Recovery of Faulty Web Applications through
Service Discovery

M.G. Fugini, E. Mussi

Politecnico di Milano
Dipartimento di Elettronica ed Informazione
Via Ponzio 34/5 - 1-20133 Milano
fugini,mussi@elet.polimi.it

Abstract. Failures during Web service execution may depend on a wide
variety of causes. In this paper we illustrate how, upon faults of a Web
application, the faults can be handled by discovering substitute Web
services and re-orchestrating the application. Self-healing capabilities are
added to Web service environments. Possible recovery actions at the Web
service and Web application levels are illustrated and discussed with
respect to a running example involving coordinated Web services.

1 Introduction

Even if various efforts have been recently done in Service Oriented Computing,
the adoption of Web services still remains limited. Especially under the open
world assumption, the Service Oriented Architecture, on which Service Com-
puting relies, presents some limitations. In fact, if we consider public available
Web service registries, as UDDI, it is easy to find Web services no longer available
or Web services having a description which does not correspond to the currently
provided Web service, due to new versions or modifications of functionality of
the Web services.

As discussed in this paper, even in a more controlled closed world assump-
tion, there are many possible causes of failure. As closed world, we consider the
adaptive Web service environment studied in the MAIS (Mobile Adaptive In-
formation Systems) project [13]. In such an environment, adaptivity is provided
at both the front-end and the back-end of Web applications. These are dynam-
ically created composing Web services and are able to satisfy both functional
and non-functional user requirements. This approach results in a context-aware
Web service discovery and selection, which can be performed at runtime, during
Web application execution. Under this approach, the management of failures
poses new research problems related to the identification of causes, of possibly
overlapping failure, and to their automatic correction.

The WS-Diamond (Web service DIAgnosability, MONitoring, and Diagnosis)
project is aimed at developing methodologies for the creation of self-healing
Web Services, able to detect anomalous situations, which may manifest as the
inability to provide a service or to fulfill Quality of Service (QoS) requirements,

and to recover from these situations, e.g., by rearranging or reconfiguring the
network of services. WS-Diamond will also provide methodologies for the design
of services, supporting service design and service execution mechanisms that
guarantee diagnosability and reparability of run-time failures (e.g., thanks to the
availability of set of observables, of exception handlers, or of sets of redundancies
in the services or alternatives in the execution strategies).

The goal of this paper is to present an architecture for self-healing Web
services and applications, which contains modules for the detection, diagnosis,
and repair of faults. Our goal is to show how faults in Web application can be
repaired using repair actions that include switching to a substitute service, by
searching it in UDDI registries, based on similarity criteria. In particular, we
focus on healing mechanisms based both on service selection and substitution
and on addition of new services in composed processes to support self-healing
functionalities.

Section 2 introduces self-healing, diagnosis, and quality of service issues in
Web services and describes some approaches proposed in the literature. Section 3
presents our architectural scenario of a self-healing Web service environment, and
an example. Section 4 introduces an architecture supporting the detection and
recovery of possible faults. Section 5 discusses reactive and proactive healing
techniques, based on service execution analysis.

2 Related Work

Recently, self-healing systems have attracted vast attention by the research com-
munity [11]. Examples of self-healing architectures are provided in [16]. The work
in [16] presents a system architecture to monitor, interpret and analyze system
events in order to implement self-healing and self-adaptive systems. The archi-
tecture presented in [15] is focused on service level agreement management in
a Service Oriented Architecture. The goal is to re-optimize the provisioning in-
frastructure as a consequence of QoS violations. The work in [9] presents the
requirements of a Web Service Management (WSM) framework which also in-
cludes the typical functionalities addressed in self-healing systems, analyzing and
comparing multiple alternative architectures for the implementation of WSM
systems i.e., centralized, federated and peer-to-peer. They propose Web service
substitution and complex service re-compositions as repair actions.

In [2,3,17], authors propose a model based approach to implement diagno-
sis functionalities in Web services self-healing environments. The works in [2, 3]
model a composite service as a Petri Net and classify Web service invocations.
The goal is to correlate input and output parameters and to determine if an
activity carries out a computation that may fail and produce erroneous outputs.
A service invocation forwards an input parameter, if an output parameter co-
incides with the value of an input. If the output parameter is created during
the service invocation this is classified as a source. Finally, when an output pa-
rameter is computed during the service invocation from one or more inputs the
service invocation is an elaboration. A service invocation can introduce errors

in parameters it computes (elaborations) or it produces (sources), while for for-
warded parameters it possibly propagates errors generated by other invocations.
Authors propose a centralized diagnoser which identifies faults from “alarms”
identified by comparing the value of state variables at checkpoints introduced
by the composite Web service designer.

A different approach is used in [10], where authors describe an extended Petri
net model for specifying exceptional behavior in workflow systems. The core of
this approach are the recovery policies, a combination of generic constructs and
primitive operations that can be defined for both single tasks and sets of tasks
(i.e., recovery regions). At design time, process designers model exceptions using
the generic constructs, while at runtime the workflow system uses the primitive
operations to handle the occurred exceptions.

With respect to the cited works, our approach uses dynamic Web service
discovery and selection as one of the main repair strategy. Given a faulty ap-
plication, we are able to substitute one or more component Web services with
compatible ones. The selection of compatible services is performed using seman-
tic criteria based on service descriptors stored in an enhances UDDI registry.
Moreover the selection involves both functional and non functional similarity
evaluations.

3 Adaptive Web Service

WS-Diamond aims at realizing a set of tools that can be plugged into exist-
ing Web service environments and provide self-healing features during the Web
service life cycle.

With respect to the traditional SOA, the adopted system also supports Web
service adaptation (as studied in MAIS [12]). In particular, we suppose hat a
set of actors collaborates according to a shared choreography, which defines
how and when the actors are involved during this collaboration. Operationally,
each actor declares its ability to perform one or more activities included in the
choreography specification, offering one or more Web services. According to this
scenario, in this work we consider a Web application as a collaboration. Thus, a
Web application is a distributed application and the choreography is responsible
for describing the collaboration between all the involved Web services.

The reference architectural aspects are illustrated in the following with re-
spect to the dimension of cooperation among distributed nodes. Figure 1 shows a
global self-healing system in which WS-Diamond-enabled nodes can cooperate
with non WS-Diamond-enabled nodes. In addition, each WS-Diamond-enabled
node may provide only a subset of the modules developed in the project. The
main modules of a complete WS-Diamond-enabled node are: i) a management
interface for Web services; ii) a process orchestration engine for enacting com-
posed services; iii) a repair action selector; iv) a diagnosis infrastructure; v) a
fault detection infrastructure.

In the paper, we illustrate how the different modules cooperate inside a
node. Cooperation and negotiation of available substitute services occur via a
contract-based approach.

Myrnt Intf
¥ Non WS-Diamond node

BFEL
orchestration
engine

Repair action
selector

Non WS-Diamond node

Diagnosis
infrastructure

Diagnosis
infrastructure

WS-Diatnond -
enabied node

W3 | Marnt Intf

BFEL
orchestration
engine

[E] | Telgrmt Intf

BPEL
orchestration

W3 | Mgrat Intf

Repair action

Repair action engine
selectar P 4

selector

ri— = = Diagnosis
I %@E@ SRR | Diagnosis infrastructure
infrastructure ey T
WS-Diamond - 5 TR | WM
enabied node Failore detection
WS-Diammond -
WS-Diamond - enabled node

enabied node

Fig. 1. Reference architecture

3.1 WS-Diamond Nodes

We assume that, within a WS-Diamond node, not all the diagnosys and repair
features are available, but rather that each node is equipped with the fault and
self-healing modules necessary to cooperate. The cooperation of the modules
inside a node and within the execution environment main components views the
diagnoser as the module to be notified of fault events through messages or events
generated by the hardware/software infrastructure (including the self-healing
system itself). By accessing messages, state logs and a fault database (all fault
events are stored in a fault database), the diagnoser identifies which occurred
fault needs to be recovered. The repair action selector performs a choice among
a set of possible repair actions associated to each type of fault, as indicated
in a repair rules registry. The selection triggers a repair action request to a
repair module associated to the required action. A possible list of repair modules

contains: a substitution module (to replace services during the orchestration
of a composed service), a wrapper generator (to change parameters to solve
incompatibility during invocation), a quality module (to perform data quality
checks and improvements), and a reallocation module (to reallocate the resources
exploited by the services).

Our cooperating environment might be technologically heterogeneous. In
fact, an actor involved in the cooperation can rely either on a classical node
or on a WS-Diamond node. About the former, Web services run over typical ap-
plication servers providing a traditional Web service container. About the latter,
we suppose to use a special application server, called MAIS-P [13], specifically
designed to support adaptive Web services.

In the MAIS-P architecture, Web services run on the assumption that some-
thing might go wrong at invocation and execution time and, for this reason, a
QoS driven approach is introduced to solve this possible critical situations. The
service provider and a service requestor, in fact, agree on the quality that the
Web service must guarantee during its execution. The requestor may specify
quality requirements at Web service invocation time or these requirements may
be implicitly specified in the user profile [5]. If a host realizes that the QoS of
a Web service is decreasing to an unacceptable level, then two strategies can be
adopted: channel/partner switching, to provide the Web service on a channel
or through a partner with better QoS characteristics, or Web service substitu-
tion, selecting an alternative Web service for the user. Alternative Web services
are searched by accessing an extended UDDI registry capable of assessing the
similarity among Web services with respect to the provided functionality and
the behavioral equivalence [4]. Similarity computation, supported by a Web ser-
vice ontology, is based on a semantic-based analysis of the involved Web service.
Since substituted and substituting Web services might have different signatures,
an automatic wrapper generator can reconciliate differences in the provided in-
terfaces, possibly with human intervention [8].

A sample application scenario may consist in four Web services: BookShop
WS, Publisher WS, Warehouse WS and Shipping WS, supporting a book e-commerce
process. In this scenario, a customer asks for a book invoking the BookShop WS,
and submitting the book title. Each customer has a profile (custInf) which is
used during Web service contracting and provisioning. The customer’s profile col-
lects various information about the customer, such as age, education, profession,
interests, and book preferences, maximum budget. Such profile information is
available to the BookShop WS using WS-enabled nodes to collect the customer’s
profile and to send it to the server [5]. We assume that the Web services in the
application are internally orchestrated, while externally they are only coordinated
through the choreography.

The goal of the set of interacting services is to send the right book to the
right customer according to his preferences. In fact, a number of faults may
occur during the execution of the process causing possible needs of substituting
services and discovering new ones. For example, the wrong book is delivered [3],
or a book is indefinitely reserved for a user who will not buy it, an order is

indefinitely delayed, or one or more of the involved services indefinitely runs
waiting for a reply from possibly faulty services.

4 Self-healing platform

On one hand, we aim at realizing a platform to support a self-healing Web service
execution where faulty services can be substituted by discovering compatible
services. This means that Web services should be able to detect possible failures
caused by the Web services layer and, consequently, to enact a recovery action
transparently to the user standpoint. On the other hand, since during a Web
application execution a Web service may invoke external (non self-healing) Web
services, our upgraded MAIS-P platform should be able to detect failures even at
application level, i.e., caused by the external Web service. In this case, according
to the loosely-coupled philosophy underlying the Service Oriented Computing,
we are not interested on fixing the failed Web service, but we try to react to
such a failures possibly substituting the failed one.

Figure 2 shows the modules, embedded in the WS-Diamond nodes, that
support our goals. The Diagnoser identifies fault events or receives fault event
notifications. The identification task operates on the information coming from
the infrastructure & middleware layer, to detect internal node failures, and on
the exchanged messages, to detect failures on partner’s nodes.

Our architecture provides four modules to handle recovery actions:

— reallocation module: it optimizes resource reallocation requests on the un-
derlying hardware and software infrastructure; resource reallocation policies
are proposed in [1];

— substitution module: this module, available in the MAIS-P platform, allows
the selection of substitute services according to the characteristics of the
service request context, such as services which are functionally similar [13];

— wrapper generator module: this module, available both in MAIS and VISPO
platforms [13, 8], allows the completion of missing parameters during service
invocation, or to convert parameters in different formats;

— quality module: the PoliQual system [6] provides functionalities to insert
data blocks before Web service invocation or upon receipt of a message,
to assess data quality on-line and to perform reactive and proactive repair
actions.

We assume that faults have to be recovered one at a time, and that the Recovery
action selector module, by accessing the Fault registry, invokes the corresponding
fault repair action.

4.1 Fault Registry

A basic set of known service faults is classified and stored in a Fault Registry at
three system levels, for which, examples are provided in Table 1:

web service
invoker

re-iyé:ation 'r}xtest

Reallocation Substitution V:;ae‘:sgr Quality
module module gmodule module
reco&xactiory[quest

Recovery
action selector

T fault

Diagnoser Fault
log

fault events
infrastructure
messages
hw/sw

Fig. 2. Self-healing platform architecture

Fault
registry

re-allocation
request

— the Infrastructure & Middleware level faults (not reported in the table) are
due to failures in the underlying hardware, network, and system software
infrastructure;

— the Web service level faults are due to failures in service invocation and
service orchestration; these are captured by the WS-Diamond modules;

— the Web application level faults are malfunctions in the execution of Web
applications due to data mismatches or coordination (choreography) failures.
Also these faults are captured by the WS-Diamond modules.

Repair actions are designed according to the fault level and originate different
recovery strategies according to the system components affected by the fault. For
example, at the Web application level, the main goal is to provide: (i) services
which respect the user requirements in terms of functionalities and QoS, (ii)
business continuity, and (iii) fault masking. At the Web service level, the goal is
to manage the service choreography correctly and to guarantee service continuity
and QoS requirements, by substituting corrupted services with compatible ones
available in the network.

4.2 Web service level faults

Faults at the Web service level are about the execution of a (set of) Web ser-
vice(s). In particular, Web service execution faults raise either during service
invocation or during execution of a simple Web service, while Web Service co-
ordination faults result from composed Web services.

Level

Fault type

Examples

‘Web-application

Internal data faults

Application coordination faults

Data quality faults (value mismatch,
e.g., inaccurate data in input param-
eter; missing data: null values).

Application Failure due to reply
timeout, resources not available at

right time (Phase fault).

Actor faults Customer is not connected when
a synchronous communication is
needed.
QoS violation faults QoS value beyond threshold.
‘Web service ‘Web service execution faults Missing parts in input message,

(internal to a service).

cess failure (time out).

wrong order of operation invocations

Web service coordination faults Component service unavailable, pro-

Table 1. Fault Types

A service execution fault is raised during invocation if a service is not re-

sponding, or due to a wrong authorization of the end user, or to a parameter
missing in the input SOAP message. A mismatch in the structure of messages to
invoke a service may be due, for instance, to an update in the published service
interfaces, which are not yet considered inside the invoking applications.
In our adaptive framework, a Web service execution fault may also occur when,
upon substitution of a faulty Web service with a functionally equivalent one, no
substitute is available. In that case, a discovery of a compatible service is needed
in order to possibly substitute the faulty service. Discovery is performed using
additional data about services, which are registered as elements of one or more
compatibility classes [8], where each class identifies the required functionalities
for the execution of a process activity. The rationale is that a provider associates
a compatibility class with the service he is registering, if he thinks the service is
able to satisfy the activity requirements. These requirements are stated when the
class is firstly created and have to be satisfied by all class members. During the
registration, compliance of the registered service to its compatibility classes is
also evaluated and mapping information for semi-automatically building wrap-
pers to adapt services to the process is generated.

A service coordination fault is typically due to a violation of the order of
invocation of service operations or messages (e.g., a book payment is received
before the corresponding book reservation). Coordination faults may occur when
some of the Web services in a composed service are unavailable, or when a mes-
sage is received that does not match the choreography protocol. Again, a phase
of service discovery based on compatibility classes for substitution is needed.

4.3 Application level faults

Application level faults are related to the execution of a Web application. The
mechanism used to detect a faulty service invocation is the timeout. If the result

of an operation is not received by the due time, the application argues that some
of the invoked services are not working properly.

Examples of application faults in the bookshop example are: unavailable
goods, wrong book identification data, or session faults.

Fault at this level belong to the following categories: 1) Application Coordi-
nation faults; 2) Actor faults; 3) QoS violation faults; 4) Internal Data faults.
Examples of Application Coordination faults in the bookshop example are:

— A session fault: e.g., loss of an HTTP session.

— A phase time fault: e.g., the book has been paid for and hence the Payment
phase of the application has completed, but the confirmation of payment is
received after an internal time out.

— A resource booking fault: e.g., not the whole resource pool necessary to
complete the service has been reserved, for example the shipping system has
not been reserved in advance.

— Inter-process faults: e.g., service data regarding the customer address or
customer credit card have not been received in the correct sequence or at
the right time.

An example of Actor fault is an authorization fault, e.g., the customer has en-
tered a wrong password three times. QoS violation faults are related to local
and global constraints specified by the user or by the application designer. For
example, the user can require that the delivery time of the ordered book is lower
than a given threshold (e.g., five days) or that the total price of the ordered
book is lower than a given amount (e.g. 20%). Another category of QoS faults
is bound to the process design, that is, to the way the application workflow has
been developed. For example, an Unavailable goods fault, or a Payment failure
fault should be treated by exception handlers specifically included in the process
workflow by the designer. If some handlers have not been designed, the applica-
tion could experience a deadlock or a total crash. Being the system self-healing,
we expect the fault log to gather information useful to subsequently design the
necessary handler.

Internal Data faults include data quality faults related to data manipulated
during the execution of a service. Examples are the wrong title of an ordered
book, or mismatched customer data. These faults may be regarded as QoS faults,
but, since they specifically regard data internal to a service, they are evidenced
as possibly bounded to specific filters and options to be treated apart by specific
recovery actions.

5 Self-Healing Web services

The architecture shown in Figure 2, currently under development, connects the
schema of the fault types with the schema of the recovery actions. Namely, the
fault registry will be accessed by the diagnosys module in order to blame the
faulty Web service. Once that the fault type has been identified, the Recovery
Action Selector accesses the recovery actions table (see Table 2) to select the

proper repair action that has to be undertaken. This selection is performed at
runtime, taking into account context information (e.g., the network status or
the workflow execution status). Hence, the same fault type can be handled by
different recevery action modules, according to the particular context in which
the fault has occurred.

Recovery action|Actions Fault type Type
type
Service-oriented recov-|Retry Infrastructural, WS execu-|Reactive
ery action tion
Substitute WS execution, WS coordina-|Reactive
tion
Completion of missing mes-|WS execution Reactive

sage parts

Reallocate QoS Reactive/proactive
Change process structure All Proactive
Process-oriented methods Application level Proactive

Data quality recovery|Insert data quality block Internal data Reactive

actions
Process-oriented methods Application level Proactive

Table 2. Recovery actions

This Section presents the set of recovery actions that can be employed to
recover from failures. In particular, we focus on the management of Web ap-
plication and Web service level faults. With respect to the way in which these
actions are performed, two types of recovery actions are identified: reactive re-
covery actions and proactive recovery actions.

Reactive recovery actions are performed along with the execution of Web ser-
vices and try/allow the recovery of running services. Proactive recovery actions
are mostly based on data mining techniques and can mainly be executed in an
off-line mode; proactive recovery actions are complex and require the support of
an environment able to execute services, to detect runtime faults, and to perform
recovery actions with no damage to the running instances of the monitored Web
services. A long term approach to self-healing is adopted, where recovery actions
have the goal of improving Web services and Web applications in order to avoid
future failures. These actions can be oriented to provide a one-shot improvement
action or to modify the service provisioning process for a permanent data and
process improvement.

Recovery actions can be also classified in service-oriented recovery actions
and data quality recovery actions. While the former deals with invocation, or-
chestration and choreography aspects of Web services, the latter pertains mainly
to the management of data quality faults. For each fault type, several candidate
recovery actions may be proposed, depending on the fault type and whether a
reactive or proactive approach is taken, as synthesized in Table 2.

In the bookshop example, assume the invocation of the sendBook operation
on the Publisher WS fails. The Diagnoser detects that the Publisher WS is ex-
periencing a quality degradation that slows down its execution so that it cannot
be used by other Web services anylonger. Consequently, the Diagnoser stores the
detected fault in the fault log and invokes the Recovery Action Selector module.
This module repairs the fault using the Substitution module to search for a com-
patible Web service to substitute the Publisher WS. The workflow execution is
then restarted by invoking the sendBook operation on the substitute Web ser-
vice. If the interface of the substitute service is different from the interface of the
original service, the invocation is mediated by the Wrapper generator module.

Meanwhile, since the Diagnoser has detected that the quality of service degra-
dation was due to a server crash at the publisher site, the WS-Diamond architec-
ture proactively activates also the Reallocation module. Based on the analysis
of the fault logs, the Reallocation module reallocates all the Web services that
were running on the crashed server.

5.1 Service-oriented recovery actions

The techniques employed to realize this kind of recovery strictly depend on the
model used to describe Web services. Some models describe how Web services
act internally (i.e., orchestration), while other models only describe how differ-
ent Web services collaborate (i.e., choreography). While both choreography and
orchestration are exploited to detect faults, reactive recovery actions only rely
on the orchestration model of the service. With our architecture, if a Web service
has an internal behavior specified using a WS-BPEL process that composes other
services, we are able to perform recovery actions over the Web service controlling
the execution of its internal process. Under our approach, the recovery actions
that can be applied over a WS-BPEL process in a MAIS-enabled node are the
following: i) retry the invocation of a failed Web service, ii) substitute a failed
Web service, iii) reallocate a failed Web service, and iv) change the structure of
the process.

Retry Web services invocation

This recovery action is applied when faults point out a temporary unavailability
of one or more services that compose the internal process of the analyzed Web
service. In this case, the solution is to suspend the execution of the process and
retry the invocation of the unavailable services until they return available. This
solution is quite simple and does not require any sophisticated methodologies to
manage the service invocation.

Substitute Web services
A more complicated situation is the case where one or more services are consid-
ered as definitely unavailable and, in order to complete the process execution, it
is necessary to substitute each failed service.

It is possible to overcome this problem using the MAIS-P architecture that
supports Web service compatibility evaluation and Web service substitution.

The compatibility evaluation between two Web services is performed comparing
their functional interfaces (i.e., WSDL documents) and their provided QoS. If
two services are defined as compatible, MAIS-P is able to automatically create a
service wrapper, starting from their WSDL descriptions. Once that the wrapper
is created, service substitution can be easily performed. The process structure is
not modified, and the WS-BPEL orchestration engine continues the execution
of the process without considering the service substitution. The management of
the substitution is left to the MAIS-P architecture which exploits the wrapper to
translate the parameters sent by the orchestrator into the parameters accepted
by the substitute service and vice-versa.

Completion of missing parameters

Service invocation may fail when some of the input message parts are missing.
Possible recovery actions may be based on knowledge of the role of parameters.
In [8], we propose a technique to dynamically evaluate message composition of
invoked Web service operations and look for missing information when parame-
ters are necessary for message execution, while optional parts are ignored. The
technique is based on an adaptive service invocation infrastructure.

Reallocate Web services

This type of recovery action is very useful for the particular subset of QoS vio-
lation faults that derives from a lack of hardware or software resources on the
service provider side. In this situation, reallocating and executing the service on
different machines or application servers can solve the problem. Reallocation is
possible only if Web services are provided with an ad-hoc management interface
and the recovery manager has free access to all the resources (e.g., the recovery
manager can determine the load balancing or the application priority in the op-
erating system).

Reallocation may be performed as reactive actions, when QoS violations are
detected, but also as proactive actions, when optimization of service execution
plans is performed using predictive techniques on future states of the execution
environment.

Change the process structure

When service substitution or service reallocation are not enough for resuming a
failed process, another recovery action that can be applied consists in modifying
the structure of the process itself. According to [7], data mining techniques can be
exploited in order to proactively identify possible anomalous situations during
process execution. Workflow systems, in fact, produce a large quantity of log
information which states how the old processes have been executed and how the
current process is going on. In this case, the process designer, possibly supported
by a tool, can manually fix or modify the process in order to delete erroneous
activities. Once that the process is modified, it can be resumed or re-executed
and previously described recovery actions can be employed.

5.2 Data quality recovery actions

Run time recovery actions in data quality require the identification of the causes
of data errors and their permanent elimination through an observation of the
whole process where data are involved. As an example, we refer to the Informa-
tion Product Map (IP-MAP) methodology [14] which graphically describes the
process by which the information product is manufactured. Error detection and
the correction can be performed using different methods:

— Data cleaning by manual identification: comparison between value stored in
the database and value in the real world;

— Data bashing (or Multiple sources identification): comparison of the values
stored in different databases;

— Cleaning using Data edits: automatic procedures that verify that data rep-
resentation satisfies specific requirements.

6 Concluding Remarks

We have presented our approach for fault management of Web applications based
on self-healing systems. A reference architecture for faults treatment and a clas-
sification of faults have been given, together with a set of strategies for recovery.
Fault occurring during Web service and Web application execution have been
studied and discussed within a proposed architecture where faults detection and
interpretation for repair requiring search of substitutive services have been pre-
sented. Mutual dependencies among faults originated at these different system
abstraction levels are a relevant issue to be further investigated in our research.
Moreover, the distribution vs. central coordination of fault events detection and
repair action execution are an important aspect to be studied for the proposed
architecture.

Future work will focus on careful design of repair strategies, and on the eval-
uation of the proposed approach in the Project testbed environment.

Acknowledgments
Part of this work has been supported by EU Commission within the FET-STREP
Project WS-Diamond.

References

1.

2.

10.

11.

12.
13.
14.

15.

16.

17.

D. Ardagna, M. Trubian, and L. Zhang. SLA Based Profit Optimization in Multi-
tier Systems. In NCA 2005 Proc., 2005.

L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan, and D. T.
Dupre: Advanced Fault Analysis in Web Service Composition. In International
WWW Conference, poster session, pages 1090-1091, 2005.

L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan, and D. T.
Dupre: Enhancing Web Services with Diagnostic Capabilities. In ECOWS05 Proc.,
2005.

D. Bianchini, V. De Antonellis, B. Pernici, and P. Plebani. Ontology-based method-
ology for e-service discovery. Accepted for publication on Journal of Information
Systems, Special Issue on Semantic Web and Web Services, 2004.

C. Cappiello, M. Comuzzi, E. Mussi, and B. Pernici. Context Management for
Adaptive Information Systems. In International Workshop on Context for Web
Services (CWS-05). Elsevier, 2005.

C. Cappiello, C. Francalanci, and B. Pernici. A self-monitoring system to satisfy
data quality requirements. In Proc. ODBase05, 2005.

M. Castellanos, F. Casati, M.-C. Shan, and U. Dayal. iBOM: A Platform for
Intelligent Business Operation Management. In Proc. of the 21st International
Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, 2005.
V. De Antonellis, M. Melchiori, L. D. Santis, M. Mecella, E. Mussi, B. Pernici, and
P. Plebani. A Layered Architecture for Flexible Web Service Invocation. Software:
Practice and Ezperience, 36(2):191-223, February 2006.

E. Esfandiari and V. Tosic. Towards a Web Service Composition Management
Framework. In In ICWS05 Proc., 2005.

R. Hamadi and B. Benatallah. Recovery Nets: Towards Self-Adaptive Workflow
Systems. In WISE, pages 439-453, 2004.

P. Koopman. Elements of the Self-Healing System Problem Space. In ICSE
WADSO03 Proc., 2003.

MAIS Web Site. http://www.mais.project.it.

B. Pernici, editor. Mobile Information Systems. Infrastructure and Design for
Adaptivity and Flexibility. Springer, April 2006.

G. Shankaranarayan, R. Y. Wang, and M. Ziad. Modeling the Manufacture of
an Information Product with IP-MAP. In Proceedings of the 6th International
Conference on Information Quality, 2000.

G. Wang, C. Wang, A. Chen, H. Wang, C. Fung, S. Uczekaj, Y. L. Chen,
W. Guthemiller, and J. Lee. Service Level Management using QoS Monitoring,
Diagnostic, and Adaptation for Networked Enterprise Systems. In EDOC 2005
Proc., pages 239-248, 2005.

D. S. Wile and A. Egyed. An Externalized Infrastructure for Self-Healing Systems.
In Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA’04),
2004.

Y. Yan, M. Cordier, Y. Pencolé, and A. Grastien. Monitoring Web Service Net-
works in a Model-based Approach. In ECOWS05 Proc., 2005.

