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Abstract

Complex systems have to decomposed into sub-systems
which are developed by specialized teams. Modeling
and simulation techniques help each team achieve a
locally optimal solution but they fail to help all teams
achieve a globally optimal solution. This is due to each
team having its own models made in its own tools,
and external suppliers having intellectual property. The
result is that it is difficult to simulate the coupled
system.

Co-simulation is proposed as a way to enable such
simulation. Simulators communicate and collaborate as
black boxes. The technique has been used in a number
of domains improving the overall cost of engineered sys-
tems. In these use cases, a minimum common denomina-
tor is assumed for the capabilities of simulators. Lever-
aging the optional capabilities of simulators improves
the performance/accuracy of a co-simulation, but the
number of decisions the orchestration mechanism has
to make grows exponentially. Different, conflicting con-
cerns have to be addressed in an optimal way.

We propose a way to deal with each concern inde-
pendently and possibly reuse existing orchestration al-
gorithms that perform better with respect to the con-
flicting concerns. Our approach leverages Model Driven
Development techniques to process a co-simulation sce-
nario into a canonical/trivial version, where fewer deci-
sions remain to be made. Along the process, conflicting
concerns will be addressed as an optimization problem,
and an appropriate cost function identified. If success-
ful, the result of this research allows co-simulation sce-
narios that may offer real-time guarantees, bounds in
the maximum error made, or packet size in the commu-
nication between simulators.

1. Introduction

Integration – the interconnection of the components
that comprise a system – is identified as a major source
of problems [28, 31] in the concurrent development of
complex engineered systems. It is usually caused by
assumptions about other components of the system

having to be made early in the development of each
component.

Modeling and simulation techniques are used to mit-
igate these issues: models of components are created
and simulated before any physical prototype is built.
Simulation can also be used to analyze the behavior of
interacting models of components, created with differ-
ent languages [10]. The simulation of interactions be-
tween models specified in different languages is an open
challenge [16], mostly done with a small number of sim-
ulators with similar features, making it difficult to gen-
eralize to other scenarios. To aggravate, specialized sup-
pliers of components are interested in protecting their
Intellectual Property (IP) leading to the situation were
the simulation needs to be made without access to the
models [6].

Co-simulation is a technique to couple multiple sim-
ulators, each simulating a single component, often seen
as a black box, in order to simulate the whole system.
An orchestration algorithm is responsible for ensuring
the communication between the simulators. The lack of
information about the simulators makes co-simulation a
hard challenge which must be addressed in a systematic
way. Despite this, co-simulation shortens development
time and improves quality, as reported by the industrial
partners of the DESTECS project [7, 11, 26]. For other
application domains where co-simulation has been ap-
plied, see [19, 23, 25, 31], for example.

Recognizing the potential of co-simulation, the Func-
tional Mockup Interface (FMI) standard [6] was created
to provide a common interface for different simulation
tools to communicate. Obviously, these tools have differ-
ent capabilities and the FMI standard acts as a common
denominator, requiring the basic features that enable
co-simulation. Many other features are available in the
state of the art. See Fig. 1 (a) for some of these features.

The optional capabilities of simulators make for a
combinatorial explosion when these are coupled in a co-
simulation, making the development of an orchestration
mechanism a hard challenge, with many different, often
conflicting, concerns. In this project, we address this
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Figure 1. (a) Feature model mapping the capabilities of the simulators encountered in the state of the art. (b) A
2-DOF Oscillator as a coupling of two sub-systems.

challenge and we propose a way to take advantage of the
optional features provided by simulators, instead of just
using the common denominator, without resorting to a
complex orchestration algorithm. This possibly allows
for the reuse of existing orchestration algorithms while
at the same time providing a better control over the
accuracy/performance tradeoff.

2. Background

In order to properly define co-simulation scenarios,
some background terms have to be introduced.

Dynamical System A dynamical system is a model
characterized by a state and a notion of evolution rules.
An example is a mass-spring-damper system, depicted
in Fig. 1 (b):

m1·ẍ1 = −c1 · x1 − d1 · ẋ1 + Fe

x1(0) = p1; ẋ1(0) = s1
(1)

where c1 is the spring stiffness constant and d1 the
damping coefficient; m1 is the mass; p1 and s1 the initial
position and velocity; and Fe denotes the external force
over time acting on the mass. We consider dynamical
systems that can be written in the state space form:

ẋ = f(x, u) ; x(0) = x0 (2)

where x(t) is the state vector, u(t) the input vector,
and x0 is the initial state.

Behavior Trace The trajectory followed by the state
over time is called the behavior trace of the dynamical
system. Behavior traces can be exact (also called an-
alytical) or approximations. In the above example, the
function x1(t) that satisfies Eq. (1) is the behavior trace.

Experimental Frame The experimental frame de-
scribes a set of assumptions in which the behavior trace
of the dynamical system can be compared with the one
of the original system [3, 29, 32, 33, 35].

Validity In order to be used successfully as models
of the systems, dynamical systems have to be valid
within the experimental frame in which the they are
defined. The validity of the dynamical system is then the
difference between the behavior trace of the dynamical
system and the behavior trace of the original system,
measured under the assumptions of the experimental
frame. For example, the Hooke’s law in the mass-spring-
damper system can only be used to predict the reaction
force of the spring for small deformations.

Solver A solver is an algorithm capable of obtaining
the approximate behavior trace of a dynamical system.
It is typically an iterative procedure that advances
the simulated time and approximates the values of the
variables at that point in time. For a dynamical system
in the form of Eq. (2), the Forward Euler solver is given
as:

x̃(t+ h) := x̃(t) + f(x̃(t), u(t)) · h
x̃(0) := x(0)

(3)

where x̃ is the approximated state vector, u(t) the
input, and h > 0 is the micro-step size.

Accuracy Accuracy is the difference between an ap-
proximate behavior trace and an exact one. In most
practical cases, the correct behavior trace is difficult to
obtain. However, it is possible to get a worst case es-
timate in the order of accuracy of a solver, provided
that the system obeys certain, physically meaningful,
assumptions (e.g., state continuity, Lipschitz conditions
[2], and conservation laws [24]).



Simulator The composition of a solver with a specific
model is called a simulator. For example, to get a sim-
ulator of the mass-spring-damper system, write Eq. (1)
in state space form, combine with Eq. (3) to get:

x̃1(t+ h1) := x̃1(t) + v1(t) · h1

ṽ1(t+ h1) := ṽ1(t) +
(−c1x̃1(t)− d1ṽ1(t) + Fe(t))

m1
· h1
(4)

where h1 is the micro-step size, x̃1(0) := p1, and
ṽ1(0) := s1

In general a simulator can be represented as:

Si = 〈Xi, Ui, Yi, δi, λi, xi(0), φUi〉
δi : R×Xi × Ui → Xi

λi : R×Xi × Ui → Yi or R×Xi → Yi

xi(0) ∈ Xi

φUi
: R× Ui × . . .× Ui → Ui

(5)

where:
Xi is the state set, typically Rn; Ui is the input set,
typically Rm; Yi is the output set, typically Rp; xi(0)
is the initial state; δi(t, xi(t), ui(t)) = xi(t + H) is the
function that instructs the simulator to compute a be-
havior trace from t to t + H, making use of the input
extrapolation function φUi ; H ∈ R is the communica-
tion step size; and λi(t, xi(t), ui(t)) = yi(t) is the output
function. The input extrapolation function φUi

plays an
important role in guaranteeing that the simulator does
not read values from the environment while computing
the behavior trace in the interval t → t + H. Often-
times, constant extrapolation from the last known input
is used, that is, φUi

(τ, ui(t)) = ui(t), for τ ∈ [t, t+H].

Co-simulation Scenario Simulators can have in-
puts and outputs, which capture the environment in
which the original system operates. They can be com-
bined by specifying how their inputs/outputs are con-
nected. A co-simulation scenario is a specific arrange-
ment of simulators and their I/O coupling conditions.
An autonomous scenario requires at least the following
information:

CS = 〈S,L〉
S = {S1, . . . Sn}
L : Y1 × . . .× Yn × U1 × . . .× Un → Rm

(6)

S is the set of causal simulators, each defined as in
Eq. (5); and L induces the following coupling constraint:

L(y1, . . . , yn, u1, . . . , un) = 0̄

As an example, for the co-simulation scenario cor-
responding to the multi-body system of Fig. 1 (b), we

have:
CS = 〈R, {S1, S2} , L〉

L =

xc − v1ẋc − x1
Fe − Fc

 (7)

where:
S1 is the simulator defined in Eq. (4) and the definition
of S2 is omitted; xc, ẋc are the inputs of S2, and Fe is
the input of S1; x1, v1 are outputs of S1 and Fc is the
output of S2;

Trivial Co-simulation Scenario A co-simulation
scenario is trivial when the coupling conditions can be
transformed into a set of assignments from outputs to
inputs. To achieve this: (1) no input/output is a func-
tion of itself; (2) for each input, there is an output that
provides its value. The co-simulation scenario described
by Eq. (7) is trivial.

Orchestration Algorithm Given a co-simulation
scenario, an orchestration algorithm coordinates the
simulators ensuring that each progresses in time and
receives inputs. A trivial scenario can be simulated with
Algorithm 1.

ALGORITHM 1: Generic orchestration mechanism for
trivial co-simulation scenarios.
Data: Stop time Tf , a co-simulation scenario 〈S,L〉, and a

communication step size H.
Result: A co-simulation trace.
t := 0;

while t < Tf do
Solve the following system for the unknowns
y1(t), . . . , yn(t), u1(t), . . . , un(t):{
yi(t) = λi(t, xi(t), ui(t)), for i = 1, . . . , n
L(y1(t), . . . , yn, u1(t), . . . , un(t)) = 0̄

;

The values [y1(t), . . . , yn(t), u1(t), . . . , un(t)]T denote a
point at time t of the co-simulation trace;

Instruct each simulator to advance to the next
communication step:
xi(t+H) := δi(t,H, xi(t), ui(t)), for i = 1, . . . , n;
Advance time:
t := t+H;

end

Hierarchical Co-simulation A co-simulator is ob-
tained when an orchestration mechanism is coupled
with a co-simulation scenario. According to our nomen-
clature, a co-simulator is a simulator and can be speci-
fied as in Eq. (5). This means that a co-simulation sce-
nario can be comprised of simulators, which can them-
selves be co-simulation scenarios with suitable orches-
trators. This is important because hierarchical systems
are best described by hierarchical co-simulation scenar-
ios.

In the following sections, we describe non-trivial co-
simulation scenarios and, instead of describing how
these can be solved with more complex orchestration



algorithms, we describe how they can be translated
into trivial co-simulation scenarios. This approach, sup-
ported by modeling the co-simulation scenarios, allows
for clear separation of concerns and provides flexibility
in choosing how to deal with each of them.

3. Concerns in Co-simulation

3.1 Accuracy Concern

The accuracy of a co-simulation trace is the degree
to which it conforms to the real trace. Error – the
difference between the co-simulation trace and the real
trace – is then a measure of accuracy. Obtaining the
real trace, for most dynamical systems, is currently
impossible. However, there is an important result in
simulation – convergence – which allows the order of
the worst case deviation from the real trace made by
a numerical method to be controlled by adjusting the
micro-step size hi of the solver. The same result can be
applied to certain co-simulation scenarios [2], allowing
the communication step size H to control the global
error.

Adjusting the communication step size H is then an
accuracy concern. Given a co-simulation scenario, H
can be controlled by an extra simulator SH , introduced
artificially, whose outputs are the time variable t and
H, and inputs are relevant outputs of other simulators.
A new independent variable s with a communication
step size of 1 is introduced. Variables t and H become
functions of s. A similar translation has been proposed
in [22] and the simulator SH can implement a well
known PI-Controller. See [2, 9, 13, 24, 34] for error
control alternatives in co-simulation. Note that these
can also be applied in our approach because SH can
be a co-simulation scenario (e.g., a copy of the original
scenario running at a communication step size of H

2 , for
Richardson extrapolation). Fig. 2 (a) summarizes this
approach.

3.2 Algebraic Loops Concern

Algebraic loops occur whenever there is a variable that
is a function of itself. The state and output of each
simulator Si in a co-simulation can be written as:

xi(t+H) = δi(t,H, xi(t), ui(t))

yi(t+H) = λi(t, xi(t+H), ui(t+H))
(8)

Taking into account the coupling conditions, it is easy
to see that an output of a simulator may depend on
itself. These kinds of algebraic loops in the output
equations can be avoided by replacing ui(t + H) in
Eq. (8) by the corresponding extrapolation φui

(H,ui(n·
H), ui((n−1)·H), . . .) which does not depend on ui((n+
1) · H), thus breaking the algebraic loop 1. However,

1 See [18] for the other kind of algebraic loops.

as is shown in [2, 18], and empirically in [4], breaking
an algebraic loop instead of solving it can lead to a
high error in the co-simulation. A better way is to use
a fixed point iteration technique, where in the general
case, simulators are asked to compute the interval t →
t + H many times, with improved inputs, until some
convergence criteria is met.

Given a co-simulation scenario with algebraic loops,
extra information is necessary to be able to identify the
loops, as pointed out in [2, 8, 30]. Assuming that this
information exists, the simulators that are involved in
an algebraic loop can be “lifted out” and replaced by
a single simulator SSC whose δSC implements the it-
eration techniques that solves the loop. The result is
a trivial scenario that can be simulated by the orches-
tration mechanism of Algorithm 1. This adaptation is
summarized in Fig. 2 (b)

Inaccurate Scenario:

Accurate Scenario:

Scenario with Loop:

Scenario without Loop:

......

...... Fixed point iterate:

(a) (b)

Figure 2. (a) Transformation that deals with accuracy
concern. (b) Dealing with algebraic loop concern.

3.3 Communication Concern

If simulators in a co-simulation scenario execute in dif-
ferent computers, a small H incurs a too high commu-
nication cost. On the other hand, using a large H places
the burden in the functions φ to accurately extrapolate
the inputs of each simulator across a large interval. In
many cases – in particular, for the FMI Standard –,
each simulator Si is the one responsible for implement-
ing φUi

. Therefore a problem exists where H should be
high to reduce the communication cost, but the accu-
racy of functions φ cannot be improved to compensate.

To show how this problem can be addressed, con-
sider the scenario shown in Fig. 3 (a), where the simu-
lators communicate every H units of time. The purpose
is to increase H and mitigate the accuracy loss. For
that, replace each group of simulators in the same com-
puter by a single simulator. Then, the new simulator
encapsulates a co-simulation scenario where the inter-
nal communication step size is Hsmall < H. An artificial
simulator is introduced to provide approximated values
of the outputs of the simulators in the other computers.
These can be extrapolations from the values collected
at the other computers. In the example, S′

2 collects the



outputs of S1 and sends them over the wire to S′
1 at ev-

ery H time units. The smaller Hsmall, the finer grained
the extrapolation of S1 will be.

This approach can be applied whenever an input ex-
trapolation function needs to be provided, regardless
of the computer in which the simulators execute. For
instance, when the scenario is comprised of simulators
whose outputs evolve at very different rates, as happens
in circuit simulation [21], better extrapolation functions
can be provided to save computation on the“slow”com-
ponents. Furthermore, if simulators provide rollback ca-
pabilities, an iterative predictor correct method can be
made, yielding a generalized waveform relaxation itera-
tion [20].

3.4 Modularity Concern

It is possible that, even without algebraic loops, the
coupling conditions do not yield a set of assignments. To
show how this can happen, consider the co-simulation
scenario that represents the coupled system on top of
Fig. 3 (b). The input to the first simulator is the external

force Fe and the outputs are [x̃1, ṽ1]
T

(see Eq. (4)).
The input to the second simulator is the external force
Fc and the outputs are [x̃3, ṽ3]

T
. Clearly, there is a

mismatch: the outputs [x̃1, ṽ1]
T

of the first simulator
cannot be coupled directly to the input Fc of the second
simulator, and vice versa. However, the massless link
restricts the outputs of the two sub-systems to be the
same and Fe = Fc, whatever that force may be.

Slow Distributed Scenario:

Fast Distributed Scenario:

Computer A Computer B

Step:

Step: Step:

Step:

Coupled System:

Non-Trivial Scenario:

Trivial Scenario:

(a) (b)

Figure 3. (a) Dealing with distribution concern. (b)
Transformation that solves causality conflicts.

Our solution to this concern is similar to that of
[14] and is summarized in Fig. 3 (b). The essence is to
add an artificial simulator to the co-simulation, which
calculates the appropriate inputs to the simulators,

that ensure equal outputs. For the details of how those
calculations can be done, see [1, 15, 27].

4. Related Work

The aim of this work is to generalize the work done by
Van Acker et al. [30], where a language is proposed to
configure the co-simulation scenario with extra informa-
tion identifying the optimal rates for each simulator and
algebraic loops. In our work, we recognize that, for each
concern, there are multiple solutions, with differing or-
ders of “cost”, that depend on the sensitivities between
simulators. The work in Kajtazovic et al. [17] is similar
to ours in the sense that a generative approach is fol-
lowed, but there is no focus into identifying and solving
the multiple concerns involved in devising an orches-
tration algorithm. The work in Benedikt and Holzinger
[5] presents some initial steps toward an orchestration
mechanism that adapts at run-time. Similarly to our
work, it recognizes that the orchestration mechanism
is highly dependent on the co-simulation scenario and
that it should be tuned automatically. However, we dif-
fer in the approach: we do it statically, as opposed to at
run-time, like they do.

5. Conclusion

This project aims at dealing separately with the many
concerns that originate in continuous time co-simulation.
Our approach is to stick to a simple orchestration al-
gorithm, and transform the scenarios, by introducing
artificial simulators. Fig. 4 summarizes our overall ap-
proach.

Starting Scenario 

Causality 
Conflicts

Algebraic
Loops

Communication
Optimization

Optimized 
Trivial Scenario

Trivial Scenario 

Out-to-In 
Assignments
Scenario 

Figure 4. Overview of the main transformation stages.

The advantage is that there is a clear set of pre-
conditions and post-conditions for each transformation,
showing the separation of concerns. Based on anecdo-
tal evidence, we propose the order of the stages to be
the one in the figure. This order ensures that no concern
resurfaces in later stages of the transformation. Because
of the performance/accuracy tradeoff, the communica-
tion concern can only be addressed as an optimization
problem and we allow for the application of optimiza-
tion techniques to find an optimal co-simulation sce-



nario. One disadvantage of our approach is that co-
simulation scenario can quickly become unreadable, due
to the injected artificial simulators. Further evaluation
is necessary to measure the how complex non-trivial
co-simulation scenarios can become after being trans-
formed.

The co-simulation scenarios used in the current work
were created artificially. In the future, we aim at testing
these approaches with real co-simulation scenarios, such
as the ones developed in [12] and in the INTO-CPS
project 2. Furthermore, the order of convergence has to
be studied for the approach described in Section 3.3.
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