
MOD - A Multi-Ontology Discovery System

Le Duy Ngan, Tran Minh Hang, and Angela Eck Soong Goh

School of Computer Engineering, Nanyang Technological University (NTU), Singapore

{ledu0001, A0261836A, ASESGOH}@ntu.edu.sg

http://www.ntu.edu.sg

Abstract. The rapid development of semantic web services has led to a demand

for a semantic web service discovery mechanism. Though such discovery

systems have been developed, there is a lack of support for matching semantic

web services which use different ontologies. This paper introduces a general

framework for the discovery of web services that use both the same ontology as

well as different ontologies and describe experiments to test the algorithm.

Contributions include a discovery algorithm and a novel concept similarity

matching algorithm to eliminate mismatches and to increase the accuracy by

using syntactic, properties, domain, and neighborhood similarity matching. The

experimental results confirm the viability of the discovery system.

1 Introduction

Web services discovery is the most important task in the web services model.

Discovery is the process of finding web services which satisfy certain requirements.

Researchers have developed discovery systems [5-8,13,16-19] to match web service

requesters against web service providers. Current discovery systems are adequate

when the web service requester and provider use the same ontology. Unfortunately,

research has not focused much on the situation where a web service requester and

provider use different ontologies. Since the web service requesters and providers

operate independently, they usually define their own ontologies to describe their

services. In the real world, a web service provider can provide an exact service to the

requester even though both services use different ontologies. Therefore, a discovery

system that supports web services using different ontologies is extremely important.

Previous work on web services discovery includes LARKS (Language for

Advertisement and Request for Knowledge Sharing) [17-19], a project based on a

collaboration between Toshiba and Carnegie Mellon University [6,7], a Matchmaker

from TU-Berlin [5], and systems by Li and Horrocks [8], Paolucci [13] etc. These

web service discovery systems only support matching web services using the same

ontology. This assumption implies that if different ontologies are used, matching

cannot be carried out. As mentioned, this is a major limitation.

Cardoso and Sheth [3] have addressed this problem. However, their method of

matching web services based on concepts, syntax, and their properties is inadequate,

and has been improved upon by Oundhakar et al [12]. The discovery technique is

based on METEOR-S [9] which is a web service discovery infrastructure. This

infrastructure provides a facility to access registries that are based on business

domains and grouped into federations. The matching is divided into syntactic and

semantic matching. In semantic matching, Oundhakar’s algorithm has improved on

Cardoso’s work by considering the coverage and the context information of concepts,

thereby improving on the matches and eliminating false matches. However, the

system does not allow users to intervene during the matching process to restrict the

matching results. This will be a significant problem since the numbers of web services

from matching result is huge. Furthermore, the system does not consider the domain

of two ontologies, from which the two concepts belong. The domain of the two

ontologies is important in the matching process.

This paper introduces a general algorithm which supports matching web services

using not only the same ontology but also different ontologies. Computing semantic

similarity between concepts from different ontologies is the core component of the

algorithm. The component will be introduced with a novel algorithm to eliminate

mismatches and improve matching by using syntactic, properties, domain, and

neighborhood concept similarity matching. The system is named Multi-

Ontology Discovery (termed MOD) system. In the discussion to follow, we assume

that the building and maintaining of the ontologies are outside the scope of the paper.

Our work is based on OWL-S [4] which is a semantic web service description

language. OWL-S uses OWL [20] ontology to describe the service. A semantic web

service defined in OWL-S includes four basic classes, namely Service, ServiceProfile,

ServiceModel, and ServiceGrounding. For matching, only ServiceProfile is used

because it contains the description about the service to be discovered. The

ServiceProfile describes three basic types of information, namely, contact

information, functional description of the service, and additional properties. The

contact information contains a textual description providing a brief description of the

service. It describes what the service offers, or what service is requested. The

functional description of the service is the most important declaration used for

matching. It specifies the parameters of the inputs, outputs, preconditions, and effects

of the service. The Profile also declares operations of the web service.

The rest of the paper is organized as follows. Section 2 introduces the MOD

matching algorithm. Section 3 presents main components which are used in MOD.

Section 4 describes experiments and results, followed by the conclusions in section 5.

2 MOD Algorithm

The matching algorithm is divided into four stages namely input, output, operation

and user-defined matching. The four-stage set up is similar to TUB [5] but MOD

supports matching web services using different ontologies.

2.1 Definition of Semantic Similarity

In order to introduce concept similarity, we define similarity distances. The definition

is based on the experience in [12]. Assume that A, B, C, and D are concepts of an

ontology. Figure 1 describes the possible relationships between concepts. The

similarity distances between two concepts are defined as follows:

− Exact similarity (A, A): is the most accurate match. It happens when the two

descriptions are semantically equivalent. The similarity degree for this match

is given a value 1 and this is the highest similarity.

− Subsumes similarity (A, B): B is subsumed by A. As A is a direct superclass

of B, it is more general than B. This match is less accurate than exact match.

The similarity degree for this match is 0.75.

− General similarity (A, D): A is more general than D but A is not a direct

superclass of D. We assume that there are x levels (with x≥1) between A and

D, then the similarity degree for this match is 0.75 - 0.01*2
x-1

.

− Invert-Subsumes similarity (B, A): B is more specific than A and B is a

direct subclass of A. The similarity degree for this match is 0.3.

− Specific similarity (D, A): this is the inverse of the general match. A is more

general than D but A is not a direct super class of D. We assume that there

are x levels (with x≥1) between A and D, then the similarity degree for this

match is 0.3 – 0.05*x.

− Fail similarity (A, C): A and C are not related in the ontology. With

reference to figure 1, we also have Fail (B, C).

Figure 1. The relation of concepts

Similar to [12], we use levels of two concepts to compute general and specific

similarity. We reduce the similarity by 0.01 for parents, and 0.02 for grandparent, and

so on for super-concepts. With sub-concepts, we reduce by multiples of 0.05 for each

level. The maximum number of levels to be considered is 6.

2.2 MOD Matching Algorithm

The MOD algorithm divides the matching process into four-stage and each stage is

independent of the other and the final result is based on the sum of the individual

stages.

Figure 2. Matching algorithm

The matching algorithm is described in figure 2. reqService and advService denote the

requested and advertised service respectively. First, the two web services are checked

if they use the same ontologies. If they do, the four-stage matching algorithm [5] is

used. If they do not, the “compute semantic similarity” component computes the

concept similarity between concepts. If the semantic similarity is less then a threshold

which was defined by the user, then the matching fails. Otherwise, the four-stage

matching algorithm is used with input, output, or operation matching. The algorithm

is described in more detail in section 3. The four-stage algorithm first checks the user-

defined matching. If the matching fails, the result of matching two services also fails

and the matching process finishes. Otherwise, the matching process continues with

input, output, and operation matching. The final matching result will be composed of

the input, output, and operation matching.

2.2.2 Input Matching

In the input matching, we determine how inputs of the advertised services are

satisfied by the inputs of the requested services. The input matching operates as

follows: for each input of the advertised service, the algorithm tries to find an input of

the requested service that is the most similar (the highest degree match). If none of the

advertised input can match with the requested input, the input matching returns fail.

Thus, the matching of the two web services will fail. The input matching algorithm is

elaborated as follows:

inputMatch (inputAdv, inputReq){
if (inputAdv = empty_list){

 return 1; //exact match.
 }
 degreeInput = 0;
 numInput = 0; //number of input of advertised service
for all inputAdvElement in inputAdv do{
numInput = numInput +1;
degreeMax =0;
for all inputReqElement in inputReq do{
if(checkOntRelation(inputAdvElement,inputReqElement)){
degreeMatch =
computDegree(inputAdvElement,inputReqElement);

}
else {
degreeMatch =
computSimilarity(inputAdvElement,inputReqElement)

}
if (degreeMatch >degreeMax){
degreeMax= degreeMatch;

}
if degreeMax = 0 then return fail;
degreeInput = degreeInput + degreeMax;

}
 degreeInput = degreeInput/numInput;
 if degreeInput < threshold then return fail;
 else return degreeInput;
}

The number of input of advertised and requested service may be none or many. If the

advertised service does not contain any input, then the input matching returns an exact

match. inputAdvElement and inputReqElement denote elements of the input list of

advertised and requested service respectively. degreeMatch is the degree of the

matching between an input pair (an input of advertised service and an input of the

requested service). degreeMax is the maximum degree of an input of advertised

service with every input of the requested service. In other words, degreeMax is the

maximum of degreeMatch for every input of advertised service. degreeInput is the

final result of input matching. degreeInput will be compared against a threshold

whose value depends on the specific domain. If it is less than the threshold, then the

matching fails. Otherwise, the matching returns the degreeInput. checkOntRelation()

is the function that checks if the two concepts have a hierarchical relationship.

computDegree() is the function that computes the semantic degree of two concepts

when they are related hierarchically. computSimilarity() is the function that compute

the semantic similarity between two concepts from different ontologies. The

algorithms for the computSimilarity() functions will be introduced in section 3.

2.2.3 Output, Operation, User-defined, and Final Result Matching

Both output and operation processing are carried out in the same manner as input. But

in output matching, all output from the requested service will be matched with each

output in the advertised service. In operation matching, service category operation of

the requested and service category operation of the advertised service are matched.

The results of output matching and operation matching are the degree of output

matching and operation matching.

In user-defined matching, the users can declare some more constraints or rules to

restrict the matching and increase the accuracy of the results of matching. For

example, a requester wishing to buy a computer describes a web service with price as

input and configuration of the computer as output. They may also declare more

constraints relating to the computer manufacturer. These constraints or rules will be

matched against the advertisement. Users may decide not to define any constraints or

they may define many constraints. We assume that the result of a constraint matching

is either “match” or “not match”. In short, the result of user-defined matching is as

follows: Match if every constraint is satisfied; Fail if at least one constraint fails. Of

course, it is possible to define the distance of this matching but it is outside the scope

of work.

The final matching result will be composed of the input, output, and operation

matching.

321

321 *)(

www

userMatchatchoperationMwhoutputMatcwinputMatchw
S

++

∗+∗+∗
=

w1, w2, and w3 are defined by users. After matching with all advertisements from the

database, we will sort by the degree of similarity and return the matched list to the

requester.

3 Semantic Similarity between Concepts from Different

Ontologies

This section introduces the main component of MOD which was mentioned in section

2, namely, computing semantic similarity of two concepts from different ontologies.

Determining the semantic similarity of concepts from ontologies is necessary in

information retrieval and information integration fields related to ontologies. MOD

focuses on matching inputs, outputs, and operations because in the semantic web,

these parameters are in fact ontology concepts. The concept similarity algorithm

includes four main components: syntactic similarity, properties similarity, domain

similarity (or context similarity), and neighborhood similarity.

 ncps

ncps

wwww

neiSimwconSimwproSimwsynSimw
CS

+++

∗+∗+∗+∗

=

(1)

where ws, wp, wc and wn are weights defined by users depending on application. The

following sections provide details of the five main matching components.

3.1 Syntactic Similarity

Each concept in an ontology is labeled (concept name) and has a short text (concept

description) which describes it. The syntactic similarity computes the similarity

between the concept names and concept descriptions of the two concepts,

respectively. The concept names in OWL are defined as a word or a set of words.

There are some techniques to compute word similarity such as n-gram [2,15,21] and

token Matcher [14] but most of these only consider a word as a string of characters.

The semantic relationship of the words, which is very important in computing word

similarity, has been ignored. To overcome this drawback, WordNet [10] is used.

WordNet can only be used when the words which we would like to compute

similarity are stored in its database. The WordNet database only stores root and single

words. Therefore, before using WordNet, we must have a preprocessing process to

convert words to their roots. If both concept names contain only one word, we can use

directly WordNet to compute similarity words. In cases when there is more than one

word in the concept name, we will find the most similar terms between synonym sets.

WordNet is also used to compute similarity between two concept descriptions in the

same way as computing concept names similarity when the latter contains more than

one word. The syntactic similarity is a weighted average of concept names and

concept descriptions similarity.

3.2 Property Similarity

A concept may have one or more properties. Similar to concept, a property also has a

name and description. In addition, it contains range and cardinality. To compute the

property similarity, all this information of the two properties should be matched. The

method to compute property name and description similarity is syntactic similarity

which was introduced in section 3.1.

Range of a property is either a primitive data type or another concept. If both

ranges are primitive data types then the similarity between two ranges is as shown in

table 1. If one range property has a primitive type and the other has a concept, the

ranges are incompatible; therefore the range similarity is 0. If two range properties are

concepts, the matching is carried out recursively as with the computing of two

concepts.

Table 1. Similarity when range is primitive data type

Range of Property 1

 Integer Long Float Decimal String

Integer 1 0.9 0.8 0.7 0.3

Long 0.9 1 0.8 0.7 0.3

Float 0.8 0.8 1 0.7 0.3

Decimal 0.7 0.7 0.7 1 0.3

R
a

n
g

e o
f P

ro
p

erty
 2

 String 0.3 0.3 0.3 0.3 1

Cardinality of property permits the specification of the exact number of elements in a

relation. For OWL, the cardinality values are limited to 0 or 1. We simply define the

Cardinality similarity as follows: Cardinality similarity =1 if the cardinality of two

properties is equal; Cardinality similarity =0 if the cardinality of two properties are

different

The final property similarity is the combination of the three components:

syntactic, range, and cardinality similarity.

3.3 Domain Similarity

Domain which is also known as a context of the ontology is important to the

computation of concept similarity. For example, assume there is an Animal ontology

which has concept Fish. Another Food ontology also has concept Fish. We assume

that the properties of the two concepts Fish are the same. If we do not consider the

domain of the two ontologies, the concept similarity of two concepts from the two

ontologies will be 1. However, the Fish concept has different meaning in the two

ontologies: one refers to an animal; the other refers to food. Therefore, the similarity

distance of the Fish concept from the two ontologies should be low. In short, domain

must be considered in computing concept similarity.

To compute the domain similarity of the two concepts, we compute the similarity

of the two roots from the two ontologies since the root represents the domain of the

ontologies. The root is a special concept in an ontology, which does not have super

concepts. In the real world, most OWL ontologies have one root, but there are

ontologies with more then one root. In this situation, we must find the root which the

concept belong to. The paper only solves the simple and common situation when the

ontology has one root.

3.4 Neighborhood Similarity

Neighborhood similarity computes the two concepts with respect to their

neighborhood, namely, their super concepts and sub concepts. Figure 3 presents a

matching of two concepts Network Node and Network Element. Both concepts have

super concepts Equipment; their sub concepts are Computer, Switch Equipment, and

Computer, Central Hub, respectively.

The neighborhood similarity is computed using the following equation:

subSim*supSimmneighborSi =

where supSim and subSim are super concept similarity and sub concept similarity,

respectively.

Ontology 1 Ontology 2

Figure 3. Comparing two NetworkNode concepts

A concept may have one or several super concepts. The super concept similarity is

computed as follow:

n

)C ,CallSubSim(
)C ,supSim(C RP

RP =

where n is the number of pairs of matched super concepts. CP and CR are concepts

from the two ontologies used by provider and requester, respectively. allSupSim is

similarity of the matched super concepts. As shown in equation (2), the super

concepts are matched one to one such that the average super concept match is

maximized. This is done by using a recursive formula as follows:

allSupSim(CP, CR) = Max(allSupSim(CP -SupP, CR -SupR)) + conceptSimilarity(SupP, SupR)) (2)

A concept may have one or more sub concepts. subSim is computed in the same way

as supSim.

4 Experiment and Discussion

In this section, an experiment to determine concept similarity using two real world

ontologies is introduced. This is followed by a description of how two web services

which use the two ontologies are matched.

4.1 Experiments with Concept Similarity

For testing the concept similarity algorithm, we employ two ontologies from the real

world taken from I3CON [11], the Information Interpretation and Integration

Conference. Figure 4 shows two ontologies from two different OWL files:

networkA.owl and networkB.owl. These two ontologies describe the nodes and

connections in a local area network. networkA focuses more on the nodes themselves,

while networkB encompasses the connections. Concept pairs were selected for testing

arbitrarily but focused on pairs which have matching potential. The concept

similarities are computed using equation (1). In most cases, wi is set at 0.25. In some

special cases, wi

is set differently. Table 2 shows the results of testing twelve concept

pairs from the above two ontologies. The “expected results” column shows the

“Ground Truth” result which is defined manually by human intelligence to determine

closest fit. The “MOD Results” column shows the actual results which were obtained

by using the proposed algorithm.

Figure 4. Structures of networkA.owl and networkB.owl in Protégé [1]

The details of matching are shown in figure 5. Each column pair in the figure shows

the “expected” and MOD concept similarity. MOD results are computed based on the

four similarity components: syntactic, properties, neighborhood, and domain

similarity.

Table 2. Similarity between concepts

Case
Concepts from

NetworkA.owl

Concepts from

NetworkB.owl

Expected

Results

MOD

Results

1 NetworkNode NetworkNode 0.80 0.78

2 Equipment Equipment 0.75 0.65

3 PC Router 0.60 0.58

4 NodePair PairOfNode 0.57 0.63

5 Hub NetWorkNode 0.25 0.25

6 Computer Computer 0.80 0.82

7 CrossOverCable Cable 0.70 0.55

8 Router WAP 0.35 0.59

9 Server Router 0.45 0.67

10 CoaxCable Coax 0.72 0.7

11 CrossOverCable CrossOver 0.72 0.75

12 StraightThroughCable StraightThrough 0.72 0.78

Figure 5. Graph represents concept similarities from Network A and Network B ontology

The syntactic matching results show that cases 1, 2, and 6 are 1 since their concept

names are identical and the concept descriptions are nearly the same. The lowest

syntactic similarity is in case 5 which involves two concepts: Hub and NetWorkNode.

With the two concept names “Hub” and “NetWorkNode”, WordNet returns a

similarity is 0. But the similarity of the two concept descriptions is 0.2, so the

syntactic similarity is 0.1. When no property is defined in one of the two concepts,

their property similarity is 0. In this case, the algorithm will ignore the property

dimension. In other words, the wp in equation (1) is 0.

In most cases, the neighborhood similarity is high when their superclass and

subclass similarity are high. This similarity is low in case 7 since CrossOverCable

concept in ontology networkA matched Cable concept in ontology networkB.

However, in ontology NetworkA, the Cable concept is the superclass of

CrossOverCable concept. Therefore, the neighborhood similarity of the two concepts

is the similarity of the superclass pair (Cable, Equipment). The subclass similarity is

ignored because CrossOverCable does not have a subclass. The pair (Cable,

Equipment) has super/sub class relationship, but in neighborhood similarity matching,

the algorithm only considers the syntactic, property, and domain similarity. Therefore,

the neighborhood similarity between CrossOverCable and Cable is low. Domain

similarity is the similarity of two root concepts of the two ontologies. Therefore, the

domain similarities in the twelve cases are the same.

The similarity of two concepts is computed as the average of the four components:

syntactic, property, neighborhood, and domain similarity. Therefore, the value of each

component will affect the final result. The contribution of the four components is

equal in most cases. However, there are some cases where one component carries

more value than the other. The neighborhood similarity for the pair (CrossOverCable,

Cable) is low and has ‘negative’ effect on the final result because the matching

algorithm does not recognize that they have a superclass/subclass relationship. It is

therefore up to the user to select a suitable weight wi to place on each of the

components.

4.2 Matching Web Services

We assume that there are two companies: Cisco is a network company which sells

network components. BCS is a network company which buys network components.

Cisco and BCS develop web services to sell and buy network components,

respectively. The inputs of the web services are price; the outputs of the web services

are network components. To develop web services, companies must develop price, e-

business, and equipment ontologies. We assume that the price and e-business

ontology are popular, so the two companies use the same price and e-business

ontology. But the equipment ontology is not available. So, they develop different

ontologies for the equipment as shown in figure 4. The web services of the two

companies are shown in figure 6. In this experiment, we assume that the threshold of

concept similarity is very small, so all the concept similarities are larger then the

threshold.

Inputs Operations Outputs

BCS web service

Cisco web service

Figure 6. Web service requester and advertisement

Inputs of the web services are concepts from price ontology which is described in

figure 7; We introduce concepts <3000, <2000, and <1000 that refer to prices that are

less than 3000 units, 2000 units, and 1000 units, respectively.

Figure 7. Ontology for price domain

Operations of web services are concepts from eBusiness ontology which is described

in figure 8. The eBusiness provides Sell and Buy services. The Buy concept provides

BuyComputer, BuyEquipment, and BuySoftware. BuyEquiment provides BuyHub,

BuyRounter and BuySwitch.

Figure 8. Ontology in eBusiness domain

With descriptions of the two web services and above ontologies, matching results are

as follows:

− Input matching: This case is invert-subsumes since the input of the BSC

service is a superclass of the input of Cisco service. Based on the definition in

section 2, the input matching value is 0.3.

− Operation matching: This case is subsumes since the operation of the BSC

service is the sub concept of the input of Cisco service. The operation

matching value is 0.75.

− Output matching: In this case, the two web services use two concepts from

different ontologies. Based on the results stated on section 4.1, the matching of

two concepts Hub and NetworkNode is 0.25.

− User-defined: The user can define more rules or constraints to restrict the

results. In this example, for simplicity, we assume that the user-defined

matching is satisfied.

Based on the MOD algorithm, the similarity of the two web services is computed as

follows:

43.0
3

25.075.03.0

3

*)(
=

++
=

++
=

chUserDefMatOperMatchOutpMatchinpMatch
S

The matching result of the two web services indicates that this is “subsume

matching”, that is, provider Cisco can satisfy the requester BCS but Cisco service is

more general than BCS service.

5 Conclusions and Future Work

This paper has introduced an algorithm termed MOD which supports matching of

web services using different ontologies. The algorithm is divided into four stages,

namely, input, output, operation, and user-defined matching. The computing concept

similarity which plays a key role in MOD has four main components, namely,

syntactic, properties, domain, and neighborhood similarity. The experimental results

confirm the viability of the discovery system. In the experiment, we used OWL-S

ontologies to test the algorithm, but the MOD algorithm is general; therefore it can be

used for web services using different semantic web service description languages such

as DAML-S, and RDFS. However, the similarities defined in section 2 should not be

the crisp sets; it should be defined as fuzzy sets. The domain similarity only considers

the simple case when the ontology has one root. In the real word, the ontology may

have more then one root. These problems will be considered in the future.

References

[1] Protégé - A tool for OWL editor.http://protege.stanford.edu/overview/

[2] Angell, R.; Freund, G., Automatic spelling correction using a trigram similarity measure,

Information Processing and Management, (1983) 19, 4, 255,

[3] Cardoso, J.; Sheth, A., Semantic e-Workflow Composition, Journal of Intelligent Information

Systems, (2003) 21, 3, 191 0925-9902, Kluwer Academic Publishers.

[4] DAML, Services Home Page, OWL-S markup of services.www.daml.org/services/owl-s/

[5] Jaeger, M. C.; Tang, S.; Liebetruth, C., The TUB OWL-S Matcher.Available at: http://ivs.tu-

berlin.de/Projekte/owlsmatcher/index.html.

[6] Kawamura, T.; Blasio, J. D.; Hasegawa, T., et al., (2003), Preliminary Report of Public

Experiment of Semantic Service Matchmaker with UDDI Business Register, 1st International

Conference on Service Oriented Computing (ICSOC 2003), Trento, Italy, 208,

[7] Kawamura, T.; Blasio, J. D.; Hasegawa, T., et al., (2004), Public Deployment of Semantic

Service Matchmaker with UDDI Business Registry, 3rd International Semantic Web

Conference (ISWC 2004), LNCS 3298, 752,

[8] Li, L.; Horrocks, I., (2003), A software framework for matchmaking based on semantic web

technology, 12th International World Wide Web Conference, Budapest, Hungary, ACM Press,

331, 1-58113-680-3,

[9] LSDIS, METEOR-S: Semantic Web Services and

Processes.http://lsdis.cs.uga.edu/projects/meteor-s/

[10] Miller, G., WordNet: An Electronic Lexical Database, The MIT Press: (May 15, 1998).

[11] NIST, I3CON Information Interpretation and Integration

Conference.http://www.isd.mel.nist.gov/PerMIS_2004/index.htm

[12] Oundhankar, S.; K. Verma; Sivashanugam, K., et al., Discovery of web serivces in a Muti-

Ontologies and Federated Registry Environment, International Journal of Web Services

Research, (2005) 1, 3,

[13] Paolucci, M.; Kawamura, T.; Payne, T. R., et al., (2002), Semantic Matching of Web services

Capabilities, 1st International Semantic Web Conference (ISWC 2002), Sardinia, Italy, 333,

[14] Porter, M. F., An algorithm for Suffix Stripping, In Morgan Kaufmann Multimedia Information

And Systems Series, Morgan Kaufmann Publishers: (1997); pp 313

[15] Salton, G., Automatic Text Processing: The Transformation, Analysis and Retrieval of

Information by Computer, Addison-Wesley Ed. Massachusetts: (1988).

[16] Srinivasan, N.; Paolucci, M.; Sycara, K., (2004), Adding OWL-S to UDDI, implementation and

throughput, First International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC 2004), San Diego, California, USA,

[17] Sycara, K.; J. Lu, M. K.; Widoff, S., Dynamic service matchmaking among agents in open

information environments, ACM SIGMOD Record (Special Issue on Semantic Interoperability

in Global Information Systems),, (1999) 28, No.1, 47,

[18] Sycara, K.; J. Lu, M. K.; Widoff, S., (March, 1999), Matchmaking among heterogeneous agents

on the internet, AAAI Spring Symposium on Intelligent Agents in Cyberspace,

[19] Sycara, K.; Widoff, S.; M. Klusch, J. L., (2002), LARKS: Dynamic Matchmaking Among

Heterogeneous Software Agents in Cyberspace, Autonomous Agents and Multi- Agent Systems,

Vol.5, 173,

[20] W3C, Organization, OWL - Web Ontology Language Overview.http://www.w3.org/TR/owl-

features/

[21] Zamora, E.; Pollock, J.; al, e., The Use of Trigram Analysis for Spelling Error Detection,

Information Processing and Management, (1981) 6, 17, 305,

