
Towards a simulation of AmI environments integrating
social and network simulations

Álvaro Sánchez-Picot and Diego Martı́n and Borja Bordel and Ramón Alcarria and
Diego Sánchez de Rivera and Tomás Robles1

Abstract.
We are heading towards a technological and hyper-connected

world where every building is going to be full of sensors and actua-
tors to monitor and interact with it, in what is known as an Ambient
Intelligence (AmI) environment. The main problem when creating
such environment is how expensive it can be, so a tool such a simula-
tor could help to improve the way in which the devices are installed,
testing with different configurations until you arrive to the optimal
one. Also this simulator could help once the infrastructure is cre-
ated to detect certain events before they happen, being able to apply
a countermeasure. In this paper we propose the architecture to inte-
grate a social and a network simulation in order to create a simulation
for an AmI environment.

1 INTRODUCTION
We are heading towards a technologically connected world. More
and more devices are installed in our homes and our environment.
Some of these devices are not very new such as televisions, air con-
ditioning units or security cameras but others are relatively new such
as ambient lights, temperature sensors or microphones to talk with a
computer. Currently we want to know much more about what hap-
pens in our home and our surroundings than several years ago and
thanks to the mobile phones we can easily access this information
anywhere and in real time. Nowadays we also want the environment
to act proactively depending on what happens, for example, turn on
the lights automatically when the nightfall comes and turn it off when
there is nobody present or open and close blinds depending on the
light outside or the desired temperature inside the building. This cor-
responds to what is known as Ambient Intelligence (AmI) environ-
ment, that is sensitive and responsive to the presence of people and
environmental factors.

The idea of an AmI environment is that all its devices cooperate
together in order to obtain a desired result. The intelligence behind
all these devices resides in a computational system that manages the
data of all the sensors an analyzes it to get an idea on what is happen-
ing in the environment. Then, using some predefined rules or some
instructions from a person the actuators react to a system command
to do certain tasks. For example, if the temperature is rising, the sys-
tem receives a notification from the sensor, the system processes that
information and send a command to the air conditioning in order to
turn it on, until the temperature lowers and it can be turned off. An
AmI environment is a complex one in that there can be lots of differ-
ent devices recollecting information and the system can control lots

1 Technical University of Madrid, Av. Complutense 30, 28040 Madrid Spain,
Telecommunications School - ETSIT, email: alvaro.spicot@gmail.com

of different actuators in order to affect the environment.
Deploying all the infrastructure to create an AmI environment in

a building can be a very complex and expensive task, depending on
the desired objective, not only for the cost of the devices and the re-
quired communication devices, but also the time to select the optimal
position of these devices and the testing necessary to check that ev-
erything works as expected. In this research paper we propose a tool
that helps in this task. That tool would be a simulator that enables the
study of the optimal position for placing the devices assuring that the
system works as expected. The problem is that we have simulators
that perform part of the work but not a simulator that covers all the
cases. I.e. there are social simulators able to simulate the behavior
and movement of the people inside a building for the social part of
AmI, and there are network simulators capable of simulating com-
munications and devices of a network for the communication part
of AmI; however, there is no simulator that integrates both simula-
tions and use the outcome from the two simulations. This really is a
problem because it’s impossible to perform simulations of AmI envi-
ronments and therefore its design, development and deployment will
be very costly, and also many problems will arise that were not taken
into account after deploying the AmI environment.

Other valuable functionality that is obtained from joining both
simulators and interconnecting them to an AmI real time environ-
ment is that the simulator could analyze real time data and predict
certain events that are going to happen and act in consequence, try-
ing to avoid them to happen or minimizing the possible damage. The
simulation could also use previous data to search for a pattern before
certain event happens and use machine learning techniques.

This paper is the continuation of our previous work [8], where
we expand the architecture, the models, add the prediction of events
and present the current status of the simulation; we also present a
tool that integrates both social and network simulators in order to
obtain a simulator that covers all information and that is necessary in
an AmI environment. In chapter 2 we present the related work this
paper is based on. In chapter 3 we show the architecture. Chapter
4 explains several models created for the simulator containing a data
model and a sequence model. In chapter 5 we talk about the use of the
simulator in a real time environment to predict certain events. Finally
in chapters 6 and 7 we present the conclusions and some future work.

2 RELATED WORK

This section describes the related work with the tool that we present
in the paper. These includes AmI environments and also the simula-
tions, specifically both the social simulation and the network simula-
tion.



2.1 Ambient Intelligence
AmI is a discipline that makes our everyday environments sensitive
to what is happening with the use of sensors, actuators, the network
that interconnects all these devices and the server that orchestrates
all these elements [2]. The main objective of AmI is the improve-
ment of people’s life that use the environment. In order to achieve
this objective the information generated in the sensors is recollected
and processed in the server and then certain orders are sent to the
actuators, based on the information gathered from the sensors. The
actuators in the end will influence the people that are present in the
environment, ideally not being conscious of the technology. In AmI
environments we expect several features [3]:

• Sensitive: The system needs to base its decisions on what is hap-
pening in the environment reacting to the people in them.

• Adaptive: The system also requires to adjust its behavior depend-
ing of the situation, considering the best possible behavior, and
ideally anticipating to an event.

• Transparent: The people in an AmI environment should not be
conscious of the technology that surrounds them. Thanks to the
miniaturization of the technology this is easily achieved nowa-
days.

• Ubiquitous: An idea behind AmI is that it requires being present in
as many places as possible, ideally everywhere. In this way there
is more data recollected, and the more information, the best the
system can react to a particular event.

• Intelligent: The system works using AI in order to achieve its
goals. This is done recollecting the data from the sensors, pro-
cessing it, and giving orders to the actuators in order to, in the
end, influence the environment, specially the people.

AmI is mainly used in home environments controlling the ele-
ments of the house such as the air conditioning, the watering of the
plants or the security but it can also be extended to larger places such
as an office or a cinema to control those elements but also to prevent
certain catastrophes such as a fire or, should it happen, manage the
evacuation as best as possible guiding the people to the quickest and
safer exit [5].

2.2 Simulation
Simulation is the process of designing a model of a real or imagined
system and conducting experiments with that model to achieve cer-
tain goal [7]. Simulations of a very simple environment can be done
with a mathematical model but one that is slightly complex, requires
the execution of the simulation in a computer, as there are too many
variables to take into account in the mathematical model.

There are many different types of simulations, each aimed for a
particular field but in the field of AmI, as there two very important
variables people and devices, we are going to focus in two simula-
tions, the social simulation and the network simulation.

Social simulation studies the interaction among social entities tak-
ing into account their psychology and their behavior, both between
people and with the people and the environment [4]. There are two
main types of social simulation, system level simulation that ana-
lyzes the situation as a whole and agent-based simulation where we
model a person (the agent) and its own behavior, and the interaction
between agents will result in the overall behavior. We will focus in
these last one as its way of working is more adapted to an AmI envi-
ronment.

There are different agent based Social Simulators (SS) such as
MASON, Repast [1], Swarm, each with its own characteristics and

usually particularized for a certain case study. Some of them work
with a 2D environment while others have a 3D one. All of them in-
clude some kind of physical engine to calculate the collisions be-
tween the agents and the environment. These simulators work using
steps, so that all the information is updated every step (some seconds
defined during the initialization).

The SS specializes in the behavior of the human and it can sim-
ulate other elements in an AmI environment such as sensors or ac-
tuators but it won’t be able to get an very deep simulation of those
devices.

In a network simulation, a program models the behavior of a net-
work and each entity present in it, as well as the messages sent be-
tween them [2]. It can also simulate in detail the behavior of the
entities such as routers or computers.

There are several Network Simulators (NS) nowadays both open-
source such as NS or OMNet++ and proprietary such as OPNET or
NETSIM [6]. All are event driven, meaning they calculate the next
event in the network, where an event could be, for example, send-
ing or receiving a packet or a new device that enters the range of a
wireless network. After the simulation ends they generate a log that
contains all these events, useful for a future analysis of the network.

NS are very good at simulating the network in an AmI environ-
ment and can simulate the other elements in this environment, mainly
the people, using specific algorithms for their movement but they
can’t do a very realistic simulation, specially in their behavior, such
a SS would.

3 ARCHITECTURE
In this section we present the proposed architecture that integrates
both simulators. In order to achieve this we need to solve certain
problems that might arise during the interconnection of both simula-
tors. We have identified the following ones:

• Initialization: Each simulator requires specific information in or-
der to start the simulation. Much of the information is shared be-
tween the simulators but probably a different format is necessary.
Still some of the information is only required to one of the simu-
lator, for example all related to the behavior of the people is only
required by the SS while the NS only needs the position of the
people, but nothing more.

• Synchronization: There is a very serious problem with synchro-
nization while the NS is synchronous SS is asynchronous. I.e.
the network simulator is based on events, updating the simulation
when something happens, while the social simulation is based on
steps, updating the position of all the agents every certain time.
This requires a special synchronization between both simulators
so that events are converted to time and everything can work.

• Visualization: Both simulators have their own visualization mod-
ule but we need a common one to use with the integration so
that the user can operate the whole AmI simulator from a sin-
gle graphic interface. This visualization will have to manage the
information from both simulators.

• Management: Different parameters can be managed before the
simulation start as shown in figure 8, so we can set the behav-
ior of the different elements as well as the characteristics of the
environment. This helps to run several simulations with different
parameters and then analyze the differences in the results.

• Decomposition: Both simulators require different parameters so,
we need to keep track of the whole system but we need a way to
particularize the information to each simulator as each simulator
has its own way of processing the data.



• Results: Once the simulation finishes we need a mechanism to
store the data generated so that we can analyze it in the future and
compare the results from different simulations.

In order to solve these problems we propose the creation of an en-
gine that will integrate both simulators including also an interface for
the interaction with the user and a database to store the information
generated. We call this engine Hydra. The general overview of this
architecture can be seen in figure 1.

Figure 1. General Architecture

In this architecture we see both simulators communicating with
Hydra. Hydra is going to integrate both simulators and is responsible
of the following actions:

• The initialization of the simulation. Hydra has to send each sim-
ulator all the information it needs to start its own simulation. The
user will be required to configure several parameters particular to
each simulation specifying a condition that has to be met to end
the simulation, such as a specific elapsed time or certain event.

• The synchronization of the simulations. After each step a simu-
lator generates a new state of the elements in the simulation, and
then Hydra needs to send the relevant information to the other sim-
ulator. For example, if after a step the SS updates the position of a
person, this movement needs to be sent to the NS because it could
imply the movement of the mobile phone this person is carrying
and possibly it could enter or leave a wireless area.

• Ending the simulation. Once the ending condition of the simula-
tion is reached as previously defined in the initialization or if the
user manually ends it, Hydra recollects all the information that
has been generated during the simulation in order to store it in the
database so that it can be processed in the future. It also enables
the user to view this information.

Hydra also works as the interface with the user allowing him to
configure the initial parameters and to check the information gen-
erated once the simulation has finished. Hydra uses certain models
presented in the next section and adapts them to each simulator fol-
lowing their requirements.

4 MODEL
In this section we present the different models associated with the
architecture explained in the previous section. Firstly the data model

used by the simulators which are executed by the engine. And finally
several sequence diagrams that explain in detail the communications
between both simulators in the different cases: when the simulation
starts, when the SS needs to be executed, when the NS needs to be
executed and finally when the simulation ends.

4.1 Data model

Figure 2. Network Simulator Model

In figure 2 we can see the data model used in the architecture pre-
viously presented by the NS.

This model is a general conceptualization of the different objects
we can find in an AmI environment but oriented towards the network.

We have divided the object in two different fields. First there is the
environment that includes all inert objects found in the defined space.
Considering a closed space such as that of a building we can find in
a room elements such as walls, doors and windows and inside these
we can find different types of furniture as well. All these objects are
general in an AmI environment but we can also find cyber-physical
elements particularly important to the network such as communica-
tion lines.

Then we have the agents that represent all that requires certain
intelligence in the simulation. It includes two subsequent groups,
first the people that contains all the information relevant in the social
simulation so that the NS will only be interested in their movement.
Then there are also the cybernetic devices such as sensors, actuators,
drones, etc.

All objects might possess certain relevant information in the phys-
ical model such as its size, weight or the material they have which
might be interesting for the NS to check how the wireless communi-
cations propagate through the obstacles.

In figure 3 we can see the model specific to the SS. There are
lots of elements shared with the NS model but some of them have
disappeared as they are not relevant in a social simulation, such as
communication lines, routers and computers. Instead there are some
new elements such as everything related to the interaction between
agents.



Figure 3. Social Simulator Model

4.2 Sequence model
In this subsection we will see in detail how the communication be-
tween both simulators and Hydra is done and in particular the dif-
ferent tasks Hydra needs to execute in order to guarantee that the
events are solved in the correct order and that both simulators have
the information updated.

There are 4 sequence models that correspond to the four different
states the simulation can be, and are later explained in detail. In order
to understand these states we need to explain first how Hydra works
with both simulators and some key aspect of them.

One of the main tasks of Hydra is to coordinate both simulators
and keep track of the current state of the simulation. In order to
achieve this, Hydra stores the close future events in a queue ordered
by in simulation time, so that the first event in the queue is the next
one to be executed. Each event contains information to which sim-
ulator does it belongs. Each step Hydra extracts the first event from
the queue and informs the corresponding simulator to execute an step
in its simulation. Once the simulation of the step finishes the simula-
tor informs the engine, possibly with information about new events
generated that are then added to the queue in order. Then Hydra can
possibly send information to the other simulator so that it can update
its state, and finally a new step starts. All these process is explained
in detail later with the sequence models.

Once the user informs Hydra to start the simulation there are four
possible situations. The first one is the proper initialization of the
simulation where each simulator starts its own simulation The sec-
ond and third one are during the simulation when different events are
extracted from the queue and sent to the NS or the SS as corresponds.
Finally the simulation ends when the queue is empty or when a cer-
tain condition predefined by the user is met and then the information
related to all the simulation is generated, processed and stored in the
database.

4.2.1 Initialization of the simulation

The initialization of the simulation happens once the user has config-
ured the parameters of the simulation and starts the simulation, both
visually or in batch. This process can be seen in figure 4.

First Hydra has to load the different models from the database,
necessary in the selected scene. These models are then particularized

Figure 4. Initialization of the simulation

with the configuration parameters selected by the user and by the
scene so that the different elements of the simulation can be placed
in its locations and behave as expected. The models are also partic-
ularized for each simulator as not both simulators are going to need
the same information as explained in the data models in section 4.1.

Then the information from the models is sent to each simulator
so that it can start its own version of the simulation. Each simulator
will then configure the simulation with the parameters received from
Hydra, and once the set up is done, they inform Hydra that the are
ready to continue with the simulation when required. Each simulator
also send to Hydra information about what are the next events. In the
particular case of the SS the only next event is when the next step
happens as defined by the user, but in the case of the NS these events
can be new packets generated or systems booting up are any other
possible event.

Once the first simulator finishes configuring its simulation, Hydra
creates the queue where the events will be stored with the information
it received from the simulator. Similarly, once the second simulator
ends, Hydra will add the events to the queue.

Now the simulation is ready to start. The next step explains how
Hydra processes the queue and continues with the simulation.

4.2.2 Update of the social simulation

Figure 5. Update of the social simulation

Once the simulation is ready to start and then after each step is



resolved, Hydra extracts the first element in the queue (so it is also
the first event in chronological order), removing it from the queue
and then processes it.

If the first element is one from the social simulator, Hydra sends a
message to the SS informing it that it can simulate the next step. In
figure 5 it is explained how does this process work.

Each update in the SS usually requires to update the position of
all the agents in the simulation depending on the interaction between
them and the surroundings. Once the simulation has been updated,
the SS sends a message to Hydra to inform that the simulation of
the step has finished but his message also contains information about
the new positions of the elements in the simulation and any other
information that may be relevant. This message also contains infor-
mation about when the next event is going to happen in the time of
the simulation.

Then the engine processes this information and adds the event of
the next simulation to the queue in the chronological order that corre-
sponds. Hydra also processes the updated positions from the agents
and sends a message with the information that is relevant to the NS
so that it can update its own simulation and it is synchronized with
the social simulation. Not all the information might be relevant to the
NS, for example, depending on the scenario the position of a person
might not be interesting to the NS, but it is the position of its mobile
phone the one that is important.

Once the NS confirms that it has updated the new positions of the
agents, the step is completed and then Hydra checks if a condition
to end the simulation has happened. This condition is defined by the
user when configuring the scenario and could be, for example, a cer-
tain time of the simulation or a certain region that has to be empty or
there could be even no ending condition, as for example when run-
ning a visual simulation. In this case, the user will have to manually
stop the simulation when he desires.

Now Hydra will extract the next event in the queue and continue
with the simulation.

4.2.3 Update of the network simulation

Figure 6. Update of the network simulation

Similarly to the previous case, once the simulation is ready to start
or when a new step begins, Hydra extracts the first element in the

queue (so it is also the first event in chronological order), removing
it from the queue and then processes it.

If the first element is one from the network simulator, Hydra sends
a message to the NS informing it that it can simulate the next event.
In figure 6 it is explained how does this process work.

Each update in the NS requires to execute certain event such as a
packet that arrives to a router and needs to be processed or a user that
moves within range of a Wi-Fi. Once this event is resolved the NS
informs Hydra that the update is complete. In the process of solving
the event, new events might have been generated with a time-stamp
in them. This events are sent to Hydra within the message informing
the conclusion of the update.

When Hydra receives the message it adds the new events to the
queue, if any, and then parses the information to send the one is rele-
vant to the SS. Similarly to the previous case, not all the information
will be relevant to the SS but some might. For example if a mobile
phone has lost its signal the SS needs to know this information be-
cause the person could react to the event.

Once the SS confirms that it has updated the new information, the
step is completed and then Hydra checks if a condition to end the
simulation has happened as explained at the end of section 4.2.3.

Now Hydra will extract the next event in the queue and continue
with the simulation.

4.2.4 End of the simulation

Figure 7. End of the simulation

Once the simulation reaches the end, Hydra has to do certain tasks
to store all the information relevant to the whole simulation as ex-
plained in figure 7.

First Hydra informs both simulators to finish their simulation.
Each simulator end the simulation but also process all the data that
has been generated during the simulation and sends it to Hydra. In
the case of the SS this information will be the evolution of the posi-
tion of the elements in the simulation as well as certain parameters
that might have changed. In the case of the NS this will be a file with
all the packets that have been sent and its content as well as other
parameters that might be relevant.

Once Hydra has the information from both simulators, it proceeds
to store it in the database including all the parameters selected ini-
tially by the user as well as some other information as the date or the
duration of the simulation.



Now the simulation has finished. If the user run a batch simulation,
then a new simulation might start or if it was the last one then Hydra
pauses and waits for new user input. If the user run a visual simula-
tion, now there is a new management screen where he can analyze
any simulation and compare them.

5 PREDICTION OF EVENTS
A simulation of an AmI environment should not only be used when
designing the real AmI environment testing where the devices should
be placed, but it could also be very helpful once the system is ready
and the devices are installed in the environment. The idea is that the
simulation can use the data from the devices in real time and use
this information to predict future events that may cause the system
to malfunction or something dangerous that could happen. A simula-
tion is run with the data obtained in the present searching for certain
patterns previously defined such as for example a great concentration
of people in a small area. Should the simulation find this pattern the
system tries to react in order to avoid it, for example indicating the
people to abandon the area or, if necessary, informing a supervisor.
Each time lapse a new simulation is run with the current data. This
time lapse could be shorter or longer as required depending on how
fast is going to change the data.

In order for this prediction to work the simulation should run fast
enough so that when the data is processed, not enough time has been
elapsed and the event has not yet happened so that some measures
can be taken to prevent it.

The simulation can also use data from the past in order to predict
these events searching for certain patterns that can cause them.

6 PROPOSAL OF VALIDATION
We are currently working in the validation of the architecture, cre-
ating Hydra to coordinate both simulators and an interface on each
Simulation to do as intermediate between Hydra and the proper sim-
ulator.

Figure 8. Scenario selection

Once Hydra and the simulators are started, the user can access the
graphic interface using a browser. The first screen the user sees is a
table with the scenarios as can be seen in figure 8. Currently three
scenarios appear with a small description but ideally the user could
create a new one or edit one that exists. In order to create a new
scenario, a new screen would appear enabling the user to drag and
drop different elements predefined to create the desired scenario and
then add the configurable parameters.

Once the user selects a scenario, a new screen appears as can be
seen in figure 9. The selected scenario is one with a router and differ-
ent users with mobile phones walking around the router so that their

Figure 9. Configuration of the scenario

phones connect and disconnect from the network. The configuration
screen enables the user to change the IP and port where the simu-
lators are running as well as configure certain parameters proper to
the simulation selected. In this case the user can choose how many
people are in the simulation, the size of the area where the people
can move and a parameter to define the movement of the people.
Once the parameters are configured, the user can click to run a visual
simulation what will take him to the next screen.

Alternatively, once the scene parameters are configured, the user
can, rather than running a visual simulation, select to run a batch
simulation. In this case the user can select how many simulations to
run and each one, after how many steps are stopped. In this case the
simulations will run in background and once finished the user will
be taken to a screen where he can analyze the data generated in the
simulations.

Figure 10. Running the simulation



Once a visual simulation starts, the user has control of the flow of
the simulation, being able to run a step by step simulation or running
the simulation as fast as possible. The user can pause the simulation
and click in any of the elements in the screen to access its informa-
tion. Once the user decides to stop the simulation, he is then taken to
a screen where the data of the simulation appears.

7 CONCLUSIONS

In this paper we present an integration of a social simulation and
a network simulator in order to get an enhanced AmI environment
simulator that can precisely simulate the whole environment. A sim-
ulator for Ambient Intelligence environments is very useful due to
they can be tested before being developed and deployed and check-
ing if it’s feasible; as a result these environments can be designed,
developed and deployed more efficiently and effectively. Several dif-
ficulties have arisen during the development of this research work
and we gave them solution with the proposal of an engine that inte-
grates and coordinates and orchestrates both simulators. This engine
is responsible of the initialization and coordination of both simulators
keeping track of the different events that happen and the finalization
of the simulation, storing the data generated. Apart from the engine
there is also a visualization element that allows the user to follow the
simulation as it advances and the inspection of the data generated, en-
abling him to check if everything worked as expected and comparing
this data with one from a previous simulation. It also allows the user
to configure the different parameters before starting the simulation
and also configure an execution of a batch of simulations.

8 FUTURE WORK

The architecture presented in this paper enables several improve-
ments. Here we comment some of them.

The most important task is the realization of a validation of the
architecture. This would include a deployment of a simulated sce-
nario containing several people and cyber-physical devices and the
comparison of the data obtained in the real environment with that ob-
tained in the simulation. We are currently working on this, but there
is still a lot of work to do.

The scenarios we are working with are very basic and are created
by hand. The user should be able to create its own scenario adding
graphically the elements he wants, from those defined in the model,
and configuring their parameters or being able to define the ones that
can be configured later, just before the execution.

During the simulation the user should be able to modify the simu-
lation on the run, so that he can experiment with new changes in the
simulation, like moving certain agents, or adding or removing new
ones. This would enrich the visual simulation so that it is not just a
visual representation of the batch simulation.

Finally the screen that enables the user to analyze the simulation
should be the most important one because this is why the user runs
a simulation in the first instance. This screen currently shows the
logs sent by each simulator, but it should present the information in a
more visual way, enabling the user to see the simulation in each step
as well as compare it with other simulations previously run. It should
also enable the user to filter the parameters he is interested in.

Another idea for the simulator is the inclusion of different simu-
lators in the engine. We have only included a social simulator and a
network simulator but several others could be added depending on
the scenario simulated. For example, a fire simulator, that precisely

simulates the advancement of a fire inside a building, could be in-
cluded in order to improve a simulation to test the evacuation time of
a building. Other ideas could be a weather simulator a day and night
simulator that can influence in the behavior of both the people and
the cyber-physical devices in the simulation.

Finally, another possible future work could be the distribution of
the simulation so that each component runs in one or several ma-
chines and the data is shared between all. This could be really im-
portant when the simulation works with the real environment firstly
because the great quantity of data that it can process but also, should
some of the machines stop working, the simulation could keep work-
ing with other machines continuing the work of the one that failed.

ACKNOWLEDGEMENTS
This work has been partially supported by the Autonomous Region of
Madrid through program MOSI-AGIL-CM (grant P2013/ICE-3019,
co-funded by EU Structural Funds FSE and FEDER) and has also
received funding from the Ministry of Economy and Competitiveness
through SEMOLA project (TEC2015-68284- R).

REFERENCES
[1] Robert John Allan, ‘Survey of agent based modelling and simulation

tools’, Technical report, (2009).
[2] Lee Breslau, Deborah Estrin, Haobo Yu, Kevin Fall, Sally Floyd, John

Heidemann, Ahmed Helmy, Polly Huang, Steven McCanne, Kannan
Varadhan, et al., ‘Advances in network simulation’, Computer, (5), 59–
67, (2000).

[3] Diane J Cook, Juan C Augusto, and Vikramaditya R Jakkula, ‘Ambi-
ent intelligence: Technologies, applications, and opportunities’, Perva-
sive and Mobile Computing, 5(4), 277–298, (2009).

[4] Paul Davidsson, ‘Agent based social simulation: A computer science
view’, Journal of artificial societies and social simulation, 5(1), (2002).

[5] Augusto Morales, Ramon Alcarria, Diego Martin, and Tomas Robles,
‘Enhancing evacuation plans with a situation awareness system based on
end-user knowledge provision’, Sensors, 14(6), 11153–11178, (2014).

[6] Saba Siraj, A Gupta, and R Badgujar, ‘Network simulation tools survey’,
International Journal of Advanced Research in Computer and Commu-
nication Engineering, 1(4), 199–206, (2012).

[7] John A Sokolowski and Catherine M Banks, Principles of modeling and
simulation: a multidisciplinary approach, John Wiley & Sons, 2011.

[8] Álvaro Sánchez-Picot, Diego Martı́n, Diego Sánchez de Rivera, Borja
Bordel, and Tomás Robles, ‘Modeling and simulation of interactions
among people and devices in ambient intelligence environments’, in
2016 30th International Conference on Advanced Information Network-
ing and Applications Workshops (WAINA), pp. 784–789. IEEE, (2016).


