

Dependency Network Based Planning,

Understanding the True Effects of Plans and Actions

Brian Drabble

Operations and Information Management Group (OIM),

University of Bradford, School of Management,

Emm Lane, Bradford,

West Yorkshire, BD9 1JL

bdrabble@bradford.ac.uk

Abstract

This paper describes an approach to intelligent planning
which employs a dependency network model to reason with
direct, n-order, cumulative and cascading effects. The de-
pendency network is a cyclic graph of nodes (persons, or-
ganizations, locations, resources, concepts, etc.) connected
by weighted arcs that define the type and strength of de-
pendency between a node pair. The network can be em-
ployed as part of Mixed Initiative Planning (MIP) architec-
ture or embedded as a constraint manager inside a fully au-
tomated planning architecture. The network can be em-
ployed to firstly evaluate both the intended, cumulative and
cascading effects of actions and secondly to critique plans to
identify their over dependence on a node or set of nodes.
For example, repairing the electrical substation will restore
power to the hospital and the traffic light sensors in the area.
The choice of repair teams 1 and 2 to conduct the repairs
means they are both dependent on two key roads to travel to
the repair site. The paper provides details of both planning
architectures, an overview of the dependency model and ex-
amples of its use on several scenarios.

 Introduction

This paper describes an approach to intelligent planning

which employs a dependency network model Drabble

(2014, 2015) to reason with direct, n-order, cumulative and

cascading effects. A dependency network is a cyclic graph

of nodes connected by weighted arcs where the weighted

values represent the strength of the dependency between a

pair of nodes. For example, the dependency of a plane on a

pilot, a telephone exchange on electrical power, etc. Using

a language such as PDDL (2014) action descriptions can

be developed which describe the direct effects of actions.

However, PDDL and other language struggle to represent

effects which occur over time or are triggered indirectly by

one or more direct action effects. For example, the loss of

electrical power (EP) from a substation would impact any

physical nodes directly connected to it and have a depend-

ency on EP. While these direct links can be handled by the

conditional effects extension to PDDL, the effect(s) of the

loss of EP could propagate beyond the direct links to affect

nodes 2, 3, 4 or more dependency links away from the im-

pacted node. For example, if we have the dependency

chain “telephone exchange  transmission line 1  trans-

fer station  transmission line 2  substation” and a plan

action directly affects the substation then what are the ef-

fects on the other nodes if any? This would need a series of

embedded “For Loop” within the conditional effects to

reason out to 2, 3, 4, etc. links but it would not be able to

handle the different nodes and dependencies encountered.

For example, if the telephone exchange has a backup EP

generator then what is the impact on the exchange of the

EP loss. If instead the node was a supermarket, then what

is the impact. It would require a very large number of

schemas to be developed to handle all the possible effects

and maintaining them would be an even greater issue.

 These effects at a distance are referred to as indirect or

n-order effects of an action. N-Order effects can include

indirect, cumulative and cascading ones and can be both

desired and undesired. It would be extremely difficult for a

user to write an action description in PDDL that was cable

of reasoning over the complete set of situations in which an

action could cause direct and n-order effects amongst a

group of inter-dependent nodes such as the four above.

 The remainder of the paper is as follows. The following

three subsections provide details of the dependency net-

work function with specific emphasis on how it supports

reasoning with action preconditions and effects. The fol-

lowing sections provide further details of the dependency

network and the use of the dependency network to support

both an MIP and automated planning architecture. A sum-

mary and future research directions section is as provided.

mailto:bdrabble@bradford.ac.uk

Overview of a Dependency Networks Function

The purpose of using a dependency network is to handle

reasoning with n-order effects and use its analysis in two

different ways. Firstly, to provide a plan critiquing and

constraint management function that aids a user within an

MIP framework. Secondly, to provide a guidance and con-

straint management function within an automated planning

architecture. An example of the former would be to identi-

fy that the plan has an over reliance on a single EP node

hence making it vulnerable to execution changes. An ex-

ample of the latter would be to identify that a partial plan

was heavily dependent on using ground assets to move aid

supplies1 hence it would be better to select the “move by

air” action to expand a high-level plan node.

 The dependency network does not reason about nodes in

a causal way, hence does not need a user to provide rules

to identify changes in the network. Rather it identifies the

type of relationship between a pair of nodes, its strength

and the consequence (in terms of the change in the node’s

output, capability2, etc.) should the dependee node be de-

graded 100%. For example, EP substation (S1) is depend-

ent on two transmission lines (T1 and T2) to supply it with

EP. If T1 and T2 supply equal amounts of EP to S1 then

both links S1  T1 and S1  T2 would be labelled supply

and each would have a strength value of 5.0. If T1 was the

primary source and T2 a backup, then the link values

would be 10.0 and 0.0 respectively. The consequence value

is used to propagate the positive or negative3 effect on a

node’s output/capability, etc. as a result of the direct ef-

fect(s) of a plan. In the case of a 100% loss of the input

provided by T1 then S1’s output would be specified by the

input provided from T2. This example shows a simple pass

through of a resource (EP) via S1 however, in most cases a

node’s dependent inputs are either transformed or used to

create another output or capability. For example, a machine

to mix concrete is dependent on inputs of cement and water

and on EP to power the machine. If any of these 3 depend-

ent inputs were reduced by 100% then the output of con-

crete would be reduced to zero regardless of the level of

input provided by the other two. This allows the dependen-

cy network to identify the criticality of a dependency and

propagate the appropriate values through the network.

Dependency Networks for Effects Reasoning

The network allows for nodes to be linked in both direc-

tions with different relationships, strength and consequence

values. For example, a customer of the cement plant could

1 There would be a corresponding n-order effect of a high dependency on

the road segments, bridges, etc. that the vehicles travelled along.
2 Capability, Experience, Skill and Knowledge are non-quantifiable out-

puts that have discrete levels “knowledge accountancy expert”
3 Actions such as Degrade, Dismantle, Dislocate reduce a node’s outputs

where Repair, Reinstall, Re-initialize increase a node’s outputs.

be linked to the plant by a supplies relationship and the

plant to the customer by a financial support relationship.

Given the plant is the only one in the area the dependency

of the customer on the plant is higher than plant on the

customer as it has more than one customer. The same rea-

soning applies to the consequence values should either be

reduced by 100%. The ability to handle loops between

pairs of nodes or loops comprising multiple nodes allows

the network to model feedback. This is where the initial

direct plan effect on a node is magnified by a chain of con-

sequence values that loops back to the initial plan effect

nodes. For example, if a power station’s EP output is de-

graded 30% and this leads to a 40% drop in the amount of

coal that can be delivered to the plant by rail this would

lead to less EP being generated and hence even less coal

being delivered. Eventually, the station’s EP output would

reach zero due to the feedback loop between EP generation

and its dependent supply of coal.

 The ability to reason with direct and indirect effects,

looping and feedback within a dependency models pro-

vides both human and automated planners with a range of

different ways to affect a node(s) capability. Firstly, a plan

effect could directly exploit the vulnerability of an actor

node to “seize and arrest” or a physical node’s EP output to

“repair”. Secondly, a plant’s output of concrete can be

modified by exploiting the vulnerability of the dependee

node(s) that supply cement, water or EP. As described ear-

lier if one of these nodes is a critical dependency then only

that one needs to be affected to halt concrete production. If

one of these dependee nodes has dependee nodes itself,

(e.g. the substation that provided EP to the transmission

line that supplies the concrete plant) then it could be af-

fected by a plan action. This allows planners to construct

plans whose effects occur at one node in a dependency

network but whose intended effect occurs at a node 1, 2, 3,

etc. links away. The ability to identify and affect multiple

nodes simultaneously provides planners with the capability

to exploit cumulative and cascading effects. The feedback

example shown in the previous section shows how a plan

can cause an initial small effect on a node that can be mag-

nified to achieve a much larger desired effect either direct-

ly or indirectly. This allows plans to be developed that are

extremely well focused while looking to degrade network

performance (insurgents, cyber-hackers) or provide the

maximum return when improving performance (aftermath

of Hurricane Katrina or post conflict reconstruction).

Dependency Networks for Precondition Reasoning

The network allows for the specification of plan precondi-

tions that are based on a node or node output capability. If

an action requires 500 gallons of fuel or access to a 2KV

transmission line, etc. then these can be specified as an

initiating, maintaining or terminating precondition. The

dependency network provides search capabilities to identi-

fy whether this can be supplied by a single network node

or from contributions provided by multiple network nodes.

It also provides feedback on any modifications that may be

needed in the plan to provide the required level of input.

For example, the start time window of Action 1 must be

restricted from the range 3 -6 to 3 in order for it to return

sufficient resources needed by the requesting action. Re-

strictions can also be placed on open plan variables to stop

them using a specific dependency node or nodes. Precondi-

tions can identify a specific output or a capability level that

a node must possess. For example, a truck has the capabil-

ity to provide ground transport or the capacity of the truck

to carry 2500lbs of cargo can be shared by multiple

transport actions. The network model tracks changes to

node outputs/capabilities as action that affect the node(s)

are inserted or ordered within a plan. It does this by assert-

ing a concept node into the network to represent a high

level or primitive action and links it to the node(s) that

satisfy its direct precondition or are impacted by an effect.

Dependency Networks

A dependency network comprises multiple intra and inter-

dependent networks that reflect the Political, Military Eco-

nomic, Infrastructural, Informational and Social (PEMSII)

(2016) aspects of the domain being modelled. Examining

the interdependencies between nodes helps understand how

the combined networks function, the most important nodes

overall and most importantly what effects a plan will truly

have in a domain. The importance of a node can be identi-

fied through a range of different measures:

 The cumulative weighted dependency that other

nodes have on it (dependent analysis)

 The cumulative weighted dependency that a node

has on other nodes (dependee analysis)

Dependency can be stated directly between any pair of

nodes in the model and reflects the strength of the depend-

ency that one node has on another. The strength of a de-

pendency is measured using a scale of 1 – 10 where 1 re-

flects a weak dependency and 10 a critical one. The direct

dependencies are then used to define a transitive depend-

ency between two nodes linked by one or more intermedi-

ary nodes. For example, the direct dependency of the con-

crete plant on the transmission line that results in the tran-

sitive dependency of the plant on the EP substation. It is

often the cumulative transitive dependencies that define the

importance of a node and not the usually smaller set of

direct pairwise dependencies. Athena4 provides various

network analysis algorithms to generate a dependee and

4 Athena is the name of the dependency analysis toolkit, system.

dependent score for each node in a network. The dependent

or dependee score for a node allows it to be ranked against

other user selected nodes to identify its importance. The

scores can also be used to compare nodes based on the

ratio of their dependent or dependee scores. A screenshot

from Athena is shown in Figure 1.

Figure 1: Dependency Model of Frankfurt Airport

Figure 1 shows a model of the cargo operations at Frank-

furt Airport in terms of the dependencies between the air

cargo companies (Lufthansa and Condor) and the groups

and infrastructure of the airport. The analysis displayed

middle right of Figure 1 shows that the Frankfurt Opera-

tions Support Center (the highlighted blue node) with a

score of 310 has almost 25% more importance to the Air-

port functions than the airports Electrical Power Transmis-

sion Networks with a score of 241. While the Support Cen-

ter has the greatest dependency score, analysis of the con-

sequence of losing either of these shows that a 100% loss

of the Transmission Network results in a far greater num-

ber of nodes being affected and by far greater percentage

change. Figure 2 shows the consequence analysis for the

change to the Transmission Network as the percentage

change to the nodes impacted (displayed middle right).

Figure 2: Example Consequence Analysis

A human or automated planner can use the dependency

and consequence scores to identify which parts of the

model their plan must try to avoid directly affecting and if

not what level of change could be acceptable. Secondly, it

identifies which dependee nodes of the Transmission Net-

works should not be affected directly or indirectly. Thirdly,

it aids the planner in prioritizing tasks should weather or

other issues affect airport operations. If resources are lim-

ited then repairing, re-energizing the Transmission Net-

work will have greater impact on operations than repairing

damage to the functions of the Operations Center.

 A planner can also use the model to identify the capa-

bilities and dependencies of nodes specified in plan pre-

conditions or effects. Figure 3 shows the specification of

information associated with the nodes representing the

Condor Air Fleet and their Main Hanger. The three boxes

shown to the left define the capabilities of the Hanger to

provide aircraft storage and repair facilities and its depend-

ency on high voltage EP. The top window on the right de-

scribes the link from the Cargo Fleet to the Hanger describ-

ing the dependencies of the Hanger and the capabilities of

the Cargo Fleet. The base of the window shows the defini-

tion of the mapping of the dependency of the Hanger on

the Company. In this case, it is a financial one in that the

Cargo Fleet has a contract with the Hanger. This also

shows the dependency of the Main Hanger on High Volt-

age EP which needs to be supplied via another node.

Hence even though there is a direct dependency between

the hanger and the aircraft it cannot be used by the planner

to affect the supply of EP to the hangar. The lower window

describes the link from the Cargo Fleet to the Main Hang-

er. This shows the obvious mapping of the hanger’s capa-

bilities for repair and storage and the Cargo Fleets depend-

ency on these capabilities to operate.

Figure 3: Example Attribute and Link Definitions

The dependency network also provides other additional

insights that can be exploited by the planner. This aids in

deciding the priority of goals/tasks and the plan(s) that

should be developed to address them. Below is a list of the

analysis capabilities provided.

Effects Analysis: Ranks nodes based on the total change in

the network if they were degraded 100%. Identifies which

nodes have the greatest effect across the network.

Vulnerability Analysis: Ranks nodes based on how vul-

nerable they are in terms of their strength of dependencies.

Identifies which nodes are “easiest” to affect indirectly.

Node Vulnerability: For a selected node, it identifies the

percentage capability change if the dependee node is de-

graded by 100% and is applied to each node dependee.

Critical Node Vulnerabilities: For a selected node identi-
fies if there is a dependee node that can degrade the select-

ed nodes capability by 100% and the percentage change to

the dependee node to achieve the 100% degradation.

Cluster Analysis: Identifies independent sub-networks

whose links all have strength equal to or greater than a user

specified value.

The following sections provide details of the use of the

dependency network to support both an automated and

MIP based view of plan generation.

Mixed Initiative Planning Architecture

When employed as part of a MIP based planning architec-

ture the dependency network supports three primary func-

tions: Task Specification, Plan Development and Plan Cri-

tiquing. Each is described in the following sections.

Task Specification

Task Specification aids the user in deciding what nodes

should be the focus of the plan and the desired network

behavior to be achieved. As stated earlier a node’s out-

put/capability can be affected directly or alternatively indi-

rectly by means of changes to one or more of its dependee

nodes. Task specification also aids in identifying any nodes

that should not be affected by the plan or the effect on

them should be minimized. For example, a plan to replace

one of the main EP transmission lines should not impact

the airport operations center by more than 10%. Once the

user has identified the node(s) to be affected a portal inside

of Athena allows the user to specify these nodes, the level

of effect on the desired node, direct or indirect influence

and any resource constraints. Figure 4 shows an example

set of specifications for a raid on a suspected insurgent safe

house by a Special Forces Team. The primary goal is to

Raid the safe house and this has already been specified.

The portal shows the specification of a secondary goal to

create checkpoints around the area to control ingress and

egress of people, vehicles, etc. The task specification is

then passed to NETPlan planner.

Figure 4: Example Task and Goal Specification

Plan Development

NETPlan provides the user with the ability to develop a

plan based on the tasks, constraints, etc. specified. Figure 5

shows the plan developed for a raid on two safe houses and

the construction of the checkpoints to support it. Along the

top of Figure 5 are a series of green diamonds representing

sub-goals and deadlines by which certain aspects of the

plan should be completed. NETPlan uses a timeline based

approach to plan representation where each row describes

the actions assigned to the resource. Resource rows can be

related to one another hierarchy and can be “rolled up” and

hidden if desired. A user uses NETPlan to manually con-

struct plans using the timeline based representation. NET-

Plan ensures that all time and resource constraints are

maintained and warns the user if any are threatened. The

user can then decide to alter the plan themselves or dele-

gate this to NETPlan to re-order or move actions on the

resource timeline accordingly.

Figure 6: Example Plan Development with Network Support

Any action, resource, goals or sub-goal can be selected and

information regarding the item displayed via a portal. Fig-

ure 6 shows the timing, resource, precondition, effect, etc.

information for the action to Secure Safe House 3. The user

can use Athena to test different partially or fully developed

plan options to understand what effects (desired and unde-

sired) the plan has on the network, Essentially, the network

acts as the initial state of the planning problem and the user

is looking for guidance and feedback as to how well the

plan matches against the goals specified. Based on Athe-

na’s analysis the user could decide to re-assign tasks to a

different resource due to a high dependency score, add an

additional resource to reduce dependency or limit the im-

pact of an effect, etc.

Plan Critiquing

Once the user has developed the plan to the required level

of specification it can be imported into the dependency

network. This is achieved by mapping the actions to a se-

ries of arcs that link the resource conducting the actions

and the focus of the action. For example, the action “Raid

and Secure Safe House 3 Second Special Forces Team”

would be translated into an arc between the Second Special

Forces Team and the Safe House. In order to simplify the

mapping process Athena provides a series of ontology

based mapping tools to identify matching items in the plan

and network. Figure 7 shows the Athena portal that dis-
plays the mapping of the nodes in the plan to those in the

network, A previous step had already dealt with the map-

ping of resource names. The second line of the table shows

the entry in the Athena Target column entitled Junction A1

whereas the corresponding NETPlan target is just A1.

Based on information such as the capability of a road junc-

tion can be degraded by blocking or reducing its flow,

Athena was able to deduce this was the probable mapping.

If an incorrect mapping is generated, then the user can

override it and Athena updates the ontology appropriately.

Figure 7: Mapping from Plan to Network Terms

Once all mappings are correct the plan can be imported

into the network by means of additional nodes (if the re-

source or focus of effect was not already in the network)

and links. Figure 8 shows the insertion of the links between

the Special Forces Team and the Safe house and the subse-

quent analysis of the plan effects. The analysis pane shown

middle right shows the 100% degradation of the safe house

and the indirect effects on the other nodes listed.

Figure 8: Action Insertion and Analysis

This is good plan as it targets the safe house and does not

cause wide spread secondary effects. However, re-running

the dependency analysis identifies that the node with the

greatest dependency is now North Baghdad SS1hence the
question is why. Figure 9 shows the dependent analysis for

SS1 and it identifies that one of its main dependents is the

radio network that the forces manning the roadblocks and

checkpoints are using. As the forces are strongly dependent

on the radio network and the plan is strongly dependent on

the forces then the plan is strongly dependent transitively

on the radio network. The importance of SS1 increased due

to the dependencies on it from the resources employed in

the plan which is something that the plan developer knew

nothing about. Identifying potential points of dependency

introduced via a plan helps the user develop plans which

are most robust against events (weather, etc.) or the actions

of others. In this case selecting unit’s dependent on differ-

ent radio networks or tasking a unit to protect SS1 during

the raid to ensure continuity of EP for the radios.

Figure 9: Plan Critiquing to Identify Weaknesses

The critiquing process can also identify unintended conse-

quences that the planners may not be aware of due to their

training, location or tasking. Dependencies change at dif-

ferent time of the day, in different locations, etc. One of the

effects of the raid plan was is to reduce traffic flow in the

locality of the safe houses. The same roads and junctions

are also dependees of the local mosque. Hence if the raid is

launched at 2.00am then there are few issues however, if it

is launched at noon on Friday when people are attending

Friday prayers then the unintended consequences of the

plan would be potentially significant. The ability to alert a

human Special Forces planner as to the sensitivity of the

launch time of the plan, was seen as a significant ad-

vantage. Their normal training does not involve looking for

such interactions and potential conflicts.

Automated Planning Architecture

When employed as part of an automated planning architec-

ture the dependency network can serve the same three pri-
mary functions of the MIP approach and provide the ability

to guide the selection of options for schema selection, vari-

able assignment, precondition satisfaction, etc. Each is

described in the following sections.

Schema and Variable Selection

The ability to select the appropriate schemas and variables

that best match the needs of a plan is one of the key aspects

of any automated planning approach. The dependency

model was incorporated into an automated planner called

Minerva to provide direct feedback to the planning algo-

rithm. This raises several important research questions.

The first was how to describe the task to the planner in a

form that captured all the relevant information. Below is a

task description that was developed for Minerva.

task “SOF Raid”;
 vars ?verb = ?(or ?(type dverbs) ?(type rverbs)),

 ?noun, ?output, ?constraint, ?action, ?mechanism;

nodes

1 start;

 2 finish,

3 action {{Degrade SF3 IC 100 “seizure and

occupation”}{({V=Degrade, N=AD, O=TWK

and C=50} {V=Degrade, N=IG1, O=Weapons

and C=50})};

orderings 1 3, 32;

end_task;

In the case the task is to Degrade SF3’s (Safe house 3) in-

formation conduit (IC) output by 100% and the method to

be used is seizure and occupation. Tasks can be specified

in terms of a method or in terms of the resource assigned.

For example, instead of specifying the seize method the

task could specify SOF via Helicopters and have Minerva

select the method. The remainder of action 3 is a set of

Meta-data that indicates the path through the dependency

networks the plan effects should follow. In this case the

aim of seizing the safe house is to degrade by 50% the lo-

cations from which node AD (a person or group) can trans-

fer their working knowledge (TWK) and so degrade the

ability of insurgent group IGI to produce weapons by 50%.

Essentially by removing SF3 as an information conduit the

person AD cannot train people and this should impact on

weapons production. The orderings information identifies

the task occurs between the start and end of the plan. Mi-

nerva uses the same schema layout and structure as O-Plan

(1999) but it has been heavily modified to deal with the

interactions with the dependency network.

 The action {Degrade SF3 IC 100 “seizure and occupa-

tion”} needs to be decomposed into a lower level action.

Similar to O-Plan, Minerva uses a Partial Order Causal

Link approach to plan generation. The following schema

show one possible way to decompose the task description

and introduces some of the additional structures that were

added to allow interaction with the dependency network.

schema ConductRaidtoDegradeLocation;

 vars $verb, $percentage, $transport1, $transport2,

$mechanism, $checkpoint,

 $checkpointsrequired} = ?{type integer}

 $RaidLocation = ?{type physical}

$SupportingUnits = ?{type actor, ?{or ?{capability

“Conduct Ground Operations”}, ?{experience

“Security Operations”}}},

$RaidingForces = ?{type actor ?{or ?{capability

“Raid Location”}, ?{experience “Raid Loca-

tion”}}};

expands {$verb $RaidLocation $output $mechanism

$percentage};

 nodes

1 action $checkpointsrequired Iterate action {Move

$SupportingUnits $transport1 $checkpoint},

{Establish_and_Man $checkpoint} for

$checkpoint over ?{type poten-

tial_checkpoints},

 2 action {Move $RaidingForces via $transport2 to

$RaidLocation},

 3 action {Raid $RaidLocation by $RaidingForces

$percentage};

 orderings 1  3, 2  3;

 conditions

 compute_condition ?{fn_ask “number of

check points required” ?{or undef ?{type

integer}}} = $checkpointsrequired,

compute_condition ?{fn_mult $check-

pointsrequired 5} = $RequiredManpower,

compute _condition ?{output “manpower”

$RequiredManpower units} = $Sup-

portingUnits at begin_of self,

compute_condition ?{output “manpower”

20 units} = $RaidingForces at begin_of

self,

unsupervised {Location $RaidingForces} =

$RaidLocation at 3,

supervised {Status Security_Cordon $raid-

location] = complete at 3 from 1;

 effects {Status Security_Cordon $RaidLocation} =

complete at 1;

end_schema;

The schema vars structure describes the schema variables

that are used in the schema definition. There are various

restrictions or constraints placed on the schema variables.

For example, $RaidLocation has to be a physical type node

in the network and $RaidingForces need to be an actor

(person, groups, etc.). In addition, $RaidingForces need to

possess the capability or experience to conduct a Raid at a

location. A node can be assessed in terms of its output if it

is quantifiable (EP, flow rate, etc.,) or in terms of pos-

sessing a capability, experience, skill or knowledge to a

specified level if it is not quantifiable (supervision, expert

knowledge of painting, etc.). This structure was developed

to augment the simple capability and dependency frame-

work in Figure 3 to correctly capture these non-

quantifiable aspects of nodes in a form that can be used by

Minerva. The expands pattern matches the task specifica-

tion in the task schema if the types and constraints on the

schema variables match. The Meta-data from the task

schema is simply tagged to this schema for checking the

plan does what it is tasked to do.

 The nodes statement describes the next level of the plan

hierarchy. In this case the raid action comprises three sub-

actions. The first is to insert a “Move $SupportingUnits

$transport1 $checkpoint” and “Establish and Man $check-

point” action for as many checkpoints that are required in

the plan. This can be specified by the user or identified by

Athena based on the level of impact the plan is desired to

achieve. The remaining two actions move the raiding forc-

es to the location via a transport and then raid the location.

If at the end of the schema expansion a plan schema varia-

ble has not been assigned a value, then it is converted to a

Plan State Variable (PSV). Minerva tags the PSV with all

of the appropriate type and constraint information so it can

be assigned later. For example, if there is a high dependen-

cy score on the helicopter nodes in the network then Mi-

nerva may choose to assign $transport2 to ground based

vehicles so as to not increase the helicopter dependencies.

Precondition and Effect Analysis

The conditions structure contains multiple com-

pute_condition statements that result in queries to the de-

pendency network. These are preconditions the dependen-

cy network needs to address. The first identifies the num-

ber of checkpoints required and the second identifies the

total amount of manpower required assuming 5 persons per

checkpoint. The number of raiders is fixed at 20. Hence the

dependency network needs to fine one or more nodes that

have the required attributes as defines in the vars statement

and the required levels of output as described in the pre-

conditions. The dependency network may return “No” as it

cannot find the required node(s), “Yes” here is a list of

candidates and based on their dependency score they

should be selected as follows or it could return “Maybe”.

In the case of Maybe it means there are changes to the

outputs of certain nodes caused by already asserted plan

effects and if the following changes are made to the plan

then the resources can be provided. For example, if an ac-

tion is ordered earlier in the plan it will return sufficient

resources to allow the schema to be selected. It is essential-
ly a dependency based Modal Truth Criterion based on the

state of the dependency network. Minerva can assess each

of the Maybe options and select the one that best suits the

current context. Once selected in creates a link between the

action and the selected dependency node(s) to ensure the

correct output level is provided. If the link is broken it is

treated in the same way as a broken plan precondition.

 The effects structure describes the changes to a node

output/capability directly caused by the action. The schema

below would be a candidate to expand the Establish and

Man Checkpoint action described in the previous schema.

schema EstablishAndManCheckpoints;

 vars $Checkpoint = ?{type physical},

 $AssignedUnit = ?{type actor};

 expands

Establish_and_Man $Checkpoint $AssignedUnit};

 only_use_for_effects

{Checkpoint $Checkpoint} = established;

 condition

compute_condition ?{output “manpower” 5 units}

= $AssignedUnit during self,

compute_condition ?{output “electrical power”

500 units = $checkpoint during self;
 effects

?{output ?{change “traffic flow” -50 percent-

age}} = $checkpoint during self;

 time_windows = 2 hours;

end_schema;

The effect statement states the action will result in a 50%

reduction in traffic flow rate during the duration of action

(during self). This means after the action is complete the

effect stops and the flow rate should increase by 50% un-

less another action’s effects impact it directly or indirectly

at the same time. The same type of reasoning also applies

to the condition statements. This schema shows a change in

the level of the assigned manpower of 5 units and this will

only be allocated from the dependency node identified for

the duration of the action. Afterwards the manpower is

reallocated back to the unit. The same applies to the need

for 500V units for the checkpoint which is taken from the

EP network as load. Once the action is over the load can be

returned. The use of the self statement in a com-

pute_condition informs Minerva that the resource is allo-

cated and then deallocated back to the dependency node.

Athena tracks changes in the network caused by plan ef-

fects and alerts the Minerva if changes threaten a precondi-

tion, schema choice, etc. so the planner can take appropri-

ate actions. In this example the plan developed was to man

8 road blocks selected by Athena based on the local street

layout and to raid 2 safe houses. Minerva inserted the sec-

ond safe house raid as raiding just one did not achieve the

desired impact on the TWK output of AD. It also added a

third raid to avoid that being used as an alternative when

the first two were lost. It selected a helicopter insertion

method for the raiders to minimize disruption and selected

a 0500am start to avoid other collateral issues.

Summary and Future Work

This paper described the use of a dependency based net-

work model to support both an MIP and automated plan-

ning architecture. The model provides both human and

automated planners with the ability to truly assess the im-

pact of action effects in terms of the both direct and n-

order ones. This allows plans to be constructed that allow

goals to be achieved by directly affecting a node’s output

or my affecting one or more of its dependees. The ap-

proach has been applied to a variety of scenarios including

countering insurgencies, disaster and emergency manage-

ment, logistics, etc. The current Cassandra and Minerva

systems are being extended to allow reasoning with un-

known nodes (those not instantiated to specific value) and

how they could be used to guide the planner as to which

aspects of the planning problem to focus on next. Other
extensions include reasoning with probabilities with re-

spect to the presence of a link or node in the network and

the use of missing dependency information to guide sche-

ma and variable selection.

References

PDDL. 2016, Planning Domain Definition Language.
https://en.wikipedia.org/wiki/Planning_Domain_Definition_Lang

uage

PEMSII. 2016, Political, Economic, Military, Social, Infrastruc-
tural and Information model of a system, entity or state

http://pmesii.dm2research.com/index.php/Main_Page

O-Plan: Tate, A., Dalton. J. and Levine, J. 1999. Multi-
Perspective Planning - Using Domain Constraints to Support the
Coordinated Development of Plans, O-Plan Final Technical Re-

port AFRL-IF-RS-TR-1999-60. .

Drabble, B. 2015. Dependency Based Analysis to Support Robust
Schedule Generation, Final Report, Naval Postgraduate School,

Contract N00244-14-1-0056 NAVSUP, Monterey, CA, USA.

Drabble, B. 2014. Modeling C2 Networks as Dependencies, un-
derstanding what the Real Issues Are. In Grant, T. J., R. H. P.
Janssen, and H. Monsuur., Network Topology in Command and
Control: Organization, Operation, and Evolution. pp125-151,
accessed May 21, 2015. DOI: 10.4018/978-1-4666-6058-8. IGI

Global Press.

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
http://pmesii.dm2research.com/index.php/Main_Page

