
Semantic Matchmaking using Ranked Instance

Retrieval

Matthias Beck and Burkhard Freitag

Universität Passau, Fakultät für Mathematik und Informatik,
{Matthias.Beck, Burkhard.Freitag}@uni-passau.de

Abstract. Finding matching answers to a given request is hard, in par-
ticular if the objective is to �nd the most suitable partner. This especially
holds in the context of the Semantic Web and its underlying speci�ca-
tion language, i. e., description logics (DL)1. We present a clean, formal
approach allowing users to devise preferences for queries on description
logics knowledge bases. Thereby it is possible to use established DL-
reasoners, particularly those tailored at instance retrieval like KAON2.
Furthermore, our approach allows the formulation of soft constraints
which is considered an important feature of semantic matchmaking.

1 Introduction

It is no news that matchmaking plays a crucial role in many areas of information
systems. In the context of the Semantic Web, for example, matchmaking plays a
central role in the discovery of appropriate semantic web services (cf. [1]) where
appropriate means best complying with the user's request. So it is natural to
provide the user with means to express his or her criteria for determining quality.

The contribution of this paper is a uniform method for the annotation of de-
scription logics instance retrieval queries with user preferences thereby allowing
soft constraints resp. mere sorting. Since only the query is annotated and the
knowledge base remains unchanged, it is possible to use standard reasoners like
KAON2 [2], RACER [3] or, more generally, all reasoners supporting the so called
DIG-Interface [4].

2 Motivating Example

Let us have a look at an example. Assume, you want to buy the latest "Harry
Potter" DVD. You would probably look only for those web services that allow
to order DVDs. Assume further that there is a registry which stores the service
pro�les of the particular web services in an appropriate formalism like OWL-S [5],
which allows for more sophisticated semantic service descriptions as compared
to standard formalisms like UDDI (cf. [6]). This easy query can be formulated as

1 Other speci�cation languages like the object-oriented Flora-2 are possible for the
Semantic Web. Nonetheless, OWL is the current recommendation of the W3C.

2

Q1 := OffersDVD . Retrieving results for Q1 might be a quite tiresome experience
since you would probably get tons of hits.

Of course you would provide more search criteria to narrow the search. For
instance, if the DVD is meant to be a present and you are a little late, you would
prefer shipping within 24 hours. But in any case shipping time should not exceed
three days. This yields a new query

Q2 := OffersDVD u (24HoursShipping t 3DaysShipping).

That produces the correct result set2, but without specifying user preferences,
you get an unordered result that does not �t your needs. So the next step is to
annotate the query with (numerical) user preferences. This results in the query

Q3 := OffersDVD1 u (24HoursShipping2 t 3DaysShipping1).

The intuitive meaning is the following: in the result set individuals (e. g., web
services) that provide 24 hours shipping3 will get a higher rank than those of-
fering three days shipping only. Note that membership in the result set is not
a�ected by specifying preferences.

3 Preference Annotations

3.1 Ranking Tree

Due to the structure of queries and hence preferences a single numerical value is
not su�cient to express rankings. The main reason is the existence of disjunctive
knowledge in description logics. Consider the query Q4 := A1 t (B1 t C2)0.
Intuitively, since BtC has a preference of 0, this expression should not contribute
to the top level rank. On the other hand, if we get an equal top level rank for
two individuals, an evaluation of B1 t C2 can be used to re�ne the ranking.

De�nition 1 (Ranking Tree)

1. For r ∈ [0; 1] (r) is a ranking tree.

2. Let r ∈ [0; 1] and t1, . . . , tn ranking trees with n ≥ 1, then (r, t1, . . . , tn) is a

ranking tree.

t1 := (1, (1), (1
3 , (1), (0))) is a sample ranking tree for query Q4 (cf. section 3.2).

Based on this de�nition we construct an ordering on ranking trees.

De�nition 2 (Ordering E on ranking trees)
Let a = (ra, a1, . . . , an) and b = (rb, b1, . . . , bn) with n ∈ N0 and ra, rb ∈ R, ai, bi

ranking trees with i ≤ n. Then we de�ne the relation < by a < b :⇔ ra < rb.

Now we de�ne that a E b holds if and only if
2 The t-Operator is equivalent to a logical "or" while u corresponds to a logical "and".
3 In a more realsitic scenario you would possibly replace 24HoursShipping2 by

(∃shipsWithin. ≤24)
2 in query Q3. The same holds for 3DaysShipping . For the sake

of brevity we stick to the shorter form.

3

rKB (Cr1
1 � . . . � Crn

n , o) = (d, rKB (C1, o), . . . , rKB (Cn, o))

with d =

(
0, if ri = 0, for i ∈ {1, . . . , n}
Pn

i=1 ciriPn
i=1 ri

, else

and ci =

�
1, if KB |= Ci(o)
0, else

, � ∈ {t,u}

r¬KB (Cr1
1 � . . . � Crn

n , o) = (d¬, r¬KB (C1, o), . . . , r
¬
KB (Cn, o))

with d¬ =

(
0, if ri = 0, for i ∈ {1, . . . , n}
Pn

i=1 c¬i riPn
i=1 ri

, else

and c¬i =

�
1, if KB |= ¬Ci(o)
0, else

, � ∈ {t,u}

rKB (¬C, o) = r¬KB (C, o)

r¬KB (¬C, o) = rKB (C, o)

rKB (XR.C, o) = −1,X ∈ {∃,∀,≤ n,≥ n}, n ∈ N
r¬KB (XR.C, o) = −1,X ∈ {∃,∀,≤ n,≥ n}, n ∈ N

rKB (A, o) =

�
(1), if KB |= A(o)
(0), else

r¬KB (A, o) =

�
(1), if KB |= ¬A(o)
(0), else

KB : knowledge base; C, C1 . . . , Cn: arbitrary concept expressions
A: atomic concept; R: role symbol; o: individual

Fig. 1. Ranking mapping

1. a < b or

2. ra = rb and ∃i : ai < bi and ∀1 ≤ j ≤ n : bj 6< aj or

3. ra = rb ∧ ∀1 ≤ i ≤ n : ai E bi

Giving this de�nition a closer look, we can see that a E b if the top-level rank
of a is smaller. If the top-level ranks are equal, there are two possibilities: one
child top-level rank is smaller (and other child ranks are not greater) or all
child trees are smaller w. r. t. E. For example, if we have a second ranking tree
t2 := (1, (1), (0, (0), (0))), then t2 E t1 holds. Note that E is a partial order
relation on the set of ranking trees (having the same structure).

3.2 Ranking Mapping

Given an annotated query and an individual, we must evaluate the rank (ranking
tree) of that individual with respect to the query. This is done by the mapping
shown in �gure 1. Note that the result of the ranking mapping is a ranking
tree. It is only meaningful to compare (E) ranking trees if they were assembled
using the same query. We do not further elaborate on the de�nition since it is

4

rather technical. For background information on description logics we refer to
[7]. Nonetheless we present some remarks on the mapping.

Central part of the de�nition is the mapping for (n-ary) conjunctions and
disjunctions. The de�nition of the ranking function is the same for both. The
ranking tree is created by computing a top-level rank d and afterwards computing
ranking trees for the operands. The top-level rank is the weighted average4 of
the preferences. Negation is treated by "saving" it inside the r¬KB -function. The
negation is then re-applied while computing the c¬i -parameter. This scheme is
passed on to the operands.

Preferences inside role expressions are cut o� by setting the rank of the ex-
pression to -1. This is justi�ed as follows: consider the query ∃hasBeach(Rocky1t
Sandy2). We must build a ranking for locations that have beaches by evaluation
of certain characteristics of these beaches, in this case Rocky and Sandy . If more
than one beach is associated to a single location, there are several possible se-
mantics. A possibility is trying to maximize the ranking. In this example that
would mean trying to �nd an associated beach that is rocky and sandy. It is also
possible to evaluate the average ranking over all associated beaches. There are
other reasonable semantics, too.

We are currently examining preferences inside role expressions and plan for
an annotation method allowing the user to specify the particular aggregation
function to be used. For the time being, preferences inside role expressions are
not considered to avoid ambiguity. The structure of the resulting ranking tree
very much resembles the query structure. The ranking tree is more compact
because negation nodes are left out and nodes resulting from role expressions
are cut o�.

Recall query Q4 := A1t(B1tC2)0 and ranking tree t1 := (1, (1), (1
3 , (1), (0)))

from section 3.1. If there is an individual o that is an instance of A and B but
not C, then t1 is the ranking tree for o w. r. t. Q4.

3.3 Soft Constraints and Sorting

De�nitions of the ranking tree and the ordering E allow for formulation of soft
constraints using our formalism. So another way of re�ning query Q1 from section
2 is to specify some soft constraints that you prefer being satis�ed without
enforcing them. For example you could prefer paying by credit card. Specifying
this is now easy using preferences: Q5 := OffersDVD1 u (CreditCardPayment1 t
>0). Here > denotes the top concept, i. e., every individual is an instance of >.
The result set consists of all individuals being instances of OffersDVD but those
also providing credit card payment get a higher rank. Since we allow for n-ary
operators, it is also possible to combine soft constraints: Q6 := OffersDVD1 u

4 Aside from the weighted average, the rank could be computed by an arbitrary func-
tion.

5

<owl:Class rdf:about="http://www.im.uni-passau.de/pref#Query">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="http://www.im.uni-passau.de/matchmaking#UPS">

<pref:Pref>1</pref:Pref>

</owl:Class>

<owl:Class rdf:about="http://www.im.uni-passau.de/matchmaking#FedEx">

<pref:Pref>2</pref:Pref>

</owl:Class>

</owl:unionOf>

</owl:Class>

Fig. 2. Preference annotated query in OWL (UPS1 t FedEx2)

(CreditCardPayment1 tDeliveryAsGift2 t >0). Moreover nesting is possible5:

Q7 := OffersDVD1 u (CreditCardPayment2 t (FedEx 1 tUPS 2)1 t >0)

It is worth noting here that it is possible to rank uncertain (disjunctive) knowl-
edge. If the knowledge base entails the fact that an individual o is an instance
of FedEx t UPS , this knowledge is ranked using preference 1 in Q7. Since de-
scription logics allow for disjunctive knowledge, this is possible even without
explicitly knowing whether o is an instance of FedEx or UPS . On the other
hand, if we knew that o is also an instance of UPS for example, this knowledge
would increase the rank on a lower ranking level. In addition to soft constraints
it is even possible to formulate mere sorting conditions:

Q8 := OffersDVD1 t (CCardPaym2 u 24HoursDelivery1 u FedEx 3 u ⊥0)

Since no individual is an instance of ⊥, the second part of the formula is not sat-
is�able. So all results to query Q8 must be instances of OffersDVD and therefore
OffersDVD cannot a�ect the ranking. Hence, the second part is alone respon-
sible for the ranking. This is due to the fact that an individual i can never be
instance of CCardPaym u 24HoursDelivery u FedEx u ⊥. However, i can be an
instance of CCardPaym, 24HoursDelivery or FedEx . This information is used to
build the ranking.

4 Prototype

Our ranking algorithm is composed of three parts that essentially represent three
consecutive phases. In phase one the preference annotated query given in OWL
is (pre)processed, preferences are extracted and removed from the query. For an
example query see �g. 2. Results to the unannotated query are retrieved via the
reasoner in phase two. At the moment we build upon the KAON2 reasoner [2][8]

5 Note that FedEx (the same holds for UPS) is short for offersShippingByFedEx or
∃offersShippingBy .FedEx in Query Q7.

6

since it is tailored to instance retrieval. We plan to support other reasoners like
RACER [3] and other DIG [4] compatible reasoners in the future.

Phase three performs the actual ranking. This is done by computing the
ranking tree for each result retrieved in phase two. The results of several test runs
are encouraging. We are using an indexed cache to speed up the computation. In
our test runs we observed that the time for computation of the ranked result set
trank depends linearly on the time for un-ranked retrieval tret , i. e., trank ≈ n·tret .
The factor n is determined by the complexity of the query.

5 Discussion and Summary

Many approaches to ranking and preferences have been proposed. Castillo et al.
[9] studied matchmaking of services by means of description logics. They allow
for neither ranking nor user preferences. A di�erent approach is due to Colucci et
al. [10]. They allow for both negotiable and strict requirements in a description
and introduce two novel description logics inference services, concept abduction
and concept contraction, to deal with them.

Kieÿling et al. [11] developed PreferenceSQL, a powerful SQL extension. The
objective is similar to our approach. While PreferenceSQL is aimed at relational
data, our target are description logics knowledge bases. So in PreferenceSQL
preferences are set on the attribute level while we set preferences on class mem-
bership. Another di�erence is that we can handle disjunctive knowledge which
is common in description logics but not in databases. Besides, we allow for pref-
erences on arbitrary constraints while this is only allowed for soft constraints in
PreferenceSQL.

Brewka [12] describes a rank based description language with qualitative
preferences. He follows a slightly di�erent approach: central component is the
ranking of di�erent models of the knowledge base, not a ranking of consequences
with respect to a query as in our approach. To accomplish that, he deeply in-
tegrates preferences into the logical language. Consequently, standard reasoners
cannot be used. Another di�erence lies in the fact that his approach admittedly
does not work well with numerical (quantitative) preferences.

A Google-like approach to knowledge ranking is presented by Ding et al. in
[13]. They do not allow for user-de�ned preferences.

A recent paper [14] on the combination of ontologies and preferences is due
to Lukasiewicz et al. Their notion of preference di�ers from ours. Particularly,
they allow for qualitative preferences only.

As a natural limitation of our approach, annotations of user preferences must
follow the query (term) structure. We argue that this is not a serious restriction
since query and preference structure often match. Otherwise it is possible to
specify a sorting (cf. section 3.3).

We have introduced an approach to semantic matchmaking by ranked in-
stance retrieval in knowledge bases represented in description logics. Ranking
is solely based on the query which is annotated with preferences. One of the

7

advantages of our ranking approach lies in the fact that each user gets ex-
actly the ranking he or she speci�ed. Therefore, ranking is personalized and
self-explanatory.

A prototype implementation has been presented that shows promising behav-
ior. Of course several optimizations of our algorithm are possible and already
on the way. For example, in certain cases a complete computation of the rank-
ing tree is not necessary since the ranking can be evaluated directly for some
concepts without looking at subconcepts. Also a more intensive use of index
structures will be investigated.

6 Acknowledgement

We wish to thank the anonymous reviewers for valuable comments.

References

1. Burstein, M.H., Bussler, C., Zaremba, M., Finin, T.W., Huhns, M.N., Paolucci,
M., Sheth, A.P., Williams, S.K.: A Semantic Web Services Architecture. IEEE
Internet Computing 9(5) (2005) 72�81

2. Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB),
Universität Karlsruhe (TH): KAON2 - Homepage. http://kaon2.semanticweb.org
(2006) last visited May 2006.

3. Haarslev, V., Möller, R.: Description of the RACER System and its Applications.
In: Proceedings International Workshop on Description Logics (DL-2001), Stan-
ford, USA, 1.-3. August. (2001) 131�141

4. Bechhofer, S., Möller, R., Crowther, P.: The DIG Description Logic Interface. In:
Description Logics. (2003)

5. Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S., Narayanan, S.,
Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services. Website (2004)

6. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Importing the Semantic
Web in UDDI. In: CAiSE '02/ WES '02: Revised Papers from the International
Workshop on Web Services, E-Business, and the Semantic Web, London, UK,
Springer-Verlag (2002) 225�236

7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications,
Cambridge University Press (2003)

8. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-Description Logic to Disjunc-
tive Datalog Programs. In: KR. (2004) 152�162

9. González-Castillo, J., Trastour, D., Bartolini, C.: Description Logics for Matchmak-
ing of Services. In Görz, G., Haarslev, V., Lutz, C., Möller, R., eds.: Proceedings
of the KI-2001 Workshop on Applications of Description Logics. (2001)

10. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Concept
abduction and contraction for semantic-based discovery of matches and negotiation
spaces in an e-marketplace. Electronic Commerce Research and Applications 4(4)
(2005) 345�361

11. Kieÿling, W., Köstler, G.: Preference SQL - Design, Implementation, Experiences.
In: VLDB. (2002) 990�1001

8

12. Brewka, G.: A Rank Based Description Language for Qualitative Preferences. In
de Mántaras, R.L., Saitta, L., eds.: ECAI, IOS Press (2004) 303�307

13. Ding, L., Pan, R., Finin, T.W., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking
Knowledge on the Semantic Web. In: International Semantic Web Conference.
(2005) 156�170

14. Lukasiewicz, T., Schellhase, J.: Variable-Strength Conditional Preferences for
Matchmaking in Description Logics. In: KR. (2006) 164�174

