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Abstract

We investigate how neural networks can be used for hierarchical, compositional
semantics. To this end, we define the simple but nontrivial artificial task of pro-
cessing nested arithmetic expressions and study whether different types of neural
networks can learn to add and subtract. We find that recursive neural networks
can implement a generalising solution, and we visualise the intermediate steps:
projection, summation and squashing. We also show that gated recurrent neural
networks, which process the expressions incrementally, perform surprisingly well
on this task: they learn to predict the outcome of the arithmetic expressions with
reasonable accuracy, although performance deteriorates with increasing length. To
analyse what strategy the recurrent network applies, visualisation techniques are
less insightful. Therefore, we develop an approach where we formulate and test
hypotheses on what strategies these networks might be following. For each hypoth-
esis, we derive predictions about features of the hidden state representations at each
time step, and train ’diagnostic classifiers’ to test those predictions. Our results
indicate the networks follow a strategy similar to our hypothesised ’incremental
strategy’.

1 Introduction

A key property of language is its hierarchical compositional semantics: the meaning of larger wholes 
such as phrases and sentences depends on the meaning of the words they are composed of and the 
way they are put together, and phrases can be hierarchically combined into more complex phrases. 
For example, the meaning of the compound noun natural language research paper is a combination 
of the meanings of natural language and research paper, which in turn are combinations of the 
meanings of the individual words. Whether ‘classical’ neural networks can adequately compute the 
grammaticality and meaning of sentences with hierarchical structure has been a the topic of many 
heated debates in linguistics and cognitive science [e.g. Pinker and Mehler, 1990, Fodor and Pylyshyn, 
1988].

In the literature, one can find many attempts at designing neural models that are able to capture 
hierarchical compositionality [e.g. Elman, 1990, Rodriguez, 2001, Martens, 2011], as well as a vast 
amount of papers on improved computational methods to train such models [e.g. Zeiler, 2012, Kingma 
and Ba, 2014], but very few focus on understanding the internal dynamics of the parameter-rich 
models [but see Karpathy et al., 2015]. In this paper, we do not focus on designing better training 
algorithms or models, or even on achieving high accuracies, but rather on understanding how neural 
networks can implement solutions that involve hierarchical compositionality.

A substantial problem encountered in such an undertaking, is the difficulty of evaluating whether 
a neural model can in fact capture the semantics of a sentence, as meanings can usually not be 
summarised by a single number or class. Several tools have been developed to assess the quality of
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result_stack = [], mode_stack = [];
result = 0, mode = +;
for symbol in expression do

if symbol == ’(’ then
mode_stack.append(mode);
result_stack.append(result);
result = 0

else if symbol == ’)’ then
mode = mode_stack.pop();
prev_result = result_stack.pop();
result = mode(prev_result, result)

else if symbol == ’+’ then
mode = +

else if symbol == ’-’ then
mode = -

else
result = apply(mode, result, symbol)

end
return result

(a) Recursive strategy

mode_stack = [];
result = 0, mode = +;
for symbol in expression do

if symbol == ’(’ then
mode_stack.append(mode)

else if symbol == ’)’ then
mode = mode_stack.pop()

else if symbol == ’+’ then
pass

else if symbol == ’-’ then
if mode == - then

mode = +
else

mode = -
else

result = apply(mode, result, symbol)
end
return result

(b) Incremental strategy

Figure 1: Different symbolic strategies for incrementally solving arithmetic expressions incrementally.
The apply function applies the operator specified by mode (+,−) to the two numbers specified by
result and symbol.

lexical representations, but no satisfactory option is available to study representations that result from
composition. A common approach to train and evaluate sentence representations is to have them
execute a task that requires semantic knowledge of the sentence such as sentiment analysis, logical
inference or question-answering [e.g. Le and Zuidema, 2015a,b, Hermann et al., 2015].

Although solving such tasks might be worth pursuing in its own right, this task-driven setting obscures
the mechanisms for semantic composition that we aim to investigate. Therefore, in this paper we take
a different approach, by looking at an artificial language of which both the sentences and the lexical
items have clearly (and symbolically) defined meanings. We present a thorough analysis of two
different kinds of neural models that process sentences from this language, as well as an innovative
method to study their behaviour: the diagnostic classifier.

2 Arithmetic language

The language we consider for this study consists of words for all integers in the range {−10, . . . , 10},
the operators + and � and the brackets ( and ). All (bracketed) mathematically correct expressions
that can be formed with these words constitute the sentences of the arithmetic language. The
(compositional) meaning of a sentence is the solution of the corresponding arithmetic expression. As
the minus operator is non-commutative, meanings depend not only on lexical items, but also on the
syntactic structure as prescribed by the brackets. The unambiguously defined syntax and semantics,
as well as their entanglement, make the arithmetic language very suitable to evaluate whether and
how neural network models can learn compositional semantics.

Naturally, we do not aim to find or improve ways to solve the task of computing the outcome
of arithmetic expressions. Rather, we study the solutions found by neural networks, using our
understanding of how the task can be solved symbolically. In what follows, we will distinguish
sentences by length, that is: ‘L7’ refers to those sentences that contain exactly 7 digits. We also
distinguish subsets containing only left-branching (e.g. L9L) or right-branching expressions (L6R),
respectively, as well as syntactically non-restricted subsets.

Symbolic strategies One can think of different strategies to incrementally compute the solution
of an arithmetic expression, the perhaps most obvious of which involves recursively traversing
through the expression and computing the outcome of all subtrees before finally accumulating the
results at the end. Alternatively, the digits can be accumulated immediately at the moment they are
encountered, maintaining a prediction of the solution at any point during the computation. Figure 1
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Figure 2: Network architecture TreeRNN

contains procedural descriptions for both the recursive and the incremental strategy. An incremental
implementation of the recursive strategy requires a stack to store previously computed outcomes of
subtrees, as well as the operators needed to integrate them. The incremental strategy, on the other
hand, requires only information about previously seen operators, which is less demanding.

3 Models

We study two types of network architectures: recursive neural networks and recurrent neural networks.
The former are structured following the syntactic structure of a sentence, whereas the latter processes
sentences sequentially, reading them one word at the time.

3.1 Recursive Neural Network (TreeRNN)

The Recursive Neural Network or TreeRNN [Socher et al., 2010, Goller and Kuechler, 1996] is
a hybrid symbolic-connectionist model that explicitly deals with compositionality by shaping its
architecture after the syntactic structure of its input. This structure is thus assumed to be known
beforehand, when the network is instantiated, which makes the network dependent on external parses.
Figure 2a shows a TreeRNN instantiation of an L3 expression.

The composition function of the TreeRNN

p = tanh(W · [x1;x2;x3] + b), (1)

where W ∈ Rd×3d and b ∈ Rd, operates on the concatenation of three d-dimensional vectors
{x1,x2,x3} that represent subphrases or words. The result is a vectorial parent representation p of
the same dimensionality d. As such, the function can be applied recursively. Notably, there is a single
composition function that is applied for each subtree, where the operators are treated as lexical items.

Training The composition function is trained in a regime inspired by Bowman et al. [2015b], who
train a network for logical reasoning. Two sentence meanings are computed by treeRNNs with shared
parameters. An additional neural classifier predicts the relation between the concatenated sentence
representations, which generates an error signal that is backpropagated to update the parameters.
In this case, the prediction concerns the (in)equality (’<’, ’=’ or ’>’) that holds between the two
(numerical) solutions. This training setup is displayed in Figure 2b.

3.2 Recurrent Neural Network (RNN)

In addition to the syntactically informed TreeRNNs, we study the behaviour of their well-known
sequential counterparts: recurrent neural networks (RNNs). In particular, we consider two types of
RNNs: simple recurrent networks (SRNs), as originally introduced by Elman [1990], and Gated
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Figure 3: Mean Squared Error of scalar prediction for best performing models on the test sentences.

Recurrent Units (GRUs), defined in [Cho et al., 2014]. The SRN consist of a single hidden layer h
with a nonlinear activation function and a feedback connection:

ht = tanh(Wxt +Uht−1 + b) (2)

The GRU is an extended version of this model, in which gates are used to modulate the recurrent
information flow. Two gate values are computed from the previous hidden layer activation and the
current input. The reset gate r affects the computation of a candidate hidden state h̃t:

rt = σ(Wrxt +Urht−1 + br) h̃t = tanh(Wxt +Uh(r� ht−1) + bh) (3)

where � denotes the element wise product and σ the logistic sigmoid function. The new activation
ht−1 is a weighted sum of the candidate activation h̃t and the previous activation ht−1, modulated
by the update gate z.

zt = σ(Wzxt +Uzht−1 + bz) ht = (1− zt)� ht−1 + zt � h̃t, (4)

All W ∈ Rh×d, all U ∈ Rh×h and all b, z and r ∈ Rh with h = |h| and d = |x|.

Training The RNNs have access to the syntactic structure implicitly, through the brackets, that are
presented to the network as words. Both the embeddings and the weights for the sequential models
are trained on an error signal from a simple linear perceptron that predicts the real-valued solution of
the expression from the hidden representation in the last time step.

4 Data and Results

We train all models on an arbitrarly sampled set of expressions from L1, L2, L4, L5 and L7 (3000
expressions from each subset) with randomly generated syntactic structures. During training we
update also the word embeddings. All models are trained using stochastic gradient descent with
minibatches. The scalar prediction models are trained with optimiser Adam [Kingma and Ba, 2014]
and mse loss, the original TreeRNNs with Adagrad [Zeiler, 2012] and cross-entropy.1

The TreeRNN obtains a classification accuracy of 0.97 on test data (sentences up to length 9) for the
comparison task. To make its results comparable to those of the sequential RNNs, we train a neural
network with one hidden layer to perform the same task as the RNNs, i.e., predicting the solution of
expressions. Importantly, we keep both the embeddings and the parameters of the TreeRNN fixed
during this training, and only update the weights of the prediction network.

The main purpose of quantifying how well the task is performed by different types networks is to
establish which models learned to perform the task well enough to analyse how they implement the

1Source code of the simulations can be found at https://github.com/dieuwkehupkes/Arithmetics.
For part of our implementation we used the Python library Keras [Chollet, 2015].
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solution. We therefore only report the results of the models that perform best, which can be found in
Figure 3.2 The SRNs do not seem to have learned a principled solution with this training regime. We
find that the TreeRNN generalises adequately to longer (unseen) sentences, evident from the smooth
progression of the performance with respect to length [the criterion used by Bowman et al., 2015a].
Although the generalisation capacity of the GRU (with |h| = 15) is weaker, it seems the GRU has
also learned a solution that is sensitive to the syntactic structure. Figure 3b reveals that completely
right-branching sentences are much harder to process for the GRU. Left-branching sentences, which
allow for direct accumulation of numbers, prove much easier. The performance of TreeRNNs, on the
other hand, suffers from tree depth, regardless of the branching direction.

5 Analysis

In the previous section, we established that a number of our trained networks can - at least to some
extent - compute the compositional meaning of sentences and phrases in the arithmetic language in a
generalising way. We will present an analysis of the internal dynamics of the best performing models,
explaining how the task of computing the outcome of the arithmetic expressions is implemented.
We will start with considering the TreeRNN, whose extremely low dimensionality allows for a
comprehensible account of the implementation of the solution. Subsequently, we will analyse the
internal dynamics of the GRU network, and introduce a new approach for testing hypotheses about
the strategies a network might engage.

5.1 TreeRNN

To understand how a TreeRNN computes the composition of digits and operators, we break down the
computation into different steps: project, sum and squash.3

Project The application function of the TreeRNN (equation 1), with W = [WL;WM ;WR], can
be rewritten as a sum of three terms, which results in the following expression for the composition
function:

p = f(WL · x1 +WM · x2 +WR · x3 + b) (5)

where each Wi ∈ R2×2 projects one of the three input children to a new position in the two
dimensional representational space. Figure 4 depicts the digit embeddings and their projections,
illustrating how the left and right children are projected to almost orthogonal subspaces.

Figure 4: The projections of the seemingly unorganised digit embeddings (blue) through WL (as left
child, green) and WR (as right child, purple) reveal their organisation.

Sum The coloured arrows in Figure 5 show how the projected representations and the bias term are
summed. From the two subfigures, it is clear that the projections of the operators + and � through
WM are roughly opposite. Together with the bias, the result is sent to positions close to the y- and
x-axis, for + and � respectively, which is important for the last step of the computation.

2Except for the SRN models, the results over different runs were comparable on a performance level.
3This analysis was part of the master thesis of Sara Veldhoen [2015].
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(a) ( 2 + 3 ) (b) ( 5 - `( 2 + 3 )' )

Figure 5: Summation of projections - left (green), middle (yellow) and right (purple) child - together
with bias term (blue). Squash (tanh activation, grey) shifts the result back to the range (−1, 1).

Squash In this last step, both coordinates of the representation are squashed into the range (−1, 1)
by the activation function tanh. As the projected representations are already within this range for
one of the dimensions, depending on the operator, the effect of the squash operation is close to a
horizontal or vertical shift.

Recursion Figure 6a depicts the representations of 2000 L9 expressions whose last applied opera-
tors (under the recursion) were subtraction (representations on horizontal line) and addition (vertical
line), respectively. In Figure 6b we see that if these representations are the input of a new operation,
they get projected onto the same diagonals (by the left and right part of the composition matrix, see
equation 5) as the digit embeddings were. Although noise may be accumulated through the depth of
the tree, this solution thus works recursively for longer expressions.

(a) Representations of L9 sentences (b) Projections of L9 representations

Figure 6: Representations of 2000 L9 expressions whose root operation was subtraction (x ≈ 1,
vertical line) or addition (y ≈ 1, horizontal line). Right: how these would get projected by WL

(green) and WR (purple) to serve as an input to a new computation.

5.2 Sequential model

Studying the internal structure of the sequential RNNs is more complicated, as the higher dimen-
sionality of the models makes visual inspection impractical. Furthermore, the complex interaction
between gates and hidden states in the GRU, as well as the fact that the networks are forced to
incrementally process an input that is not strictly locally processable, makes it much less clear which
computation is carried out at what point in time.

Diagnostic Classifiers To analyse the internal dynamics of the GRU, we propose a generic method
that can be used to test and formulate hypotheses about solutions a model could be implementing on
an algorithmic level [Marr, 1982]. Such hypotheses are formulated as sequences of targets for each
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Figure 7: Testing a single hypothesis with a diagnostic classifier.

time step, and diagnostic classifiers are trained to predict such sequences from the RNNs hidden
representations. The parameters of the original model are kept fixed during training.

For example, if the network were to follow the incremental strategy described in Figure 1b, the model
should have a representation of the intermediate result at each point in time. If the sequence of
intermediate results can be accurately predicted by a diagnostic classifier (see Figure 7), this supports
the hypothesis that these values are in fact computed by the original model. As the diagnostic model
should merely read out whether certain information is present in the hidden representations rather
than perform complex computations itself, we use a simple linear model as diagnostic classifier. In the
current paper, we test the hypothesis that the network follows either the incremental or the recursive
strategy described in Figure 1. To this end, we train three diagnostic classifiers to predict the values of
the intermediate results (result in Figure 1) and the variable mode used by the intermediate strategy
to determine whether the next number should be added or subtracted.

Results We find that the values required for the incremental strategy (mode and result) can be
more accurately predicted than the recursive intermediate strategy values (see Figure 8). From these
findings it appears unlikely that the network implements a fully recursive strategy employing a stack
of intermediate results. For the incremental strategy, on the other hand, the predictions are generally
accurate, even for longer sentences. Notably, the diagnostic models exhibit a substantially lower
accuracy for right-branching trees than for lengthy trees that are entirely left-branching. This is
consistent with assumptions about the difficulty of employing information on larger size stacks as,
contrary to right-branching trees, left-branching trees can be processed strictly locally. However,
relatively high errors for sentences from L1 and L2 (for result and mode prediction, respectively)
reveal that the network deviates from this strategy at least at some points.
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Figure 8: Results of diagnostic models for GRU on different subsets of languages
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Trajectories A similar conclusion can be drawn from studying the predictions of the diagnostic
classifiers. The predictions of the diagnostic classifiers on two randomly picked L9 sentences, along
with their target trajectories as defined by the hypotheses, are depicted in Figure 9. These trajectories
confirm that the line representing the incremental strategy is much better tracked than the recursive
one (a correlation test over 5000 L9 sentences shows the same trend: Pearson’s r = 0.52 and 0.95 for
recursive and incremental, respectively).4

( ( ( -9+ 0 ) + ( 6 + ( -8 - 7 ) ) ) + ( ( -3+-1 ) - ( 6 - -2 ) ) )
35
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Figure 9: Trajectories of the incremental (green, upper) and recursive (blue, lower) classifier, along
with their targets trajectories for the result values. Dashed lines show target trajectories.

6 Conclusions

In this paper we studied how recursive and recurrent neural networks process hierarchical structure,
using a simple arithmetic language as a convenient toy task with unambiguous syntax and semantics
and a limited vocabulary. We showed that recursive neural networks can learn to compute the meaning
of arithmetic expressions and readily generalise to expressions longer than any seen in training.
Learning was even successful when the representations were limited to two dimensions allowing a
geometrical analysis of the solution found by the network. Understanding the organisation of the
word embedding space and the nature of the projections encoded in the learned composition function,
combined with vector addition and squashing, gave us a complete picture of the compositional
semantics that the network has learned. This made clear that the network has found a near perfect
approximation of a principled, recursive solution of the arithmetic semantics.

Still, the recursive neural network is a hybrid symbolic connectionist architecture, as the network
architecture directly reflects the tree structure of the expression it must process, and this architecture
is built up anew for each new expression using a symbolic control structure. This limits both the
computational efficiency and the usefulness of this model for understanding how the human brain
might process hierarchical structure. In this paper we therefore also analyse two recurrent neural net-
work architectures: the classical Simple Recurrent Network and the recently popular Gated Recurrent
Units. As it turns out, the latter can also learn to compute the meaning of arithmetic expressions and
generalise to longer expressions than seen in training. Understanding how this network solves the
task, however, is more difficult due to its higher dimensionality, recurrent connections and gating
mechanism. To better understand what the network is doing we therefore developed an approach
based on training diagnostic classifiers on the internal representations.

The qualitative and quantitative analysis of the results of a diagnostic classifier allows us to draw
conclusions about possible strategies the network might be following. In particular, we find that
the successful networks follow a strategy very similar to our hypothesised symbolic ‘incremental
strategy’. From this we learn something about how neural networks may process languages with a
hierarchical compositional semantics and, perhaps more importantly, also provides an example of
how we can ‘open the black box’ of the many successful deep learning models in natural language
processing (and other domains), when visualisation alone is not sufficient.

4The plots in Figure 9 also point to possible further refinements of the hypothesis: where the predictions
of the model change at every point in time, the targets value often remains the same for longer time spans,
indicating that a hypothesis in which information is accumulated more gradually would give an even better fit.
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