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Abstract

We investigate solving discrete optimization problems using the ‘estimation of
distribution’ (EDA) approach via a novel combination of deep belief networks
(DBN) and inductive logic programming (ILP). While DBNs are used to learn the
structure of successively ‘better’ feasible solutions, ILP enables the incorporation
of domain-based background knowledge related to the goodness of solutions. Re-
cent work showed that ILP could be an effective way to use domain knowledge
in an EDA scenario. However, in a purely ILP-based EDA, sampling successive
populations is either inefficient or not straightforward. In our Neuro-symbolic EDA,
an ILP engine is used to construct a model for good solutions using domain-based
background knowledge. These rules are introduced as Boolean features in the
last hidden layer of DBNs used for EDA-based optimization. This incorporation
of logical ILP features requires some changes while training and sampling from
DBNs: (a) our DBNs need to be trained with data for units at the input layer as
well as some units in an otherwise hidden layer; and (b) we would like the samples
generated to be drawn from instances entailed by the logical model. We demon-
strate the viability of our approach on instances of two optimization problems:
predicting optimal depth-of-win for the KRK endgame, and job-shop scheduling.
Our results are promising: (i) On each iteration of distribution estimation, samples
obtained with an ILP-assisted DBN have a substantially greater proportion of good
solutions than samples generated using a DBN without ILP features; and (ii) On
termination of distribution estimation, samples obtained using an ILP-assisted
DBN contain more near-optimal samples than samples from a DBN without ILP
features. Taken together, these results suggest that the use of ILP-constructed
theories could be useful for incorporating complex domain-knowledge into deep
models for estimation of distribution based procedures.

1 Introduction

There are many real-world planning problems for which domain knowledge is qualitative, and not 
easily encoded in a form suitable for numerical optimization. Here, for instance, are some guiding 
principles that are followed by the Australian Rail Track Corporation when scheduling trains: (1) 
If a healthy Train is running late, it should be given equal preference to other healthy Trains; (2) A 
higher priority train should be given preference to a lower priority train, provided the delay to the 
lower priority train is kept to a minimum; and so on. It is evident from this that train-scheduling 
may benefit from knowing if a train is healthy, what a trains priority is, and so on. But are priorities
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and train-health fixed, irrespective of the context? What values constitute acceptable delays to
a low-priority train? Generating good train-schedules will require a combination of quantitative
knowledge of train running times and qualitative knowledge about the train in isolation, and in relation
to other trains. In this paper, we propose a heuristic search method, that comes under the broad
category of an estimation distribution algorithm (EDA). EDAs iteratively generate better solutions
for the optimization problem using machine-constructed models. Usually EDAs have used generative
probabilistic models, such as Bayesian Networks, where domain-knowledge needs to be translated
into prior distributions and/or network topology. In this paper, we are concerned with problems for
which such a translation is not evident. Our interest in ILP is that it presents perhaps one of the most
flexible ways to use domain-knowledge when constructing models. Recent work has shown that ILP
models incorporating background knowledge were able to generate better quality solutions in each
EDA iteration [14]. However, efficient sampling is not straightforward and ILP is unable to utilize
the discovery of high level features as efficiently as deep generative models.

While neural models have been used for optimization [15], in this paper we attempt to combine the
sampling and feature discovery power of deep generative models with the background knowledge
captured by ILP for optimization problems that require domain knowledge. The rule based features
discovered by the ILP engine are appended to the higher layers of a Deep Belief Network(DBN) while
training. A subset of the features are then clamped on while sampling to generate samples consistent
with the rules. This results in consistently improved sampling which has a cascading positive effect
on successive iterations of EDA based optimization procedure. The rest of the paper is organised as
follows. Section 2 provides a brief description of the EDA method we use for optimization problems.
Section 2.1 describes how ILP can be used within the iterative loop of an EDA for discovering rules
that would distinguish good samples from bad. Section 3 Describes how RBMs can be used to
generate samples that conform to the rules discovered by the ILP engine. Section 4 describes an
empirical evaluation demonstrating the improvement in the discovery of optimal solutions, followed
by conclusions in Section 5.

2 EDA for optimization

The basic EDA approach we use is the one proposed by the MIMIC algorithm [4]. Assuming that we
are looking to minimise an objective function F (x), where x is an instance from some instance-space
X , the approach first constructs an appropriate machine-learning model to discriminate between
samples of lower and higher value, i.e., F (x) ≤ θ and F (x) > θ, and then generates samples using
this model

Procedure EODS: Evolutionary Optimization using DBNs for Sampling

1. Initialize population P := {xi}; θ := θ0
2. while not converged do

(a) for all xi in P label(xi) := 1 if F (xi) ≤ θ else label(xi) := 0
(b) train DBN M to discriminate between 1 and 0 labels i.e., P (x : label(x) = 1|M) > P (x :

label(x) = 0|M)
(c) regenerate P by repeated sampling using model M
(d) reduce threshold θ

3. return P

Figure 1: Evolutionary optimization using a network model to generate samples.

Here we use Deep Belief Networks (DBNs) [7] for modeling our data distribution, and for generating
samples for each iteration of MIMIC. Deep Belief Nets (DBNs) are generative models that are
composed of multiple latent variable models called Restricted Boltzman Machines (RBMs).In
particular, as part of our larger optimization algorithm, we wish to repeatedly train and then sample
from the trained DBN in order to reinitialize our sample population for the next iteration as outlined
in Figure 1. In order to accomplish this, while training we append a single binary unit (variable) to
the highest hidden layer of the DBN, and assign it a value 1 when the value of the sample is below
θ and a value 0 if the value is above θ. During training that this variable, which we refer to as the
separator variable, learns to discriminate between good and bad samples. To sample from the DBN
we additionally clamp our separator variable to 1 so as to bias the network to produce good samples,
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and preserve the DBN weights from the previous MIMIC iteration to be used as the initial weights
for the subsequent iteration. This prevents retraining on the same data repeatedly as the training data
for one iteration subsumes the samples from the previous iteration.

We now look at how ILP models can assist DBNs constructed for this purpose.

3 EDA using ILP-assisted DBNs

3.1 ILP

The field of Inductive Logic Programming (ILP) has made steady progress over the past two and half
decades, in advancing the theory, implementation and application of logic-based relational learning.
A characteristic of this form of machine-learning is that data, domain knowledge and models are
usually—but not always—expressed in a subset of first-order logic, namely logic programs. Side-
stepping for the moment the question “why logic programs?”, domain knowledge (called background
knowledge in the ILP literature) can be encodings of heuristics, rules-of-thumb, constraints, text-book
knowledge and so on. It is evident that the use of some variant of first-order logic enable the automatic
construction of models that use relations (used here in the formal sense of a truth value assignment to
n-tuples). Our interest here is in a form of relational learning concerned with the identification of
functions (again used formally, in the sense of being a uniquely defined relation) whose domain is the
set of instances in the data. An example is the construction of new features for data analysis based on
existing relations (“f(m) = 1 if a molecule m has 3 or more benzene rings fused together otherwise
f(m) = 0”: here concepts like benzene rings and connectivity of rings are generic relations provided
in background knowledge).

There is now a growing body of research that suggests that ILP-constructed relational features can
substantially improve the predictive power of a statistical model (see, for example: [9, 11, 12, 10, 13]).
Most of this work has concerned itself with discriminatory models, although there have been cases
where they have been incorporated within generative models. In this paper, we are interested in
their use within a deep network model used for generating samples in an EDA for optimization in
Procedure EODS in Fig. 1.

3.2 ILP-assisted DBNs

Given some data instances x drawn from a set of instances X and domain-specific background
knowledge, let us assume the ILP engine will be used to construct a model for discriminating between
two classes (for simplicity, called good and bad). The ILP engine constructs a model for good
instances using rules of the form hj : Class(x, good) ← Cpj(x).1 Cpj : X 7→ {0, 1} denotes a
“context predicate”. A context predicate corresponds to a conjunction of literals that evaluates to
TRUE (1) or FALSE (0) for any element of X . For meaningful features we will usually require
that a Cpj contain at least one literal; in logical terms, we therefore require the corresponding hj to
be definite clauses with at least two literals. A rule hj : Class(x, good)← Cpj(x), is converted to
a feature fj using a one-to-one mapping as follows: fj(x) = 1 iff Cpj(x) = 1 (and 0 otherwise).
We will denote this function as Feature. Thus Feature(hj) = fj , Feature−1(fj) = hj . We will
also sometimes refer to Features(H) = {f : h ∈ H and f = Feature(h)} and Rules(F ) = {h :
f ∈ F and h = Features−1(f)}.
Each rule in an ILP model is thus converted to a single Boolean feature, and the model will result
in a set of Boolean features. Turning now to the EODS procedure in Fig. 1, we will construct ILP
models for discriminating between F (x) ≤ θ) (good) and F (x) > θ (bad). Conceptually, we treat
the ILP-features as high-level features for a deep belief network, and we append the data layer of the
highest level RBM with the values of the ILP-features for each sample as shown in Fig 2.

1We note that in general for ILP x need not be restricted to a single object and can consist of arbitrary tuples
of objects and rules constructed by the ILP engine would more generally be hj : Class(〈x1,x2, . . . ,xn〉, c)
← Cpj(〈x1,x2, . . . ,xn〉). But we do not require rules of this kind here.
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(a) (b)

Figure 2: Sampling from a DBN (a) with just a separator variable (b) with ILP features

3.3 Sampling from the Logical Model

Recent work [14] suggests that if samples can be drawn from the success-set of the ILP-constructed
model2 then the efficiency of identifying near-optimal solutions could be significantly enhanced.
A straightforward approach of achieving this with an ILP-assisted DBN would appear to be to
clamp all the ILP-features, since this would bias the the samples from the network to sample from
the intersection of the success-sets of the corresponding rules (it is evident that instances in the
intersection are guaranteed to be in the success-set sought). However this will end up being unduly
restrictive, since samples sought are not ones that satisfy all rules, but at least one rule in the model.
The obvious modification would be to clamp subsets of features. But not all samples from a subset of
features may be appropriate.

With a subset of features clamped, there is an additional complication that arises due to the stochastic
nature of the DBN’s hidden units. This makes it possible for the DBN’s unit corresponding to a
logical feature fj to have the value 1 for an instance xi, but for xi not to be entailed by the background
knowledge and logical rule hj .

In turn, this means that for a feature-subset with values clamped, samples may be generated from
outside the success-set of corresponding rules involved. Given background knowledge B, we say
a sample instance x generated by clamping a set of features F is aligned to H = Rules(F ), iff
B ∧H |= x (that is, x is entailed by B and H).

A procedure to bias sampling of instances from the success-set of the logical model constructed by
ILP is shown in Fig. 3.

4 Empirical Evaluation

4.1 Aims

Our aims in the empirical evaluation are to investigate the following conjectures:

(1) On each iteration, the EODS procedure will yield better samples with ILP features than
without

(2) On termination, the EODS procedure will yield more near-optimal instances with ILP
features than without.

(3) Both procedures do better than random sampling from the initial training set.

2These are the instances entailed by the model along with the background knowledge, which—assuming the
rules are not recursive—we take to be the union of the success-sets of the individual rules in the model.
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Given: Background knowledge B; a set of rules H = {h1, h2, . . . , hN}l; a DBN with F =
{f1, f2, . . . , fN} as high-level features (fi = Feature(hi)); and a sample size M

Return: A set of samples {x1,x2, . . . ,xM} drawn from the success-set of B ∧H .

1. S := ∅, k = 0

2. while |k| ≤ N do
(a) Randomly select a subset Fk of size k features from F

(b) Generate a small sample set X clamping features in Fk

(c) for each sample in x ∈ X and each rule hj , set countk = 0

i. if x ∈ success-set where (fj(x) = 1) => (x ∈ success-set(B and hj))
countk = countk + 1

3. Generate S by clamping k features where countk = max(count1, count2...countN )

4. return S

Figure 3: A procedure to generate samples aligned to a logical model H constructed by an ILP
engine.

It is relevant here to clarify what the comparisons are intended in the statements above. Conjecture
(1) is essentially a statement about the gain in precision obtained by using ILP features. Let us denote
Pr(F (x) ≤ θ) the probability of generating an instance x with cost at most θ without ILP features
to guide sampling, and by Pr(F (x) ≤ θ|Mk,B) the probability of obtaining such an instance with
ILP features Mk,B obtained on iteration k of the EODS procedure using some domain-knowledge
B. (note if Mk,B = ∅, then we will mean Pr(F (x) ≤ θ|Mk,B) = Pr(F (x) ≤ θ)). Then for (1) to
hold, we would require Pr(F (x) ≤ θk|Mk,B) > Pr(F (x) ≤ θk). given some relevant B. We will
estimate the probability on the lhs from the sample generated using the model, and the probability
on the rhs from the datasets provided. Conjecture (2) is related to the gain in recall obtained by
using the model, although it is more practical to examine actual numbers of near-optimal instances
(true-positives in the usual terminology). We will compare the numbers of near-optimal in the sample
generated by the DBN model with ILP features, to those obtained using the DBN alone.

4.2 Materials

4.2.1 Data

We use two synthetic datasets, one arising from the KRK chess endgame (an endgame with just
White King, White Rook and Black King on the board), and the other a restricted, but nevertheless
hard 5× 5 job-shop scheduling (scheduling 5 jobs taking varying lengths of time onto 5 machines,
each capable of processing just one task at a time).

The optimization problem we examine for the KRK endgame is to predict the depth-of-win with
optimal play [1]. Although aspect of the endgame has not been as popular in ILP as task of
predicting “White-to-move position is illegal” [2], it offers a number of advantages as a Drosophila
for optimization problems of the kind we are interested. First, as with other chess endgames, KRK-
win is a complex, enumerable domain for which there is complete, noise-free data. Second, optimal
“costs” are known for all data instances. Third, the problem has been studied by chess-experts at least
since Torres y Quevado built a machine, in 1910, capable of playing the KRK endgame. This has
resulted in a substantial amount of domain-specific knowledge. We direct the reader to [3] for the
history of automated methods for the KRK-endgame. For us, it suffices to treat the problem as a form
of optimization, with the cost being the depth-of-win with Black-to-move, assuming minimax-optimal
play. In principle, there are 643 ≈ 260, 000 possible positions for the KRK endgame, not all legal.
Removing illegal positions, and redundancies arising from symmetries of the board reduces the size
of the instance space to about 28, 000 and the distribution shown in Fig. 4(a). The sampling task here
is to generate instances with depth-of-win equal to 0. Simple random sampling has a probability of
about 1/1000 of generating such an instance once redundancies are removed.

The job-shop scheduling problem is less controlled than the chess endgame, but is nevertheless
representative of many real-life applications (like scheduling trains), and in general, is known to be
computationally hard.
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Cost Instances Cost Instances
0 27 (0.001) 9 1712 (0.196)
1 78 (0.004) 10 1985 (0.267)
2 246 (0.012) 11 2854 (0.368)
3 81 (0.015) 12 3597 (0.497)
4 198 (0.022) 13 4194 (0.646)
5 471 (0.039) 14 4553 (0.808)
6 592 (0.060) 15 2166 (0.886)
7 683 (0.084) 16 390 (0.899)
8 1433 (0.136) draw 2796 (1.0)

Total Instances: 28056

(a) Chess

Cost Instances Cost Instances
400–500 10 (0.0001) 1000–1100 24067 (0.748)
500–600 294 (0.003) 1100–1200 15913 (0.907)
600–700 2186 (0.025) 1200–1300 7025 (0.978)
700–800 7744 (0.102) 1300–1400 1818 (0.996)
800–900 16398 (0.266) 1400–1500 345 (0.999)

900–1000 24135 (0.508) 1500–1700 66 (1.0)
Total Instances: 100000

(b) Job-Shop

Figure 4: Distribution of cost values. The number in parentheses are cumulative frequencies.

Data instances for Chess are in the form of 6-tuples, representing the rank and file (X and Y values)
of the 3 pieces involved. For the RBM, these are encoded as 48 dimensional binary vector where
every eight bits represents a one hot encoding of the pieces’ rank or file. At each iteration k of the
EODS procedure, some instances with depth-of-win ≤ θk and the rest with depth-of-win > θk are
used to construct the ILP model, and the resulting features are appended to train the RBM model as
described in Section 3.2.3

Data instances for Job-Shop are in the form of schedules, with associated start and end-times for each
task on a machine, along with the total cost of the schedule. On iteration i of the EODS procedure,
models are to be constructed to predict if the cost of schedule will be ≤ θi or otherwise.4

4.2.2 Background Knowledge

For Chess, background predicates encode the following (WK denotes the White King, WR the
White Rook, and BK the Black King): (a) Distance between pieces WK-BK, WK-BK, WK-WR;
(b) File and distance patterns: WR-BK, WK-WR, WK-BK; (c) “Alignment distance”: WR-BK; (d)
Adjacency patterns: WK-WR, WK-BK, WR-BK; (e) “Between” patterns: WR between WK and BK,
WK between WR and BK, BK between WK and WR; (f) Distance to closest edge: BK; (g) Distance
to closest corner: BK; (h) Distance to centre: WK; and (i) Inter-piece patterns: Kings in opposition,
Kings almost-in-opposition, L-shaped pattern. We direct the reader to [3] for the history of using
these concepts, and their definitions. A sample rule generated for Depth<=2 is that the distance
between the files of the two kings be greater than or equal to zero, and that the ranks of the kings are
seperated bya a distance of less than five and those of the white king and the rook by less than 3.

For Job-Shop, background predicates encode: (a) schedule job J “early” on machine M (early means
first or second); (b) schedule job J “late” on machine M (late means last or second-last); (c) job J
has the fastest task for machine M ; (d) job J has the slowest task for machine M ; (e) job J has a fast
task for machine M (fast means the fastest or second-fastest); (f) Job J has a slow task for machine
M (slow means slowest or second-slowest); (g) Waiting time for machine M ; (h) Total waiting time;
(i) Time taken before executing a task on a machine. Correctly, the predicates for (g)–(i) encode
upper and lower bounds on times, using the standard inequality predicates ≤ and ≥.

4.2.3 Algorithms and Machines

The ILP-engine we use is Aleph (Version 6, available from A.S. on request). All ILP theories were
constructed on an Intel Core i7 laptop computer, using VMware virtual machine running Fedora 13,
with an allocation of 2GB for the virtual machine. The Prolog compiler used was Yap, version 6.1.35.
The RBM was implemented in the Theano library, and run on an NVidia Tesla K-40 GPU Card.

3The θk values are pre-computed assuming optimum play. We note that when constructing a model on
iteration k, it is permissible to use all instances used on iterations 1, 2, . . . , (k − 1) to obtain data for model-
construction.

4The total cost of a schedule includes any idle-time, since for each job, a task before the next one can be
started for that job. Again, on iteration i, it is permissible to use data from previous iterations.

5http://www.dcc.fc.up.pt/~vsc/Yap/
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4.3 Method

Our method is straightforward:

For each optimization problem, and domain-knowledge B:
Using a sequence of threshold values 〈θ1, θ2, . . . , θn〉 on iteration k (1 ≤ k ≤ n) for
the EODS procedure:
1. Obtain an estimate of Pr(F (x) ≤ θk) using a DBN with a separator variable;
2. Obtain an estimate of Pr(F (x) ≤ θk|Mk,B) by constructing an ILP model for

discriminating between F (x) ≤ θk and F (x) > θk. Use the features learnt by the
ILP model to guide the DBN sampling.

3. Compute the ratio of Pr(F (x) ≤ θk|Mk,B) to P (F (x) ≤ θk)

The following details are relevant:

• The sequence of thresholds for Chess are 〈8, 4, 2, 0〉. For Job-Shop, this sequence is
〈900, 890, 880...600〉; Thus, θ∗ = 0 for Chess and 600 for Job-Shop, which means we
require exactly optimal solutions for Chess.

• Experience with the use of ILP engine used here (Aleph) suggests that the most sensitive
parameter is the one defining a lower-bound on the precision of acceptable clauses (the
minacc setting in Aleph). We report experimental results obtained with minacc = 0.7,
which has been used in previous experiments with the KRK dataset. The background
knowledge for Job-Shop does not appear to be sufficiently powerful to allow the identification
of good theories with short clauses. That is, the usual Aleph setting of upto 4 literals per
clause leaves most of the training data ungeneralised. We therefore allow an upper-bound of
upto 10 literals for Job-Shop, with a corresponding increase in the number of search nodes
to 10000 (Chess uses the default setting of 4 and 5000 for these parameters).

• In the EODS procedure, the initial sample is obtained using a uniform distribution over all
instances. Let us call this P0. On the first iteration of EODS (k = 1), the datasets E1

+ and
E1

− are obtained by computing the (actual) costs for instances in P0, and an ILP model
M1,B , or simply M1, constructed. A DBN model is constructed both with and without ILP
features. We obtained samples from the DBN with CD6 or by running the Gibbs chain for
six iterations. On each iteration k, an estimate of Pr(F (x) ≤ θk) can be obtained from the
empirical frequency distribution of instances with values ≤ θk and > θk. For the synthetic
problems here, these estimates are in Fig. 4. For Pr(F (x) ≤ θk|Mk,B), we use obtain the
frequency of F (x) ≤ θk in Pk

• Readers will recognise that the ratio of Pr(F (x) ≤ θk|Mk,B) to P (F (x) ≤ θk) is equiv-
alent to computing the gain in precision obtained by using an ILP model over a non-ILP
model. Specifically, if this ratio is approximately 1, then there is no value in using the ILP
model. The probabilities computed also provide one way of estimating sampling efficiency
of the models (the higher the probability, the fewer samples will be needed to obtain an
instance x with F (x) ≤ θk).

4.4 Results

Results relevant to conjectures (1) and (2) are tabulated in Fig. 5 and Fig. 6. The principal conclusions
that can drawn from the results are these:

(1) For both problems, and every threshold value θk, the probabilty of obtaining instances with
cost at most θk with ILP-guided RBM sampling is substantially higher than without ILP.
This provides evidence that ILP-guided DBN sampling results in better samples than DBN
sampling alone(Conjecture 1);

(2) For both problems and every threshold value θk, samples obtained with ILP-guided sampling
contain a substantially higher number of near-optimal instances than samples obtained using
a DBN alone (Conjecture 2)

Additionally, Fig. 7 demonstrates the cumulative impact of ILP on (a) the distribution of good
solutions obtained and (b)the cascading improvement over the DBN alone for the Job Shop problem.
The DBN with ILP was able to arrive at the optimal solution within 10 iterations.
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Model Pr(F (x) ≤ θk|Mk)
k = 1 k = 2 k = 3 k = 4

None 0.134 0.042 0.0008 0.0005

DBN 0.220 0.050 0.015 0.0008

DBNILP 0.345 0.111 0.101 0.0016

(a) Chess

Model Pr(F (x) ≤ θk|Mk)
k = 1 k = 2 k = 3 k = 4

None 0.040 0.036 0.029 0.024

DBN 0.209 0.234 0.248 0.264

DBNILP 0.256 0.259 0.268 0.296

(b) Job-Shop

Figure 5: Probabilities of obtaining good instances x for each iteration k of the EODS procedure.
That is, the column k = 1 denotes P (F (x) ≤ θ1 after iteration 1; the column k = 2 denotes
P (F (x) ≤ θ2 after iteration 2 and so on. In effect, this is an estimate of the precision when predicting
F (x) ≤ θk. “None” in the model column stands for probabilities of the instances, corresponding to
simple random sampling (Mk = ∅).

Model Near-Optimal Instances
k = 1 k = 2 k = 3 k = 4

DBN 5/27 11/27 11/27 12/27

DBNILP 3/27 17/27 21/27 22/27

(a) Chess

Model Near-Optimal Instances
k = 11 k = 12 k = 13

DBN 7/304 10/304 18/304

DBNILP 9/304 18/304 27/304

(b) Job-Shop

Figure 6: Fraction of near-optimal instances (F (x) ≤ θ∗) generated on each iteration of EODS. In
effect, this is an estimate of the recall (true-positive rate, or sensitivity) when predicting F (x) ≤ θ∗.
The fraction a/b denotes that a instances of b are generated.

(a)

(b)

Figure 7: Impact of ILP on EODS procedure for Job Shop (a) Distribution of solution endtimes
generated on iterations 1, 5, 10 and 13 with and without ILP (b) Cumulative semi-optimal solutions
obtained with and without ILP features over 13 iterations

5 Conclusions and Future Work

In this paper we demonstrate that DBNs can be used as efficient samplers for EDA style optimization
approaches. We further look at combining the sampling and feature discovery power of Deep
Belief Networks with the background knowledge discovered by an ILP engine, with a view towards
optimization problems that entail some degree of domain information. The optimization is performed
iteratively via an EDA mechanism and empirical results demonstrate the value of incorporating ILP
based features into the DBN. In the future we intend to combine ILP based background rules with
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more sophisticated deep generative models proposed recently [5, 6] and look at incorporating the
rules directly into the cost function as in [8].
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