
Helping Architects In Retrieving Architecture
Documents: A Semantic Based Approach

Rambabu Duddukuri1, Prabhakar T.V2

1 Member, Technical Staff, Oracle India Private Ltd,

Bangalore, India -560029.
Rambabu.Duddukuri@oracle.com

2 Professor, Department Of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur India - 208016

tvp@iitk.ac.in

Abstract. Large organizations have a need and challenge of archiving the architecture

work done on software projects. Knowledge management in such organizations depends on
how well the company preserves the knowledge acquired on completed projects and how well
the company provides facilities to retrieve that architectural knowledge. Architecture
properties such as styles, patterns, tactics and quality requirements play a major role while
architecting the systems. Annotating the documents with such properties helps the architect in
searching for architecture documents at a later date. There exist a large number of relationships
between these architecture properties. A huge knowledge base is required to know about the
best practices and the existing relationships between them. In this paper, we present an
ontology for these architecture properties. We describe how this ontology can be used in
various applications like semantic based search, academic purpose and building of new systems
using the best practices.

Keywords: Software Architecture, Ontologies, Semantic search, Architecture styles,
Patterns, Tactics, Archiving, Annotation.

1. Introduction

The architecture phase has become an integral part in the design process of large
and complex systems. Architecting a system, deals with modeling high level
structures of the system in terms of views, architecture styles and patterns.
Documenting the architecture of a system is essential in understanding the design
decisions taken during this process thereby serving as a medium for the stakeholders
and project developers to communicate. Several frameworks [1, 2, 3, 4, and 5] exist
for designing the architecture of the system. All the frameworks specify representing
the system in several viewpoints in accordance to the stockholder’s concerns. The
typical job of an architect includes meeting the stakeholder concerns, making a
collection of architectural requirements in various forms, turning them into quality
scenarios and then architecting the system through various architectural styles,
patterns and available architectural knowledge such that the constraints are met. The
most important deliverable of the process of designing the architecture is the
architecture document describing the structure of the system through its various

mailto:Rambabu.Duddukuri@oracle.com
mailto:tvp@iitk.ac.in

views. This document is used to communicate to the customer, for analysis of various
quality attributes, development and future maintenance. In essence they form the
pivot around which all further activity about the software revolves.

In Software organizations where a large number of projects are documented daily,

preserving the knowledge of the architectures for further reference plays a major role.
Architectural level re-use is another activity that is impacted by documentation. Our
previous work addresses these problems [11] and provides a new way of archiving the
architecture documents and extracting these documents with a comprehensive search.
In that approach, we have tried to annotate the architecture documents with
architectural properties like styles, patterns, tactics, domain, technology components,
quality requirements, and other framework standards. We represented this metadata as
an XML file and search is performed on this metadata as an XML tag search.

Several relationships exist between the patterns and styles, which in turn relate to

the problem domain of the system. For instance, Real time systems mainly deal with
concurrency patterns, resource patterns, and safety and reliability patterns. Similarly
financial and accounting systems have their own best practices defined. The
distributed and layered architecture styles use certain pre-defined design patterns to
solve the problems that might occur with regards to distributed communication,
preserving data integrity, structuring the application logic etc. Suppose that, we try to
find some architecture documents using layered architecture style, we might generally
look for architecture documents using the patterns like structuring application logic,
domain logic, application logic etc. These relationships and the associated vocabulary
form a huge knowledge database. A taxonomy or ontology of this knowledge base
helps the architect in searching and retrieving architecture documents in a semantic
way. Figure 2 depicts the conceptual overview of the Ontology we suggest for use in
searching. The major concentration is on the architectural properties like problem
domain, architecture styles, patterns, architecture tactics, quality requirements and the
relationships that exist among them.

Figure 1: Conceptual overview Of Our Ontology

The rest of the paper is organized as follows. In the following section we provide
an outline of the related work done in this area and briefly describe the motivation
behind our work. Section 3 explains several architecture domain vocabularies that are

used in this ontology and how these architectural properties help in retrieving the
architecture documents. In section 4, we tabulate the relationships used between the
terms in our ontology and briefly describe about how this ontology along with some
applications of this Ontology. Finally in section 5, we conclude the paper by giving a
brief outlook on future work.

2. Related Work

In Grady Booch’s Handbook of Software Architecture [6], a large number of

patterns are classified which allow comparisons across domains and architecture
styles. However, he does not describe the relationships between architecture tactics
and quality requirements, mapped to the real life problem domains, which can also be
used for searching architecture documents. According to [8], a knowledge base is
developed for representation and reuse of software patterns facilitating the semantic
related search for the reuse of patterns. There is no such effort of mapping these
patterns to other architecture properties, which will prove to be an efficient searching
technique for architecture documents. Our approach to software architecture ontology
is to provide a mapping between several architectural properties like patterns, styles,
and tactics and problem domains. Figure 2 depicts several possible terms of the
OntoSoftArch Ontology and the relationships between them as a concept map [9]

Figure 2: A fragment of Our Ontology as a Concept Map

3. Architectural Descriptions

We now describe the architecture properties that can be used in annotating
the architecture documents. Our description regarding these architecture properties is
necessarily brief and mainly concentrate on the search criteria of the documents.

 Problem domain: A good architecture document depends on how well the
domain model is identified and how well the commonality and the architect depicts
variations among different instantiations of the system. Lack of domain knowledge in
the architect can result into chaos during the project development. Problem frames
[12], help in decomposing the problem into several sub problems but not help the
architect in deriving the architecture of the system. Often the major concerns of the
software architect vary from domain to domain. For example, for Telecommunication
systems, that are distributed systems, solving the problems with distributed
communication, configuration, session data storage, preserving data integrity etc. are
the main concerns. Patterns such as cache proxy, Broker, Remote proxy, Client
session state, Fine grained locking etc are used to solve such problems. There exist
many similar types of relationships between problem domain and the patterns used.
Similarly in the domain such as Aerospace and defense, quality requirements such as
performance and reliability are the main concerns. We have identified such problem
domains and the relationships with other architecture properties in our ontology.
Often the architects are faced with queries like - can we retrieve the design documents
with similar problem domain that is being worked upon? Such queries can be easily
addressed while searching the repository if the architecture documents are annotated
within this architecture property. The search will also be performed with the
architecture properties related to this domain as explained above.

 Technology components: The architecture includes hardware and software
components that are not directly part of the actual design process. The design process
helps in identifying various subsystems and the way they interact. These subsystems
are thn mapped to technology components and they are related to each other in terms
of interfaces they provide. The questions such as 1) can the architecture documents
that use MySql database be retrieved on a Linux platform? 2) Can search be
performed for the architecture documents that use the Apache webserver and ODS
gateway with CORBA middleware and Oracle as the backend? Such queries can be
easily answered if the architecture documents are annotated with all the technology
components used in that system design. Often these technologies are related to best
practices, for example the Yahoo UI library [10] is related to best practices like drag
and drop, color picker, Image viewer. Similarly J2EE technology has some patterns
such as Web Service Broker, Application Control, and Composite entity that are
applicable in that domain. The same is the case with AJAX based applications. Many
such relations are captured in our ontology; enabling search for architecture
documents based on these technological issues as well as related best practices to
these technologies.

 Architecture Styles The architecture styles depicted in [13] are classified based
on the characteristics such as data flow between components, call/return systems, data
centered systems etc. Architecture styles in [27] are classified based on the views in
which stakeholder is concerned. For example in an allocation view deployment and
work assignment, styles are used. Several relationships exist between the architecture
styles and the patterns used. For instance in layered architecture style, structuring the
presentation logic, domain logic and the application logic are the main concerns.
Several patterns such as Model view controller [26], packed abstraction controller,

transaction script, operation script, virtual proxy are used to resolve such problems.
Similarly several patterns classified under Message routing, message transformations,
message channels and message end points used in information exchange mechanisms
are used in several styles like event based systems, black board styles etc. Our
explanation regarding these styles and the relationships to other architecture
properties are necessarily brief. We have gathered different architecture styles and
relationships with other architecture properties in our ontology. Queries such as can
the architecture documents be retrieved with Interpreter and Rule based system
styles? Can search be performed for architecture documents, which use Blackboard
and Hypertext systems? Again such queries can be easily answered by annotating the
documents with the corresponding styles used in the system.

 Patterns: Application of best practices comes in the form of patterns. Several new
patterns are evolving every year depending on the technologies developed. Gamma
et.al [16] classified their patterns into three groups, Creational, Structural and
behavioral. Tichy [17] gives a catalogue of over 100 patterns and arranged them
under the categories like decoupling, state handling, virtual machine etc. Zimmer [18]
analyzed the relationships between the patterns by Gamma. He introduced three kinds
of relationships between patterns - X uses Y, X is similar to Y, X can be combined
with Y. Architecture patterns catalogued by Buschman [19] also play a significant
role in architecting the system. Also, a catalogue of 72 analysis patterns [20, 21]
classified under Accountability, Association, Inventory and Accounting. There are
also patterns associated with technologies such as CORBA, J2EE, AJAX [23, 24, 25]
etc. Often the architects are left with the questions like - what is the consequence of
using common interface and then wrapping it up to integrate it. Also, for example in
Application Integration, how different applications should be integrated is the major
concern. Patterns such as File transfer, Messaging, Remote procedure call, and shared
database provide solutions to such design problems and annotating the documents
with these patterns used in the system.

Architecture Tactics: An architecture tactic is a transformation of the system

from one state to other that affects one of the parameters defined by quality attributes
[15]. A large number of tactics have been identified and catalogued in Bass et al [15,
26]. The classified tactics are based on the quality attribute addressed. Their
classification of patterns and tactics are based on the following relationship, Quality
attributes Tactics Patterns. Consider an example of performance related tactics
and patterns. Two patterns Flyweight and Thread pool pattern uses the same tactic,
reduce computational overhead thereby meeting the quality requirement Such
relationships between quality attributes, patterns and tactics are depicted in our
ontology. Annotating the architecture documents with architectural tactics used while
making architectural decisions helps to answer queries such as 1) did we use these
tactics before and what was the result? The search will also be performed on the
documents handling the quality attribute related with that tactic.

Quality Requirements: Quality requirements are the architecture drivers for any
successful development of the system. The degree of quality achieved may vary from
system to system. The Extended ISO model [28] depicts several quality attributes.

These are classified mainly based on reliability, usability, portability, efficiency and
maintainability. Quality requirements and their attributes are defined in quality
attribute theory [14, 28]. The purpose of the quality attribute theory is to enable the
interpretation of software architecture in terms that are meaningful to quality
attributes. Several relationships exist between quality attributes and tactics as
described in the previous section. Also several relationships exist between patterns
and quality requirements such as system performance patterns, and patterns for
performance and reliability such as Fail over cluster, Load balancing cluster, Server
cluster etc. We have defined such relations between quality attributes, patterns, tactics
and problem domain in our ontology. Annotating the documents with the quality
attributes handled in those systems helps the architect in full filling his queries like -
can we retrieve the documents with throughput of the scenario between t1 and t2?

4. Ontology Relationships

Name Description

Used-to Denotes a means/ mechanism

Related-To Denotes an association relationship

Is-A Denotes a super, subclass relationship

Is – part - of / Has Denotes an aggregation relationship

Is-Similar-To Denotes an equivalence relationship

Requires Denotes an association relationship

Table 1: Relationships between the Terms

Initially we gathered all the terms to software architecture from several architecture
books and research papers. We also gathered some of the important index terms from
some of the major architecture books [1, 15, 18, 19, and 21]. We manually went
through the terms and refined the vocabulary. We found several relationships between
the terms within the domain of each architecture property as well as the relationships
between the architecture properties. We also included the relationships that are
already between the terms like architecture tactics and patterns [15].

Currently our ontology consists of 1470 terms from all the architecture properties

like problem domain, styles, patterns, tactics, technology components and several
architecture frameworks. Identification of relationships between the terms is an
ongoing effort, and we are augmenting and refining the relationships. More
explanation of the relationship along with the Ontology is available to download from
the URL http://www.cse.iitk.ac.in/~soft_arch/ontosoftarch. The viewer support tool
for viewing this ontology is also available for download. We are trying to convert
this ontology into an OWL based ontology, which allow users to load into any
ontology editors like Protégé.

http://www.cse.iitk.ac.in/%7Esoft_arch/ontosoftarch

This ontology helps the architect in understanding the existing relationships
between best practices thereby enabling him to construct a new system with existing
best practices. Consider a scenario where an architect wants to develop a system for
Financial and Accounting domain. This ontology helps him in understanding all the
analysis accountability patterns related to that domain and the quality requirements to
be considered for this system.

The ontology is useful for pedagogical purposes. This ontology helps the students

to clearly understand all the terms and concepts in software architecture and the
existing relationships between them.

A third application would be allowing the user to semantic search for the

architecture documents which are annotated based on the above said architecture
properties. Our previous work [29] talks about annotating the architecture documents
with the architecture properties as an XML file, enabling the user to search for
architecture documents based on the XML tags. In this search, the user will be giving
one architecture property based on which search should be performed. The search will
also be continued on the architecture properties related to the given architecture
property. If the user gives the query like “Search for architecture documents, which
used Client Server Architecture style”, the search will also be performed on the
architecture documents using the message exchange patterns in this architecture style.
The related terms will be extracted from our ontology and searched in the repository.

5. Conclusions

 An ontology of software architecture helps the architect in understanding the best
practices used for documenting software architectures. Ontologies can also help in
semantic annotations of architecture documents. Currently our ontology is populated
with patterns, styles, tactics, domain concepts and different frameworks. The
knowledge base contains the terms that are normally used in software architecture and
relates them semantically, allowing effective searches and reuse of best practices. We
plan to extend this ontology by adding more terms and more associations. This can
make more inferences among the terms and a full-fledged ontology can be developed.
Next step is the construction of CASE tool to allow semantic search for the
architecture documents stored in the repository based on the semantic annotations.

References

1. Clements P, Bachmann F, Len Bass, David Garlan, James Ivers, Robert Nord, and Judith
Stafford. Documenting Software Architectures: Views and Beyond.

2. IEEE recommended practise for architectural description of software-intensive systems.
IEEE Standards, pages 1–23, Sep 2000.

3. Hoffmesiter, C, Nord, R., Soni, D, Applied Software Architecture, Addison-Wesley, 2000
Kruchten, P

4. Architectural Blueprints- The “4+1” View Model of Software Architecture. Rational
Software Corp., IEEE Software, November 1995.

5. RM-ODP Standards, ISO/IEC JTC1/SC21/WG7 Reference model of Open Distributed
Processing available at
http://archive.dstc.edu.au/AU/research_news/odp/refmodel/standards.html

6. Grady Booch's Handbook of Software Architecture
8. An Ontology-based Knowledge Base for the Representation and Reuse of Software

Patterns Rosario Girardi and Alisson Neres Lindoso Federal University of
Maranhão Campus do Bacanga, São Luís - MA, Brazi

9. Novak J.D., Cornell University The Theory Underlying Concept Maps and How To
Construct Them, available at http://cmap.coginst.uwf.edu/info

10. http://developer.yahoo.com/yui/index.html.
11. Rambabu Duddukuri, Prabhakar T.V “On Archiving Architecture Documents’’ In the

Proceedings of APSEC 2005, Taipei, Taiwan.
12 Problem Frames: Analyzing and Structuring Software Development Problems by Michael

Jackson
13 Shaw, M. "Making Choices: A Comparison of Styles for Software Architecture." Carnegie

Mellon University, May 1994.
14 Barbacci, M.; Klein, M.; Longstaff, T.; & Weinstock, C. Quality Attributes Pittsburgh, PA:

Software Engineering Institute, Carnegie Mellon University, 1995.
15 Len Bass, Paul Clements, Rick Kazman, and Ken Bass. Software Architecture in Practice.

2nd Edition, Addison-Wesley
16 Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson,

Vlissides; Addison-Wesley, 1995
17 A catalogue of General-Purpose Software Design Patterns, Tichy, Walter F , University of

Karlsruhe, Karlsruhe,Germany.
http://wwwipd.ira.uka.de/~tichy/publications/Catalogue.doc

18 Relationships between Design Patterns by Zimmer, Walter, in Pattern Languages of
Program Design, James O. Coplien, Douglas C. Schmidt, Editors, Addison-Wesley, 1995

19 Frank Buschmann, Regine Meunier, Hans Rohnert,Peter Sommerlad, Michael Stal, Peter
Sommerlad, and Michael Stal. Pattern-oriented software architecture.

20. Fowler, M. Analysis Patterns. Reading, Massachusetts: Addison-Wesley, 1997.
21. Fowler, M. Patterns of Enterprise Application Architecture. Reading, Massachusetts:

Addison-Wesley, 2003.
22 William J. Brown, Raphael C. Malveau, Hays W. Skip McCormick (III), and Thomas J.

Mowbray. Antipatterns: Refactoring software architectures and projects in crisis.
23 Alur, D., Crupi, J., Malks, D. Core J2EE Patterns, 2nd ed. Upper Saddle River, New Jersey:

Prentice Hall, 2005.
24 Gross, C. Ajax Patterns And Best Practices. New York, New York: Springer-Verlag, 2006
25 Mowbray, T. & Malveau, R. CORBA Patterns. N6w York, New York: Wiley, 1997.
26 Design Patterns, Quality Attributes and Software Architectural Tactics, Felix Bachmann,

Len Bass, Mark Klein.
27 Sun Microsystems. http://java.sun.com/blueprints/patterns/MVC-detailed.html, 2000.
28 Bob van Zeist, Paul Hendriks, Robbert Paulussen, and Jos Trienekens. Quality of software

products — Experiences with a quality model. http://www.serc.nl/quint-book/index.htm.

http://archive.dstc.edu.au/AU/research_news/odp/refmodel/standards.html
http://www.booch.com/architecture/index.jsp
http://cmap.coginst.uwf.edu/info
http://developer.yahoo.com/yui/index.html.
http://www.sei.cmu.edu/publications/documents/95.reports/95.tr.021.html
http://wwwipd.ira.uka.de/%7Etichy/publications/Catalogue.doc
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://www.serc.nl/quint-book/index.htm

