36%) of branch coverage of exhaustive testing.
With 3-way (4-way) testing, line coverage is avg. 99.83%
(99.81%) and branch coverage is avg. 99.76% (99.87%) of the
coverage of exhaustive testing.
• Can t-way testing obtain higher code coverage earlier

compared to exhaustive testing?
Figure 3 shows example line coverage growths and branch

coverage growths of t-way test suites (1  t  4) and the
exhaustive test suites for one version (v1) of project grep. (The
coverage growths represent the typical cases of our experiment
results.) We can see that t-way testing with smaller t obtains
higher code coverage earlier compared to exhaustive testing
and t-way testing with larger t.

For the example case in Figure 3, to obtain 48% line coverage
(46% branch coverage), 1-way, 2-way, 3-way, and 4-way testing
respectively require 35, 42, 56, and 56 (36, 47, 71, and 71) test
cases, while exhaustive testing requires 219 (265) test cases.
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Fig. 4. Ratios of code coverage of t-way testing (1  t  4) over that of
exhaustive testing with the same sizes for all versions of projects.

• How large t is necessary for t-way testing to achieve the
code coverage close to that by exhaustive testing?

Surprisingly, as the result of our case study, all t-way test
suites with 1  t  4 obtain more than 95% of code coverage
of exhaustive test suites. Especially, for project grep, 4-way
test suites obtain the same line coverage and branch coverage
with the exhaustive test suite. As described in Table XI, in
30 cases of all 34 cases, 2-way, 3-way, and 4-way test suites
achieve more than 99.5% of line coverage of exhaustive test
suites. For branch coverage, in all cases, 4-way test suites
achieve more than 99.5% of coverage of exhaustive test suites.

From the results, t-way testing with small t (1  t 
4) can e�ciently obtain code coverage close to that by

exhaustive testing while requiring smaller test cases.

B. RQ2: t-way testing vs. exhaustive testing in the same sizes

To compare the code coverage between t-way testing and
exhaustive testing with the same sizes, we investigate the
following metric

R

Cov

(T
t

, EX⇤) = Cov(T
t

) / Cov(EX⇤),
which denotes the ratio of code coverage of t-way test suite T

t

over that of a subset, hereafter denoted by EX⇤, of exhaustive
test suite EX whose size is same with T

t

. In our experiments,
we constructed EX⇤ 100 times by randomly selecting |T

t

| test
cases from exhaustive test suite EX and use the average value
of the code coverage for the 100 EX⇤.

Table XII summarizes the values of R

Cov

(T
t

, EX⇤) with 1 
t  4 for line coverage and branch coverage for each project
and all projects. In the table, we also show the numbers of
cases where R

Cov

(T
t

, EX⇤) � 105%, i. e. t-way testing achieves
more than 105% of the coverage obtained by exhaustive testing
with the same size, over the numbers of all cases for projects.
Figure 4 presents the box plots for the results of R

Cov

(T
t

, EX⇤)
for all projects.

• With the same number of test cases, how di↵erent are
t-way testing and exhaustive testing on code coverage?

From Table XII and Figure 4, we can see that t-way test
suites with 1  t  4 achieve higher line coverage and branch
coverage compared to exhaustive test suites in the same sizes.
Especially, t-way testing with smaller t obtains higher values
of R

Cov

(T
t

, EX⇤), i. e. higher ratios of code coverage over that
of exhaustive testing in the same size.

As described in Table XII, for all cases, 1-way and 2-way
testing achieve more than 105% of code coverage of exhaustive
testing with the same size. For 3-way and 4-way testing, the
numbers of cases that achieve more than 105% of line (branch)
coverage of exhaustive testing with the same sizes are 24 and
20 (24 and 16) cases among all 34 cases.

From the results, t-way testing with smaller t can obtain

higher code coverage compared to exhaustive testing with

the same number of test cases.

V. Conclusion
This paper analyzes the code coverage e↵ectiveness of

combinatorial t-way testing with small t. As a result of our
empirical evaluation using a collection of open source utility
programs, t-way testing with small t (1  t  4) e�ciently
covers more than 95% of code coverage achieved by exhaustive
testing, while requiring much smaller test cases. In addition,
comparing in the same test suite sizes, t-way testing with
smaller t obtains higher ratio of code coverage over that by
exhaustive testing.

In this paper, we evaluate two kinds of widely used code
coverage metrics, line coverage and branch coverage. Further
work includes evaluating other metrics such as loop coverage,
condition coverage, etc. Another further work is to investigate
both the code coverage e↵ectiveness and the fault detection
e↵ectiveness of t-way testing and analyze the relation between
them on real software projects.
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