
Pattern Based Temporal Inference In Forward Search Temporal Planning

Atif Talukdar, Maria Fox, Derek Long
Department of Informatics

King’s College London
Strand, London
WC2R 2LS, UK

firstname.lastname@kcl.ac.uk

Abstract
Temporal Planners are developed to address problem do-
mains of a more realistic nature, where time is a factor.
Some of the most difficult problems to solve are those con-
taining required concurrency since the planner must execute
actions in parallel. Forward search planners are generally
good at finding plans using search with heuristic guidance.
However, temporal planners still face limitations in their use
of inference. This paper discusses patterns of required con-
currency and how we can solve problems of this nature,
with reduced search and more inference, in a forward search
framework.

1 Introduction
In temporal planning, some of the most challenging prob-
lems are those that have complex temporal interactions
between actions. An example of such interaction are where
actions must occur concurrency for a valid plan to be
produced. Problems with required concurrency are where
all solutions to the problem must have two or more actions
execute concurrently (Cushing et al. 2007). A problem of
this type has no sequential plans that reach the goal.

Where there is required concurrency between two ac-
tions, it means that neither action can execute separately.
This phenomenon provides an opportunity to perform
inference in forward search temporal planners, where the
use of inference is limited. This paper presents our work
to automate the detection of required concurrency between
pairs of actions, by analysing the domain structure. We then
explain how we use these detections for doing temporal
inference. During the detection, we extract the information
required for inference and propagate it throughout the
planning phase. Our work currently focusses on detecting
required concurrency between two actions. We handle this
detection in temporal domains written according to the
specifications of PDDL 2.1 (Fox and Long 2003) that use
durative actions.

The patterns identified in this paper are based on those
identified by Cushing et al.(2007). We build on previous
work presented in (Talukdar 2016), that identified the
atomic cases of these patterns, where the actions are
non-parameterised and only one grounded instance of

each action exists. The inferred temporal constraints for
the parameterised versions of the patterns are currently
the same as specified in (Talukdar 2016). We propose a
systematic approach for incorporating the detection of these
patterns and the triggering of the corresponding inferences
in POPF (Coles et al. 2010). We have opted to use POPF
as our initial planner to extend with our machinery, as it
is a forward search temporal planner that utilises a partial
order. The partial ordering component is important, since
the inferences may require reordering of the actions in the
current plan when the inference occurs. Throughout this
paper, we refer to action template definitions specified in
the domain as operators and refer to grounded instances of
operators as actions.

We currently focus on contingent required concurrency.
This is where given a problem to which there is a sequen-
tial solution and a path containing required concurrency; the
planner will prefer the path with required concurrency to
reach the goal.

2 Related Work
TPSHE (Jimnez, Jonsson, and Palacios 2015) is a planner
that deals with required concurrency, however it is limited
to handling cases in the form of a single hard envelope
(Coles et al. 2009). This is the type of required concurrency
we see in pattern A displayed in section 3.3.

Currently, inference has been well exploited in the use of
temporal planners that are based on constraint programming
(CP). CP based planners such as CPT (Vidal and Geffner
2004) and eCPT (Vidal and Geffner 2005) use inference as
a strong pruning mechanism. C3 (Lipovetzky and Geffner
2009) is a planner that performs inference, which although
is not complete, can solve a number of problems without
backtracking, across a variety of domains.

3 Parameterised Patterns
In this section we illustrate the parameterised versions of
the pattern structures presented in (Talukdar 2016). We cur-
rently restrict the cases of required concurrency that we han-
dle, to those where all predicates that are part of a pattern
structure, can only have a single achieving operator in the



domain. Each action pair displayed in this section is an ex-
ample instance of each pattern of required concurrency with
parameters, that we handle. The labels at the top of each
pattern example, with either “Unique Inference Pattern In-
stance” or “Choice Inference Pattern Instance”, are specific
to the example shown. It is possible for instances of all pat-
tern types, to have either unique or choice inferences pos-
sible. This depends on the parameters that are part of the
predicate(s) in the pattern structure, in relation to the param-
eters of the inferred action. Unique and choice inferences
are explained in section 4.3.

3.1 Managing the Complexity of Parameterised
Patterns

Actions with parameters are considered a basic and im-
portant component of domain modelling; it allows us to
model multiple instances of operators in the domain, using
objects defined in the problem. Whilst this is of benefit
in modelling, in the case of doing inference it provides a
challenge for the planner. This is since there are potentially
many grounded actions that could be inferred to satisfy the
constraints of the required concurrency in a pattern instance.

Consideration of parameters means that for any pattern
detected in the domain, there could be many grounded
instances of that pattern, in the same way that an operator
may have many grounded actions. We use an approach that
avoids constructing grounded pattern instances of this kind,
and saves the planner from needing to search over a set of
grounded pattern instances when an inference is triggered.
We do this by recording only one instance of a particular
pattern type that includes the same two operators. We
record the parameter indexes that need to match between
the two operators for their grounded counterparts. We then
go through the grounded actions and record for each pattern
instance, all of the grounded action IDs for the inferred
operator; this occurs after the pattern instances are initially
constructed, but before search for a plan begins. Using this
approach, we avoid constructing multiple grounded pattern
instances that each contain a different combination of the
grounded action pairs. Another pattern instance containing
the same two operators is created, if the pattern instance is
of a different pattern type or the pattern instance is being
recorded again using the other action as the trigger for
inference.

We briefly discuss our method for identifying pattern
structures and recording the necessary pattern information to
perform inference during search. During a pre-search phase,
we analyse the operators defined in the domain, and col-
lect the predicates from the action precondition and effects
lists, that could construct part of the structure for a pattern.
These predicates are associated with the operators that con-
tain them as either a precondition or an effect of a specific
type. Instances of the pattern structure for each pattern type,
A to G, are detected from comparisons of these predicates.
If an instance of a pattern structure is found, then we search
for two operators utilising the predicate(s) in the right com-
bination of precondition and effect, in the set of associated

operators collected previously. If this is confirmed, then a
pattern instance has been detected. At this point the oper-
ators and predicate(s) making up the pattern structure are
recorded as part of the pattern instance.

3.2 Binding Parameter Indexes
The parameters of an action include all of the parameters
for each predicate that is included in the action’s precondi-
tions and effects. The subset of action parameters that are
included in the predicate(s) that are in the pattern instance,
are the ones we care about for parameter index binding be-
tween the two actions of the pattern instance. This is since
the number of parameters, the order of the parameters, or
the parameter names between the two actions in their defi-
nitions may be different. We therefore record by index posi-
tion which arguments passed to the actions need to match,
for the constraints of the required concurrency to be ful-
filled. The indexes for the pattern structure predicate(s) as
they are positioned in the first operator’s parameter list are
bound to the index positions of the same predicate(s) in the
second operator’s parameter list. These index bindings are
stored along with the rest of the information for each pat-
tern instance. Once a pattern instance is created it is stored
in a map structure, using the trigger operator as the key. A
grounded action of that operator will trigger the inference
during search.

3.3 Pattern Structures
In this section, we present an example of required concur-
rency for each parameterised pattern type. The parameters
that must match between the two actions in each pattern in-
stance are colour coded. The index positions of these pa-
rameter pairings are denoted in the ‘Index Bindings’ box on
the right of each figure. The remaining parameters may take
any grounding with regards to the required concurrency.

Figure 1: Pattern A pair. The ‘inspect’ action can only occur
while ‘shine light’ provides the resource ‘light’.

Figure 2: Pattern B pair. The ‘drive’ action can only start
while ‘activate engine’ of the same car provides the ignition
spark for the ‘drive’ action to begin.



Figure 3: Pattern C pair. ‘buyItem’ action can only end
while ‘accessFunds’ provides access to the account used to
make payment for the shop items at the end of ‘buyItem’.

Figure 4: Pattern D pair. ‘creditFunds’ is only needed and
must occur entirely within the duration of ‘depositCash’.

Figure 5: Pattern E pair. The start of ‘insertRecord’ al-
lows ‘cascadeUpdate’ to start, which in turn allows ‘in-
sertRecord’ to end.

Figure 6: Pattern F pair. When a database record is deleted,
it requires confirmation to verify that the record should be
deleted.

Figure 7: Pattern G pair. ‘taskA’ and ‘taskB’ can both start
independently, but both must start before the other can end.

4 Inference
Currently, we restrict the use of our inference machinery
to be used during search while in Enforced-Hill Climbing

(EHC) (Hoffmann and Nebel 2011) mode only. We perform
our pattern analysis on the domain as a pre-search phase,
to prevent the cost of pattern detection being added to the
search phase. During the search for a plan, the planner has
access to the pattern information for all of the domain’s pat-
terns. The manner in which the pattern instances are created
before search, allows the planner to efficiently perform tem-
poral inference during search.

4.1 Inference in EHC
In EHC search, a greedy approach is used in an attempt to
perform a faster search with less state exploration than in
breadth-first search. Helpful actions are used to progress
the search in standard EHC. Our approach is to trigger
inferences during EHC search using either the same helpful
actions added via search, or actions that have already been
added via a previous inference, as would be the case in a
chain of inference. We currently only allow grounded start
actions to trigger inference. When a start action is selected
to be added to the plan next, our inference machinery will
perform a lookup in the map of trigger operators to pattern
instances. If the root operator of the trigger action matches a
key in the pattern instances map, then an inference has been
triggered. The planner will visit the first element in the list
of pattern instances triggered by this operator. The grounded
actions associated with inferred operator in the pattern in-
stance are then analysed one at a time, until one that has
the same arguments as the trigger action, for the required
parameter index bindings, is found. If an inferred grounded
action is matched with the same required arguments, then
it is viable for inference and it is added to a list of inferred
actions. At each state, the inferred list is checked for actions
to apply before performing the normal search process.
If the inferred list is populated and contains an action
that is applicable, then it is chosen to produce the succes-
sor state instead of using the standard EHC search approach.

Our approach modifies the process of action selection, to
prioritise using inferred actions before standard helpful ac-
tions. Our machinery will check if the inferred action is ap-
plicable and if so, will select it instead of the standard help-
ful action that is otherwise chosen by EHC. Currently, if a
pattern instance is triggered but the action added to the in-
ferred list is not applicable, then this inference will not be
applied. The next pattern instance in the list mapped to the
trigger operator will be selected, and the process is contin-
ued to find an action that will satisfy the constraints of the
required concurrency attached to the trigger action. If there
are no other pattern instances or none of the inferred actions
are yet applicable, then the helpful action that would have
been added via normal search is applied. The trigger action
would either have to be removed or scheduled later. If re-
moved, the inference can be applied later on in the search
process, if the trigger action is added again. .

4.2 Inferred Temporal Constraints and Inference
Power

Table 1 displays the actions that must exist in the plan to
trigger the inference, and the temporal constraints that are



inferred as a result of the inference for each pattern type.
The constraints in brackets are inferred through transitivity.
All of the inferred temporal constraints are determined when
the trigger action(s) is added to the plan. Figure 8 displays
the increase in the power of the inference for the patterns
types and shows the strength of each pattern with respect
to each other, based on the inferred constraints displayed in
table 1. The letters in the ‘Current Plan’ and ‘Constraints’
in table 1 represent the actions that make up the pair in a
pattern. The ‘`’ symbol in subscript after the letter denotes
the start of the action and the ‘a’ symbol represents the end
of the action.

Pattern Current Plan Constraints Inferred
A A`< B` Ba < Aa

(B` < Aa)
B A`< B` B` < Aa

C B` A` < Ba

Ba < Aa

(B` < Aa)
D A` A` < B`

Ba < Aa

(B` < Aa)
E A` A` < B`

B` < Aa

F A` ∨ B` A` < Ba

Ba < Aa

(B` < Aa)
G A` ∨ B` A` < Ba

B` < Aa

Table 1: Inferred temporal constraints. First appeared in
(Talukdar 2016).

Figure 8: Increase in Power of Inference. First appeared in
(Talukdar 2016).

4.3 Unique or Choice Inference Pattern Instances
When it comes to the search phase, if a particular pat-
tern instance is triggered, it may be that there are multiple
grounded actions that could be inferred as the action that
needs to be added to the plan. However, it could also be the
case that there is only one possible inferred grounded action
that can be used. If all of the parameters of the inferred oper-
ator are parameters that are part of the predicate(s) that make
up the pattern structure, then there can only be one grounded
action that can be inferred if the pattern is triggered during

search. This is since the objects passed as the arguments for
the inferred action will have to be the same as the objects
passed as arguments for the trigger action; this is a unique
pattern inference. This is also the case, if parameters for the
inferred operator that are not part of the pattern structure or
indeed all of its parameters, have only one possible instanti-
ation. This would be due to a single object of the operator’s
parameter types being defined in the problem instance. The
choice inference case exists if there are one or more param-
eters for the inferred action operator, that are not amongst
the parameters in the predicate(s) of the pattern and there
are multiple objects in the problem definition that could be
used as arguments for those parameters. In this situation,
the planner will have many grounded actions that could be
used to satisfy the required concurrency constraints for the
pattern.

4.4 Example of State Progression using Inference

Figure 9 displays an example of the inference that can be
performed using our approach. The example pair of actions
used are for the pattern D instance shown in figure 4. The in-
ference is deemed valuable if the state produced by the last
action in the inference or chain of inference, has a strictly
lower heuristic value than the last state before the inference
began. As we seen in figure 9, when an inference is triggered
the planner should only navigate down that path in the search
tree, not generating other alternative states. At the end of the
inference, the state generated is evaluated as having a lower
heuristic than the state before the inference began. As a re-
sult the planner carries on with its standard search strategy,
as it did before the inference. If the heuristic value of the
state generated at the end of the inference is higher, then the
planner would need to backtrack to the state before the in-
ference trigger action was added, and would need to choose
an alternative path down the search space.

Figure 9: Progression through search space using inference.



5 Summary
We have illustrated the patterns of required concurrency that
we handle, and the inferences we look to perform accord-
ing to the pattern type. We have discussed how performing
inference in forward search becomes a much more complex
and challenging task for a planner to handle in the temporal
propositional case, where actions have parameters. So far,
POPF has been extended to perform the pattern detection we
have described and we are currently in the process of imple-
menting inference machinery for problems of required con-
currency as they appear in the patterns presented in section
3.3. The approaches we have described are still in develop-
ment and may be revised and refined as our understanding
increases. Our goal is to exploit the power of inference in
a forward chaining framework and to solve problems of re-
quired concurrency with less search and more inference.

References
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artif. Intell. 173(1):1–44.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the Twentieth International Conference on Automated Plan-
ning and Scheduling (ICAPS-10).
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In IJCAI
2007, Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, 1852–1859.
Fox, M., and Long, D. 2003. PDDL2.1: an extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR) 20:61–124.
Hoffmann, J., and Nebel, B. 2011. The FF planning sys-
tem: Fast plan generation through heuristic search. CoRR
abs/1106.0675.
Jimnez, S.; Jonsson, A.; and Palacios, H. 2015. Tempo-
ral planning with required concurrency using classical plan-
ning.
Lipovetzky, N., and Geffner, H. 2009. Inference and de-
composition in planning using causal consistent chains. In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009.
Long, D., and Fox, M. 2003. Exploiting a graphplan frame-
work in temporal planning. In Proceedings of the Thir-
teenth International Conference on Automated Planning and
Scheduling (ICAPS 2003), June 9-13, 2003, Trento, Italy,
52–61.
Talukdar, A. 2016. Temporal inference in forward search
temporal planning dissertation abstract. In The 26th Interna-
tional Conference on Automated Planning and Scheduling,
73–78.
Vidal, V., and Geffner, H. 2004. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. In Proceedings of the Nineteenth National Con-
ference on Artificial Intelligence, Sixteenth Conference on

Innovative Applications of Artificial Intelligence, July 25-29,
2004, San Jose, California, USA, 570–577.
Vidal, V., and Geffner, H. 2005. Solving simple planning
problems with more inference and no search. In Principles
and Practice of Constraint Programming - CP 2005, 11th
International Conference, CP 2005, Sitges, Spain, October
1-5, 2005, Proceedings, 682–696.


