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Abstract. We present and motivate a formal approach and algorithms
for semantic matchmaking in an e-commerce framework. The proposed
solution exploits nonmonotonic inferences to compute semantic-based
ranking of offers and provides explanation services in the query-retrieval-
refinement loop.

1 Introduction

Matchmaking is basically the process of computing an ordered list of appealing
resources with respect to a given request. Semantic matchmaking can be hence
described as the process of computing an ordered list of appealing resource taking
into account also the semantics of resources annotation and request definition,
given with reference to an ontology.

Studies on matchmaking go a long way back3. Recently, semantic matchmak-
ing has been investigated, in particular in the framework of Description Logics
(DLs) reasoning. Usually, proposed approaches have been aimed –although with
notable exceptions, see e.g., [1, 8, 13, 6]– to the exploitation of standard rea-
soning services (i.e., subsumption and satisfiability)for classification of matches
into coarse categories, without providing a way to semantically rank obtained
matches, neither within the same match class nor regardless of the class [9, 11,
17, 16, 18, 14, 4, 3]. Yet ranking should be a core process in matchmaking, and a
classification into satisfiable/unsatisfiable might be unfair when unsatisfiability
is due, for example, to a neglectable detail that would nevertheless prevent the
evaluation of that match.

In this paper we show how to exploit non-monotonic inferences (namely,
abduction and contraction) in a semantic-matchmaking process for ranking the
available supplies descriptions. Basically, if a demand is incompatible with the
supplies advertised, it can be amended (via contraction) in order to become
compatible with them –and the more the amendments needed, the less is the
3 For a detailed report on general matchmaking issues and systems we refer the inter-

ested reader to [8].



degree of match. If a demand is compatible with a supply, but does not subsume
it, then it is possible to ”hypothesize” (via abduction) some extra features in
the supply so that it gets subsumed by the demand –and the more we have to
hypothesize, the less is the degree of match. This process results not only in a list
of offers that match the user’s request, semantically ordered w.r.t. the degree of
their match, but also in the amendments of the request and the offer that serve
as an explanation why such a degree of match was assigned, which could be later
on used to refine/revise the demand.

The remaining of this paper is structured as follows: in the next section, with
the aid of simple propositional logic, we illustrate and motivate the rationale of
our approach; we move on to more expressive DLs in Section 3 and present our
theoretical approach together with algorithms for semantic matchmaking and
query refinement in DLs. Last section draws the conclusions.

2 Logic-based Matchmaking Principles

Matchmaking is a widely used term in a variety of frameworks, comprising several
–quite different– approaches. We first provide a generic and sound definition of
matchmaking.

Definition 1 (Matchmaking). Matchmaking is an information retrieval task
whereby queries (a.k.a. demands) and resources (a.k.a. supplies) are expressed
using semi-structured text in the form of advertisements, and task results are
ordered (ranked) lists of those resources best fulfilling the query.

This simple definition implies that –differently from classical unstructured-
text information retrieval approaches– some structure in the advertisements is
expected in a matchmaking system, and matchmaking does not consider a fixed
database-oriented structure. Furthermore, usually database systems provide an-
swers to queries that do not include a relevance ranking, which should be instead
considered in a matchmaking process.

Definition 2 (Semantic Matchmaking). Semantic matchmaking is a match-
making task whereby queries and resources advertisements are expressed with ref-
erence to a shared specification of a conceptualisation for the knowledge domain
at hand, i.e., an ontology.

From now on, we concentrate on matchmaking in marketplaces, adopting
specific terminology, to ease presentation of the approach. Nevertheless our ap-
proach applies to generic matchmaking of semantically annotated resources.

2.1 Foundation of Logical Matchmaking

Our research is inspired by the application of Description Logics to E-Commerce.
However, we believe that foundations of a logical approach to matchmaking are
more evident in a simple propositional setting first, then we will move on to DLs.



As usual, an interpretation assigns values true, false to elements of a proposi-
tional ontology T , and truth values are assigned to formulae according to usual
truth tables for ∧,∨,¬,⇒,⇔. A set of formulae is consistent if there is at least
one interpretation assigning true to all formulae.

Satisfiability and classification w.r.t. an ontology T can be formally explained
in terms of interpretations for a logical theory. In fact if we reduce an ontology
to its logical axioms, then we can formalize both classification and satisfiability
in terms of logical interpretations of a theory T .

Fig. 1. Satisfiability and Classification

A request R (conversely a resource O) is satisfiable w.r.t. T if there is at least
one interpretation in all the interpretations for T which is also a interpretation
for R (conversely for O) – see Figure 1(a-b). For what concerns classification,
given R and O both satisfiable w.r.t. T , we say that O is classified by R if all the
interpretations for O are also interpretations for R see Figure 1(c).

Formally, let M be the interpretations for T and MR the interpretations in
M that satisfy the request R (respectively MO for the resource O). We have R
(conversely O) is satisfiable if MR 6≡ ∅ and R classifies O if MO ⊆MR.

Given R and O both satisfiable w.r.t. an ontology, logic based approaches to
matchmaking proposed in the literature [16, 14, 8] use classification and satisfia-
bility to grade match results in five categories:

1. Exact. Figure 2(a). MR = MO – All the interpretations for R are also in-
terpretations for O – in formulae T |= R ⇔ O.

2. Full - Subsumption. Figure 2(b). MO ⊆MR – All the interpretations for
O are also interpretations for R – in formulae T |= O ⇒ R.

3. Plug-In. Figure 2(c). MR ⊆ MO – All the interpretations for R are also
interpretations for O – in formulae T |= R ⇒ O.

4. Potential - Intersection. Figure 2(d). MR ∩MO 6= ∅ – Some interpreta-
tions for R are also interpretations for O – In formulae T 6|= ¬(R ∧ O).



Fig. 2. Match Types

5. Partial - Disjoint. Figure 2(e). MR ∩MO = ∅ – No interpretations for R
are also interpretations for O – In formulae T |= ¬(R ∧ O).

In a marketplace framework, the aim of a matchmaking process is to satisfy
a user request as far as possible, so the best match type is obviously the first
one, i.e., Exact, because both R and O express the same preferences and then,
since all the resource characteristics requested in R are semantically implied by
O and vice versa, the user finds exactly what she is looking for. In a Full match
all the interpretations for O are surely also interpretations for R and then O
completely satisfies R, this means that all the all the resource characteristics
requested in R are semantically implied by O but not, in general, vice versa.
Then, in a Full match, O may expose some unrequested characteristics. Plug-
In match expresses the situation when O is more generic than R and then it is
possible that the latter can be satisfied by the former. Some characteristics in R
are not specified, implicitly or explicitly, in O which is more generic than R. With
Potential match we can only say that a similarity degree exists between O and
R and then O might potentially satisfy R, as an Open World Assumption implies
that what is not specified has not to be interpreted as a constraint of absence.
Finally Partial match states that there is no common interpretation between R
and O. We prefer to name this match type Partial instead of Disjoint [14] or
Nonmatch [12] because, as in the example below, this situation should not be
inevitably considered an unrecoverable match.

The following example shows, in a propositional logic setting, the rationale of
such categorization. Suppose to have the following set T of propositional axioms
modeling an automotive domain:



T =





ReflexSilver⇔ Silver ∧ Metallic
PassengerAirbag⇒ Airbag
EcoDiesel⇒ Diesel
Gasoline⇔ ¬Diesel
SatelliteAlarm⇒ AlarmSystem

Now imagine to have a request R and five offers Opar, Opot, Ofull, Oplug, Oex

as in the following:

R = Sedan ∧ PassengerAirbag ∧ EcoDiesel ∧ ReflexSilver ∧ AlarmSystem
Opar = Sedan ∧ Gasoline ∧ AlarmSystem ∧ PassengerAirbag ∧ ReflexSilver
Opot = Sedan ∧ Airbag ∧ Silver ∧ SatelliteAlarm ∧ EcoDiesel
Ofull = Sedan∧PassengerAirbag∧EcoDiesel∧ReflexSilver∧SatelliteAlarm
Oplug = Sedan ∧ PassengerAirbag ∧ Diesel ∧ ReflexSilver ∧ AlarmSystem
Oex = Sedan∧PassengerAirbag∧EcoDiesel∧Metallic∧Silver∧AlarmSystem
In Table 1the interpretations are shown of T satisfying R, Opar, Opot, Ofull, Oplug

and Oex.

Sedan PassengerAirbag EcoDiesel ReflexSilver Gasoline Airbag Silver Metallic Diesel AlarmSystem SatelliteAlarm

MR
T T T T F T T T T T T
T T T T F T T T T T F

MOpar
T T F T T T T T F T T
T T F T T T T T F T F

Partial Match: M∩MOpar
= ∅

MOpot
T T T T F T T T T T T
T T T F F T T F T T T
T F T T F T T T T T T
T F T F F T T F T T T

Potential Match: MR ∩MOpot
6= ∅

MOfull
T T T T F T T T T T T

Full Match: MOfull
⊆ MR

MOplug
T T T T F T T T T T T
T T T T F T T T T T F
T T F T F T T T T T T
T T F T F T T T T T F

Plug-In Match: MR ⊆ MOplug

MOex
T T T T F T T T T T T
T T T T F T T T T T F

Exact Match: MR = MOex

Table 1. Matches

Actually, it is questionable whether a Plug-In match type should be consid-
ered better than Potential one in a marketplace scenario. We note that some
researchers also consider Plug-In match more favorable than full match (e.g.,
see [14, 16]), motivating this choice with the idea that if MR ⊆ MO one may
expect that the advertiser offering resource O will probably have also more spe-
cific resources; in an e-commerce setting if the advertiser offers a sedan car it will



also probably offer specific types of sedans. Nevertheless we argue that this idea
prevents a fully automated matchmaking, which is possible when MO ⊆ MR,
and furthermore it favors underspecified resource description, i.e., an advertise-
ment offering a sedan will always Plug-In match any request for a specific sedan,
but will leave on the requester the burden to determine the right one – if any
is actually available – for his/her needs. Even though Exact match is surely the
best match, Full match might be considered –not always anyway– equivalent
from the requester point of view, because it states that at least all the features
specified in R are also expressed in O.

Usually, logic-based approaches only allow, as illustrated above, a catego-
rization within match types. But while exact and full matches can be rare (and
basically equivalent), a user may get several potential and partial matches. Then
a useful logic-based matchmaker should provide a –logic– ordering of available
resources vs. the request, but what we get using classification and satisfiability
is a boolean answer. Also partial matches, as pointed out in [8], might be just
”near miss”, e.g., maybe just one requirement is in conflict, but a pure satisfia-
bility check returns a hopeless false result, while it could be interesting to order
”not so bad” offers according to their similarity to the request.

One may be tempted to revert to classical and well-assessed information
retrieval (IR) algorithms to get a rank for approximate matches (e.g., so-called
hybrid approaches [13]), but regardless of well-known limits of unstructured text
retrieval, there is something IR algorithms cannot do, while a logic approach can:
provide explanations for matches result and suggest revision of requests.

2.2 Penalty Functions

Matches classification based on implication and satisfiability is still a coarse one,
relying directly on known logical relations between formulae. In fact, the result
of matchmaking should be a rank of resources/supplies/counteroffers, according
to some criteria – possibly explicit – so that a user trusting the system would
know whom to contact first, and in case of failure, whom next, and so on. Such
a ranking process should satisfy some criteria that a Knowledge Representation
approach suggests. We formulate ranking requirements by referring to properties
of penalty functions p(O, R, T ), O,R being two formulae and T an ontology.

p : 〈O, R, T 〉 → <

We use penalty functions to rank O for a given R w.r.t. a ontology T . Intuitively,
for two given O1, O2 in the marketplace, if p(O1,R, T ) < p(O2, R, T ) then the
issuer of demand R should rank O1 better than O2 when deciding whom to
contact first. Clearly, a 0-penalty should be ranked best, and counteroffers with
the same penalties should be ranked breaking ties.

The first property we recall is Non-symmetric evaluation of proposals.

Definition 3. A penalty function p(·, ·, ·) is non-symmetric if there exists for-
mulae R, O and an ontology T such that p(O, R, T ) 6= p(R,O, T ).



This property is evident when all constraints of R are fulfilled by O but not
vice versa. Hence, O should be among the top-ranked counteroffers in the list of
potential partners of R, while R should not necessarily appear at the top in the
list of potential partners of O.

Secondly, if logic is used to give some meaning to descriptions of supplies and
demands, then proposals with the same meaning should be equally penalized,
independently of their syntactic descriptions.

Definition 4. A penalty function p(·, ·, ·) is syntax independent if for every
triple of formulae O1, O2,R, and ontology T , when T |= O1 ⇔ O2 then p(O1, R, T ) =
p(O2, R, T ), and the same holds also for the second argument , i.e., p(R, O1, T ) =
p(R, O2, T )

Clearly, when the logic admits a normal form of expressions — as CNF or
DNF for propositional logic, or the normal form of concepts for some DLs —
using such a normal form in the computation of p(·, ·, ·) ensures by itself syntax
independence.

We now consider the relation between penalties and implication. We sepa-
rately consider penalty functions for ranking potential matches — p⇒(·, ·, ·) —
from those for ranking partial (conflicting) matches — p∅(·, ·, ·).

Definition 5. A penalty function for potential matches is monotonic over im-
plication whenever for every issued demand R, for every pair of counteroffers O1

and O2, and ontology T , if O1 and O2 are both potential matches for R w.r.t. T ,
and T |= (O1 ⇒ O2), then p⇒(O1,R, T ) ≤ p⇒(O2, R, T )

Intuitively, the above definition could be read of as: if T |= (O1 ⇒ O2) then O1 is
more specific than O2 and should be penalized (and then ranked) either the same,
or better than O2. A ranking of potential matches is monotonic over implication
if the more specific, the better. In other words, O1 exposes more characteristics
than O2 that can satisfy the ones requested by R. A dual property could be stated
for the second argument: if T |= (R1 ⇒ R2) then a counteroffer O is less likely
to fulfill all characteristics required by R1 than R2. However, since our scenario
is: “given an issuer of a demand R looking for a match in the marketplace, rank
all possible supplies O1, O2, . . . , from the best one to the worst”, we do not deal
here with this duality between first and second argument of p⇒(·, ·, ·).

When turning to partial matches, in which some properties are already in
conflict between supply and demand, the picture reverses. Now, adding another
characteristic to an unsatisfactory proposal may only worsen this ranking (when
another characteristic is violated) or keep it the same (when the new character-
istic is not in conflict).

Definition 6. A penalty function for partial matches is antimonotonic over im-
plication whenever for every issued demand R, for every pair of supplies O1 and
O2, and ontology T , if O1 and O2 are both partial matches for R w.r.t. T , and
T |= (O1 ⇒ O2), then p∅(O1, R, T ) ≥ p∅(O2, R, T )



If T |= (O1 ⇒ O2) then O1 should be penalized (and then ranked) either the
same, or worse than O2. In fact, if O1 and O2 are both partial matches for R
and O1 is more specific than O2, then there are more characteristic in O1 that
can conflict with the ones in R than in O2. In other words, A ranking of partial
matches is antimonotonic over implication if the more specific, the worse. The
same property should hold also for the second argument, since conjunction is
commutative.

2.3 From Partial to (quasi-)Exact Match

We illustrate the rationale of our approach by computing what is needed in order
to ”climb the classification list” and reach a Full or an Exact match.

In particular, if we get a Partial match we could revise R relaxing some
restrictions, in order to reach a Potential match. Once we get a Potential match
we can hypothesize what is not specified in O in order to reach a Full match and
subsequently we can suggest to the user what is not specified in the relaxed R
but is in O. The ideal sequence should be then:

Partial → Potential → Full (→ Exact)

With reference to our previous example we show how this process can be per-
formed in a propositional framework. Let us define the following R and O we
will use in the rest of the Section:

R = Sedan ∧ PassengerAirbag ∧ EcoDiesel ∧ ReflexSilver
O = Sedan ∧ Gasoline ∧ AlarmSystem ∧ Silver

It is easy to understand that due to the axiom Gasoline ⇔ ¬Diesel in T ,
MR ∩MO = ∅ and then a Partial match occurs.

In this example we can easily identify the source of inconsistency and notice
it is due to the EcoDiesel specification in R and the Gasoline one in O. So if
the requester relaxes R giving up EcoDiesel specification — we call this sub-
formula G for Give Up — then we have a new contracted request. We call this
new request K for Keep.

K = Sedan ∧ PassengerAirbag ∧ ReflexSilver

The contracted part of R i.e., K is now a Potential match with respect to O
Ṫhat is MK ∩MO 6= ∅.

Now to reach a Full match we should reduce MO. This is possible hy-
pothesizing some unspecified characteristic H (for Hypothesis) in O such that
MO∧H ⊆MR. If we hypothesize H = Metallic ∧ PassengerAirbag the previ-
ous set relation holds. Then, having

O ∧ H = Sedan ∧ Gasoline ∧ AlarmSystem ∧ Silver ∧ Metallic ∧ PassengerAirbag



a Full match occurs i.e., MO∧H ⊆MK.
The previous example shows that some revision and hypotheses are needed in
order to perform an extended matchmaking process and move through match
classes.

Partial → Potential. Contract R to K giving up elements G conflicting with
O –Extend MR to MK.
Clearly, this is a non-monotonic task, particularly it can be reduced to con-
traction in a belief revision framework[10]. If the match type we obtain is
a Partial one, with respect to an ontology T , the following relation holds:
T |= ¬(R ∧ O). Now consider T ′ as an ontology equivalent to T and such
that T ′ = T ∪ {ρ ⇔ R, ω ⇔ O}, with ρ and ω being two new propositional
symbols. The previous relation can be rewritten as T ′ |= ¬(ρ ∧ ω). In order
to reach a Potential match you can give up some information in the axiom
involving R and consider the contracted ontology T ′c = T ∪ {ρ ⇔ K, ω ⇔ O}
such that T ′c 6|= ¬(ρ ∧ ω).

Potential → Full. Hypothesize missing characteristics H in O in order to com-
pletely satisfy K–Reduce MO.
Also this process can be modeled as a non-monotonic task. In particular,
moving from a Potential match to a Full match, we exploit abductive rea-
soning. In fact, we are not able to explain (satisfy in all the models) K given
the manifestation O w.r.t. the ontology T , and we look for a set of possible
hypotheses H such that (1)T ∪H∪{O} 6|= false and (2)T ∪H∪{O} |= K, where
the set of all possible hypotheses is, due to (1), a subset of the propositional
alphabet used to model T , R and O.

While performing contraction and abduction, minimality criteria have to be
taken into account. If we are a demander:

– we wish to keep as much as possible of the original request. Trivially, if we
contract all the request, we surely obtain a Potential match with the supply,
but it should be obvious that this is not a good solution from the demander
point of view.

– we wish to hypothesize as less as possible features in the supply in order to
be satisfied. We could hypothesize all the characteristics we requested in the
supply, and reach a Full match. Again this is a trivial solution.

Based on the previous observation, if we have more than one supply during the
contraction phase the demander should be willing to choose the one with the
minimum number of features to be contracted. During the abduction process the
demander will prefer supplies with less requested features to be hypothesized in
O.

Observe that we are not asking the requester to actually go through the
whole process; the process outlined so far simply explains the rationale for com-
puting penalty functions in terms of what is conflicting and what is missing when
matching R and O Ẏet our approach has a twofold advantage: the requester can



use provided information to actually revise her request but the information we
extract is also all what is needed to compute a penalty function to be used by a
broker in a e-marketplace.

Once we know what has to be contracted and hypothesized it is possible to
compute a match degree based on K and H, that is what is needed in order to
reach a Full match. In case of multiple resources, we can use this match degree
as a score to rank such resources with respect to R. Such a penalty function
should be in the form:

ρ : 〈R,O,K, H, T 〉 → <
ρ combines all the causes for lack of a Full match. Notice that ρ needs also T ;
in fact in T the semantics of K, H, R and O are modeled, which should be taken
into account when evaluating how to weigh them with respect to O and R.

Before making the final step beyond, moving from a Full to an Exact match,
some considerations are needed.

In an Open World semantics, what is not specified in a formula has not to
be interpreted as a constraint of absence. It is a ”don’t care” specifications. In
a resource retrieval scenario – as a marketplace is – this can be due to basically
two reasons:

– the user really does not care about the unspecified information.
– the user does not own that knowledge. She is not aware that it is possible

to specify some other characteristics in the request, or she simply did not
consider further possible specifications. She is not necessarily an expert of
the marketplace knowledge domain.

In the second case a further refinement makes sense. A way to do this is to
present to the user all the knowledge modeled in T and ask her to refine the
query, adding characteristics found in T . This approach has at least two main
drawbacks:

1. The user must be bored browsing all T in order to find something interesting
to be added to the request.

2. She can choose something in T which is not in any offer in the marketplace.
Then after the query refinement she would not see any change in the list
ranked using ρ(R, O,K, H, T ).

To avoid the above drawbacks, we might suggest to the requester only those
characteristics able to change the ranked list of offers within the marketplace.
Then (in an ideal marketplace where the only offer is O) we could suggest to
the user to refine the contracted request adding B′ = AlarmSystem ∧ Gasoline,
where B′ (for Bonus) represents what is specified in O but is not in K. But notice
that in B′ we have Gasoline, that is the source of inconsistency of the original
request R with the original O. Then it would be very strange if the user refined
her request by adding something which is in conflict with her initial preferences.
The user is likely to refine adding at most B = AlarmSystem.

Full → quasi-Exact. Suggest to the requester what should be added to K look-
ing at non requested features B (for bonus) in O –Reduce MK.



In order to propose only appealing features to the user, first of all it is nec-
essary to remove from O the causes for inconsistency with K. This is clearly
the contraction problem seen in action to move from Partial to Potential
match with K and O flipped over. This time we want to contract O w.r.t. K.
Once we have deleted the inconsistencies from O reducing it to KO, we need
to make some hypotheses on how the user could refine the query so that the
(contracted) request completely overlap the contracted supply KO. Again
an abduction problem has to be solved in order cope with this problem. We
have to hypothesize B such that T |= (K ∧ B ⇒ KO).

2.4 Penalty Functions and Non-Monotonic Tasks for Resources
Ranking

In this section we will discuss relations between penalty functions introduced
in Section 2.2 and the process of moving through match classes outlined in the
previous Section.

A possible p∅(·, ·, ·), can measure how difficult it is to move from Partial to
Potential match, or in other words how big is G with respect to the original R.
Looking at the contraction process highlighted in case of Partial match, it is
easy to show that it is a non-symmetric process. If we contract R w.r.t. O, we
obtain a new request K which is, generally, different from the contracted version
of O w.r.t. R. Then property 3 is satisfied. Surely, a contraction reasoning task
is syntax independent and then also property 4 is satisfied. For what concerns
property 6, intuitively, if we add a new feature to R (or equivalently O) and it is
not in conflict with O (or R), the information to give up G remain the same; if
the new feature we add to R (O) is in conflict with O (R), then we have to give
up this new feature and increase G.

For p⇒(·, ·, ·), we might define a function computing how far is a Potential
match from a Full match, i.e., a function measuring H. The abduction process
to move from Potential to Full match is both non-symmetric w.r.t. R and O and
syntax independent, so properties 5 and 6 are satisfied. The last property to be
satisfied is the monotonicity of p⇒(·, ·, ·). Again, in terms of abductive reasoning,
adding to R (respectively O) a feature which is not implied by O (respectively
R), H increases. If we add a feature which is implied by O (respectively by R), the
hypotheses to be formulated are exactly the same and also H remains unchanged.

Based on the above consideration we can redefine ρ, computing an overall
match degree of R w.r.t. O, as a function of p∅(·, ·, ·) and p⇒(·, ·, ·).

ρ(R, O,K, H, T ) = ρ(p∅(O,R, T ), p⇒(O, R, T ))

Actually, if R and O are a Potential match, only p⇒(O,R, T ) contributes to the
match degree computation. In this case ρ(p∅(O, R, T ), p⇒(O, R, T )) = p⇒(O, R, T ).
We remark that modeling the matchmaking process as a sequence of non-monotonic
reasoning tasks, and computing the match degree based on them, we are also
able to provide explanations for the match degree. That is, when the system



presents a ranked list of possible supplies to the requester, it is also able to jus-
tify the results – and then increase the trust level of the user in the system –
but also guide the user in the refinement process.

3 DL Inference Services for Matchmaking

Although useful to model simplified examples, propositional logic is obviously
limited for what concerns expressiveness. In the following we will refer to De-
scription Logics (DL) whose formal semantics is the basis of the Ontology Web
Language OWL-DL [15], and model a DL-based framework to cope with the
issues introduced here. Please refer to [2] for a comprehensive survey on DLs.

DL-based systems usually provide at least two basic reasoning services:

1. Concept Satisfiability : T |= R 6v ⊥ –Given a TBox T and a concept R, does
there exist at least one model of T assigning a non-empty extension to R?

2. Subsumption: T |= R v O –Given a TBox T and two concepts R and O, is R
more general than O in any model of T ?

Matchmaking services outlined in the previous section call for other, non-
monotonic inference services, we briefly recall hereafter.

Let us consider concepts O and R and an ontology T . If a partial match
occurs, i.e., they are not compatible with each other w.r.t. T , one may want to
retract specifications in R, G (for Give up), to obtain a concept K (for Keep)
such that K uO is satisfiable in T . In [5] the Concept Contraction problem was
defined as follows:

Definition 7. Let L be a DL, O, R, be two concepts in L and T be a set of
axioms in L, where both O and R are satisfiable in T . A Concept Contraction
Problem (CCP), identified by 〈L,O, R, T 〉, is finding a pair of concepts 〈G,K〉 ∈
L × L such that T |= R ≡ G u K, and K u O is satisfiable in T . Then K is a
contraction of R according to O and T .

If nothing can be kept in R during the contraction process, we get the worst
solution — from a matchmaking point of view — 〈G,K〉 = 〈R,>〉, that is give
up everything of R. If RuO is satisfiable in T , that is a potential match occurs,
nothing has to be given up and the solution is〈>, R〉, that is, give up nothing.
Hence, a Concept Contraction problem amounts to an extension of a satisfiable
one. Since usually one wants to give up as few things as possible, some minimality
criteria in the contraction must be defined [10]. In most cases a pure logic-based
approach could be not sufficient to decide between which beliefs to give up
and which to keep. There is the need to model and define some extra-logical
information, which have to be taken into account. For instance, one could be
interested in contracting only some specification in her request, while others
have to be considered strict [6].

If the offered resource O and the request R are in a potential match, it is
necessary to assess what should be hypothesized H in O in order to completely
satisfy R and then move to a full match. In [7] the Concept Abduction problem
was defined as follows:



Definition 8. Let L be a DL, O, R, be two concepts in L, and T be a set of
axioms in L, where both O and R are satisfiable in T . A Concept Abduction
Problem (CAP), identified by 〈L, R, O, T 〉, is finding a concept H ∈ L such that
T |= OuH v R, and moreover OuH is satisfiable in T . We call H a hypothesis
about O according to R and T .

Obviously the definition refers to satisfiable O and R, since R unsatisfiable implies
that the CAP has no solution at all, while O unsatisfiable leads to counterin-
tuitive results (¬R would be a solution in that case). If O v R then we have
H = > as a solution to the related CAP. Hence, Concept Abduction amounts to
extending subsumption. On the other hand, if O ≡ > then H v R.

Concept Abduction and Concept Contraction can be used for respectively
subsumption and satisfiability explanation. For Concept Contraction , having
two concepts whose conjunction is unsatisfiable, in the solution 〈G, K〉 to the
CCP 〈L, R, O, T 〉, G represents ”why” R u O are not compatible. For Concept
Abduction , having R and O such that O 6v R, the solution H to the CAP
〈L, R, O, T 〉 represents ”why” the subsumption relation does not hold. H can be
interpreted as what is specified in R and not in O.

4 Making the Match

With respect to the match classification presented in Section 2 we show how it
is possible to exploit both montonic and non-monotonic inference services for
DLs in order to identify match classes, move from a Partial match to a Full (or
Exact) match, and use the obtained information to provide a semantic-based
score measuring similarity w.r.t. the request.

Using Subsumption and Concept Satisfiability we can rewrite match classes
in terms of DLs. Given an ontology T and a demand and a supply, expressed as
DL complex concepts R and O, both satisfiable w.r.t. T , we have:

Exact : T |= R ≡ O

Full : T |= O v R

Plug-In : T |= R v O

Potential : T 6|= R u O v ⊥
Partial : T |= R u O v ⊥

Both Concept Abduction and Concept Contraction can be used to suggest guide-
lines on what, given O, has to be revised and/or hypothesized to obtain a Full
match with R.

4.1 Explanation for Ranking

Partial→Potential If R u O ≡ ⊥ – Partial match – then solving the related
Concept Contraction Problem we have R ≡ GRuKR such that KRuO 6≡ ⊥ w.r.t.



T . That is, we contract R to KR such that there is a Potential match between
the contracted request and O.
Potential→Full Once we are in a Potential match, we can formulate hypotheses
on what should be hypothesized in O in order to completely satisfy the contracted
R. If we solve the related Concept Abduction Problem, we can compute an
hypothesis H such that OuH v KR and reach a Full match with the contracted
request.
The above concepts can be formalized in the following simple algorithm:

Algorithm retrieve(R,O, T )
input O, R ≡ K u G concepts satisfiable w.r.t. T
output 〈G,H〉, i.e., the part in R that should be retracted
and the part in O that should be hypothesized to have a
full match between O and K (the contracted R)
begin algorithm
1: if T |= R u O v ⊥ then
2: 〈G, K〉 = contract(O,R, T );
3: HK = abduce(O, K, T );
4: return 〈G, H〉;
5: else
6: H = abduce(O, R, T );
7: return 〈>, H〉;
end algorithm

Notice that H = abduce(O,R, T ) [rows 3,6] determines a concept H such that
O u H v R, 〈G, K〉 = contract(O, R, T ) [row 2] determines two concepts G and
K such that R ≡ G u K and T |= K u O 6v ⊥ following minimality criteria as
suggested in [7, 5]. Also notice that, given a CAP or a CCP, usually there is
not only one single solution. But in order to provide a match explanation, in
rows 2,3 and 6 only one solution has to be returned. In this case context-aware
information may be used as criteria for solution selection.

4.2 Query Refinement

Full→quasi-Exact During this step, in order to overcome the suggestion of
”fake bonuses”, we have to identify which part of O generated the inconsistency
with R before contracting. We can solve a Concept Contraction Problem between
O and R contracting O. That is we have O ≡ GO u KO such that KO u R 6v ⊥
w.r.t. T . In [7], among others, the conjunction minimal solution to a CAP is
proposed for DLs admitting a normal form with conjunctions of concepts. A
solution belonging to such solution is in the form B = uj=1..kCj , where Cj

are DL concepts and is irreducible, i.e., B is such that for each h ∈ 1, ..., k,
uj=1..h−1,h+1..kCj is not a solution for the CAP.

In the following, the algorithm computeBonus(O,R, T ) is presented, able to
compute what should be hypothesized in the requester preferences in order to
get a better match result, and –if possible– an Exact match (see 2). It takes as
input an offer O, a request R and the ontology T they refer to.



Algorithm computeBonus(O, R, T )
input O and R DL concepts both satisfiable w.r.t. T
reference ontology
output Birr a set of DL concepts representing bonuses
begin algorithm
1: B = ∅;
2: Birr = ∅;
3: 〈GR, KR〉 = contract(O, R, T );
4: 〈GO, KO〉 = contract(R, O, T );
5: B = abduce(KR, KO, T );
6: for each Cj ∈ B
7: Birr = Birr ∪ {Cj};
8: return Birr;
end algorithm

The problem of fake bonuses is taken into account in rows 3-5 of computeBonus.
In row 3, a Concept Contraction Problem is solved, contracting R in KR and
identifying in GR the source of inconsistency with O. In row 4 the same is
performed for O identifying in KO the part of the offer which is compatible
with R and in GO the incompatible one and then likely to contain the fake
bonuses. In row 5 we compute B, solution of Concept Abduction Problem such
that KRuB v KO. Notice that adding Bto KR we are neither in a Plug-In match
nor in an Exact one with respect to the contracted request KR. In fact, we would
have a Plug-In match if KRuB v O rather than KO and we could have an Exact
match adding also fake bonuses which are isolated now in GO.

5 Conclusion

In this paper we have motivated the need for nonmonotonic inference services,
particularly abduction and contraction in a belief revision framework, for logic-
based matchmaking and query refinement in e-commerce scenarios. We have also
outlined some guidelines on how to exploit these services for matches explanation
and ranking.
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