
Have a Little Patience: Let Planners Play Cards

Rabia Jilani and Andrew Crampton and Diane Kitchin and Mauro Vallati
School of Computing and Engineering

University of Huddersfield
United Kingdom

{rabia.jilani, a.crampton, d.kitchin, m.vallati}@hud.ac.uk

Abstract

As every card player knows, most existing card games share
a large number of actions and situations. This is the case,
for instance, for stacking cards in columns according to some
allowed sequence or taking cards from a deal. This is true
for both multi-player and solitaire patience games. Although
they have such strong similarities, every game also has some
peculiarity making it different, and affecting its complexity
and –at the end of the day– its enjoyability. Interestingly,
from an AI planning perspective, most of the differences
emerge from the problem description: domain models tend
to be very similar because of the similar actions that can be
performed.
In this paper we envisage the exploitation of solitaire card
games as a pool of interesting benchmarks. In order to “ac-
cess” such benchmarks, we exploit state-of-the-art tools for
automated domain model generation –LOCM and ASCoL–
for creating domain models corresponding to a number of
solitaires, and extracting the underlying game constraints
(e.g., the initial setup, stacking rules etc.) which come from
problem models. The contribution of our work is twofold. On
the one hand, the analysis of the generated models, and the
learning process itself, gives insights into the strengths and
weaknesses of the approaches, highlighting lessons learned
regarding sensitivity to observed traces. On the other hand,
an experimental analysis shows that generated solitaires are
challenging for the state-of-the-art of satisficing planning:
therefore solitaires can provide a set of interesting and easy-
to-extract benchmarks.

Introduction
Traditionally, the planning domain model acquisition prob-
lem has mainly been addressed by considering two ap-
proaches. On the one hand, knowledge engineering tools for
planning have been introduced over time, for supporting hu-
man experts in modelling the knowledge; this is the case of
itSIMPLE (Vaquero et al. 2007) and PDDL studio (Plch et
al. 2012). On the other hand, automatic domain model ac-
quisition –relying on example data– has been investigated.
The interested reader is referred to (Jilani et al. 2014) for an
overview of existing systems.

Despite the enormous amount of work done in the area
of automatic domain model acquisition –see for instance,
ARMS (Yang, Wu, & Jiang 2007), (Yang, Wu, & Jiang
2007) LAMP (Zhuo et al. 2010), and LAWS (Zhuo et

al. 2011)–, little or no work has been done on the topic
of learning problem-specific information and constraints.
Clearly, domain models include knowledge about the dy-
namic side, i.e. describe actions which are under the con-
trol of the planner, but the actual instantiation and possible
execution of such actions depend on the specific problem.
Moreover, problem descriptions usually include structure-
related knowledge, that usually does not change much be-
tween problems from the same domain. This is the case,
for instance, for patience card games. The dynamic side
of games is very similar: cards can be stacked, dealt or
moved. Very few differences can then be spotted in the do-
main models of each patience games. What makes a great
difference, thus differentiating patience games, is mainly the
initial setup –in terms of number of columns, presence and
number of reserve cells, distribution of cards, etc.– and the
goal that has to be reached.

There has been some recent work in General Game Play-
ing (GGP) in the direction of learning game specific infor-
mation and formal models of the rules of games using as
input only example sequences of the moves made in playing
those games. Kowalski and Szykula (2016) present a system
that learns the interactions between the pieces in the board
games by constructing the rules of games and the formal do-
main model to utilise those rules. In developing the system,
the authors combined the two techniques for domain-model
acquisition, one rooted in game playing and the other in au-
tonomous planning.

In this paper we exploit state-of-the-art tools for auto-
mated domain model generation for creating domain mod-
els corresponding to a number of solitaires, and extracting
the underlying game static constraints (e.g., the initial setup,
stacking rules, etc.) described both in domain and problem
models. LOCM (Cresswell, McCluskey, & West 2013) has
been selected for generating domain models because it re-
quires a minimal amount of information for generating do-
main models: it only needs a set of plan traces. We also
use ASCoL (Jilani et al. 2015), which can effectively learn
static relations missing in automatically generated domain
models. Another system to support domain learning sys-
tems is LOP (Gregory & Cresswell 2015) that learns static
knowledge. LOP exploits optimal goal-oriented plan traces
in input and compares them with the optimal plans found by
using the improved domain model. If the latter are shorter,



Algorithm 1 Learning process
1: procedure LEARN(P )
2: D,F ,I = LOCM(P )
3: DE ,s = ASCoL(P ,D)
4: r = identifyPatienceRules(s,I ,DE)
5: end procedure

Figure 1: An example of a Plan (P) from the Freecell Do-
main model.

then some static relations are deemed to be missing. We
did not use LOP system as it strongly depends on the avail-
ability of optimal plans which are usually hard to obtain for
non-trivially solvable problems.

Skill-based solitaire card games, especially Freecell, have
long been a subject of study in artificial intelligence liter-
ature. In the AI planning context, almost all works fo-
cused on Freecell. Some interesting works include (Rus-
sell et al. 2003; Hoffmann, Porteous, & Sebastia 2004;
Elyasaf, Hauptman, & Sipper 2011; Paul & Helmert 2016).

The contribution of our work is twofold. On the one
hand, we investigate the ability of state-of-the-art tools in
extracting useful static constraints and information that are
required for a complete understanding of the domain (or
patience game, in this case). This gives insights into the
strengths and weaknesses of the approaches –with particu-
lar regards to their ability into extracting problem-specific
knowledge, highlighting lessons learned regarding sensitiv-
ity to observed traces. On the other hand, we observe that
patience games provide a number of challenging and inter-
esting benchmarks, that can be fruitfully exploited for test-
ing and comparing planning techniques and engines.

Learning Framework
The exploited learning framework is described in Algorithm
1. For LOCM, the only required input is a pool of correct
sequences of actions P of card playing. i.e. a sequence of N
actions in order of occurrence, which all have the form:

Ai(Oi1, ..., Oij) for i = 1, ..., N

where A is the action name and O is the affected action’s
object name. It should be noted that, given the high sim-
ilarity between patience card games, action sequences can
be easily taken by observing human players or from large
database of solutions to existing games online (e.g., free-
cellgamesolutions.com). Given plan traces P , LOCM auto-
matically generates a domain model D. Moreover, LOCM
provides a finite state machine F for each identified type of
object in the domain and –for each plan trace– part of the

initial and goal state descriptions I . ASCoL receives as in-
put part of the knowledge extracted by LOCM, in order to
improve the domain model D with preconditions involving
static facts: such preconditions are not identified by LOCM.
For extracting static constraints, ASCoL analyses relations
between objects taken from the provided plan traces. Such
relations (s) represent part of the knowledge from the prob-
lem description.

Considering solitaire patience games, static constraints
here are analogous to static game rules e.g. the fixed stack-
ing relationships between cards keeping the concept of suit
(that generally alternate between red and black in columns
and remains the same in home cells) and rank (that gener-
ally is in descending order in columns and in ascending or-
der in home cells) intact. Also in most solitaire games, the
knowledge about available free cells and empty columns act
as a resource and plays a vital role in game winning or goal
achievement.

As evidence of the concept of this learning, we include
the learning of an operator as a running example from
Freecell domain. Figure 2 shows the encoding of the
homefromfreecell operator in the benchmark domain
and the figure 3 shows the operator learnt by LOCM. This
definition of an operator in LOCM is formed by OLHE (Ob-
ject Life History Editor) process from parameterised state
machine’s transitions that are induced as a step of LOCM
algorithm. Figure 4 shows the Induced FSMs correspond-
ing to action homefromfreecell, for card, num and
suit objects. LOCM creates one predicate corresponding
to one state in each FSM. To understand the induced do-
main model by LOCM, the automatically generated state
labels must be converted to a sensible form before gen-
eral use. The predicates card state6, card state1, card state0
and card state7 can be understood as incell, home, suit
and in home cell and covered respectively. Based on cer-
tain assumptions and hypothesis, authors have defined the
LOCM algorithm in much detail in the paper (Cresswell,
McCluskey, & West 2013).

It can be observed that LOCM does not learn
the background knowledge about objects i.e.
the successor(?vcard ?vhomecard) and
successor(?ncells ?cells) predicates, the
adjacency between particular cards and the alternating
sequence of black and red cards. ASCoL exploits graph
analysis which has been designed to identify static relations
automatically from input plan traces P . Figure 5 shows the
linear graphs ASCoL identified for the two missing static
relations successor(?vcard ?vhomecard) and
successor(?ncells ?cells). Figure 6 represents
the enhanced version of Figure 3 homefromfreecell
operator by ASCoL. Complete details on ASCoL graph
analysis can be found in (Jilani et al. 2015).

In order to verify validity of results, the output of the
learning framework was compared against manually writ-
ten domains that had been written by knowledge engineers
(Freecell domain taken from IPC3) and domain developers
by hand. Here, we take manually written domains as bench-
mark for the sake of comparison. Following the footprints
of LOCM evaluation, we checked to see if both learnt and



Figure 2: An example of the homefromfreecell oper-
ator from the Freecell Domain model used in IPC3.

manually-generated results are equivalent. For this, a type of
equivalence was introduced between the two domains, one
for the known manually written benchmarks (DBenchmark)
and the other for the results of learning framework (DLF ).
DBenchmark and DLF are equivalent iff the operator set
and the initial states in the directed graphs for their reach-
able state spaces are isomorphic. We evaluated the output
based on Equivalence and Adequacy of the generated do-
main model by using the concept of Achiever and Clobberer
(Chrpa, Vallati, & McCluskey ) for analysing planning op-
erator schema. We also validate the structure of the domain
model manually through observation of finite state machines
generated by LOCM system.

Finally, the extended domain model DE , the initial and
goal states generated by LOCM and the relations s are anal-
ysed in order to extract useful knowledge about the struc-
ture of problems, static constraints in patience game and
goals that need to be achieved. identifyPatienceRules
method compares initial and goal states provided by LOCM
and identifies elements that do not change –given a con-
fidence threshold–. Specifically, while the initial distribu-
tion of cards vary significantly, the number of columns and
reserves does not, as well as goal states. This can pro-
vide some important insights into the structure of problems.
Moreover, relations s provide information about predicates
and facts that need to be declared in the initial state.

Assumptions
Here we focus on three patience games: Freecell, Klondike
Solitaire and Bristol. These patience games share the pres-
ence of reserve cells to hold cards during play, founda-

Figure 3: An example of a homefromfreecell operator
induced by LOCM.

Figure 4: Induced FSMs by LOCM for operator
homefromfreecell, for card, num and suit objects.

tion/home cells for all four suits and multiple columns for
the initial card deal and the subsequent movement of cards
to achieve winning conditions.

Starting from an initial state with a standard 52-card deck,
and a random configuration of cards across a number of
columns, the user can move cards in a specified order onto
four home cells following typical card stacking constraints
that are game-specific, and using a number of free/reserve
cells and empty columns as a resource. The static game
constraints encoded in preconditions of actions in domain
model and initial states of problem models are the allowed
sequential arrangement of cards in the free cells, the home
cells (played in ascending rank order) and among the card
columns (played in descending rank order). Home cells
build four stacks of four suits starting from ace to king.

In order to generate the plans required as input by the ex-
ploited learning framework, we manually developed two do-
main models, and corresponding problem instances. This
also provide a way for validating and comparing the auto-
matically generated models.

In existing PDDL encodings of card games –i.e., the



Figure 5: Linear Graphs by ASCoL for static re-
lations successor(?vcard ?vhomecard) and
successor(?ncells ?cells).

Figure 6: homefromfreecell operator induced by
LOCM and ASCoL.

well-known Freecell and Thoughtful domains, considered in
IPCs– Can-Stack and Successor constraints are used. The
latter provides an ordering on the value of cards, and is usu-
ally considered for specifying constraints about the order of
cards in home cells. The Can-Stack(card1 card2) constraint
is used to control the movement of cards in columns; e.g.,
card1 must be played in descending order, and alternating
colours to card2 In our encoding, we decomposed the Can-
stack constraint into two sub-constraints i.e. Rank-successor
(rank1 rank2) and Compatible (suit1 suit2), as some games
will require red and black cards to be alternated, but oth-
ers may require cards to be built in suit, or may ignore suit
altogether.

Considered games are briefly described in the following.

1. Freecell: We used the IPC created version of Freecell do-
main. In this game all the 52 cards are already available
and distributed among eight columns. They can be moved
between columns following specific stack rules involving
suit and rank; reserve cells can be used for moving cards.
Reserve cells are represented by four empty free cells at
the start of the game.

2. Klondike Solitaire: We manually wrote this domain. This
domain represents one of the most popular solitaire card
games. Klondike does not use reserve cells, it deals cards
into 7 columns. In the initial configuration 28 cards are
dealt in seven columns, containing 1, 2, 3, 4, 5, 6 and

7 cards respectively, keeping 24 cards in the deal stack.
Only the top seven cards in columns are face up initially.

3. Bristol: In this game cards can be stacked regardless of
suit both in home cells and columns. Three cards are dealt
to each column with the remaining cards staying in the
deal stack. Cards are dealt from this stack onto the three
reserve cells, one card each per deal. The top cards in
three reserve cells are available to play. Reserve cells can
only be filled from the deal stack. We manually wrote this
domain after taking inspiration from already existing IPC
Freecell and Thoughtful domains .

Empirical Analysis
The aim of this experimental analysis is to assess the ability
of the LOCM + ASCoL technique to combine and identify
a complete domain model that is usable by solvers to play
card games on its own.

The limitation of LOCM is that it does not detect back-
ground static facts of the domain objects e.g. the adjacency
between specific series of objects, the alternating trend, the
stacking sequence, the map of the travailing locations and
the decreasing or increasing levels of objects. Considering
solitaire patience games, static constraints here are analo-
gous to static game rules. In order to extract static relations
for extending LOCM-generated domain models, ASCoL ex-
ploits the same input plan traces to learn static facts.

Three patience game domain models have been consid-
ered, Freecell, Klondike Solitaires and Bristol. These do-
mains have been selected because they are encoded using
same modelling strategy and contain partly different design
of game layout but common game rules. Many other pa-
tience games share the same general playing rules.

Complexity of Input
Plan traces required by the learning framework have been
generated by running the FF planner (Hoffmann 2003) on
an number of planning instances from the considered three
patience games. FF has been selected due to its ability in
solving instances quickly.

The complexity of training plans increases with the com-
plexity of problems used to generate them. Mainly it de-
pends on following two factors:

1. The high card rank included in problem goals: Including
cards of higher ranks to achieve the goals requires more
moves and makes it complex exponentially, as the home
cells build four stacks of four suits starting from ace up to
king.

2. The initial configuration of cards: Initial random configu-
ration of cards matters more in some solitaire games than
others e.g. In Bristol solitaires, the restriction on reusing
empty columns makes the initial configuration the decid-
ing factor in achieving the goal. Less complex configura-
tions include low ranked cards near to top of column piles
to easily work towards achieving the goal as the home
cells build stacks of four suits starting from low rank up
to higher ranks.



For Freecell and Klondike, we included problem in-
stances starting from the goal to have all four home piles
filled till rank 8, to having complete suit of 52 cards in home
cells. For Bristol, planner exceed the memory limit and run
out of time for problems with goal above rank 9.

The convergence point of LOCM is the number of plan
traces of some average length to induce the complete do-
main model after which it doesn’t undergo any changes with
increase in number of plan traces. Freecell, Klondike and
Bristol required 4, 6 and 10 plan traces with 58, 45 and 28
average actions per plan, respectively. ASCoL generally re-
quires a larger amount of input example data (N ′) to con-
verge than LOCM (N ) as it relies on the generation of di-
rected graphs. The more complete the graphs are, the more
accurate the analysis is, thus the largest number of static re-
lations can be identified. We can call the input set of ASCoL
the super-set of the input set for LOCM (N ⊆ N ′).

Freecell, Klondike and Bristol required 327, 409 and 376
milliseconds to learn static game constraints by ASCoL. AS-
CoL requires larger number of plans for some operators that
are rarely used, or when the number of arguments of the
same type are high, per operator. Klondike and Bristol spent
more time for identifying static preconditions. This is due to
the reason that many operators require more objects of same
type in both of these domains than Freecell.

Complexity of Card Games Modelling
What makes card games modelling complex to extract a us-
able domain model is the large set of operators that each
has different effects. e.g To send a card to home cell there
must at-least be 3 + n actions. One, to send card from the
top of the pile of cards in columns, where in the effects of
the action the card under it must become clear now. Sec-
ond, to send the last card of the pile in column to the home
cell, where the effects of the action would leave the column
empty. Third, to send a card to the home cell straight from
the reserve cells. Here, n indicate the variable that changes
according to game layout. e.g in Bristol, to send required
card to home it first needs deal action to populate reserve
cells and then homefromreserve action to fulfil the sub-
goal. Beside this, all game constraints needs mentioning in
problem definition.

Performance of Automatic Models Generation
Although LOCM generated domain model is not under-
standable due to predicates with automatically generated
unique labels, we evaluated the output based on Equivalence
and Adequacy of the generated domain model. For evalua-
tion we examined the output finite state machines (FSMs)
and compared the transition with the actual domain model.

There are a number of flaws that LOCM cannot handle.
The structural difference between induced and actual do-
mains is that the former contains extra states for the cards
in home cells that are covered by another card. LOCM also
generates some planner oriented knowledge including ini-
tial and goal states corresponding to each input plan. These
initial and goal states are captured from the generated dy-
namic finite state machines (FSMs), thus these do not in-
clude the static states required for complete definition of

a problem. In other words, LOCM uses generated actions
to specify states e.g. in cards game, initial states of the
cards are obtained by applying deal (sendtocolumn or
sendtoemptycolumn) actions on cards and considering
transitions ending of each object as its initial state.

Similarly, by specifying all actions that send cards to
home cell, goal states are achieved but this level of prob-
lem specification is of limited use provided the plan traces
already exist for those problem instances. Also the output
domain model and problem instances are inadequate due to
the absence of static preconditions which are analogous to
game rules in card domains.

Running ASCoL on the same set of plan traces learns 90%
of problem specific static game constraints i.e. static knowl-
edge to enhance LOCM output, including the knowledge of
stacking cards according to ranks in home and column piles
and the knowledge about number of available free cells and
empty columns which is vital in game winning. By combin-
ing this static information along with the LOCM generated
planner oriented knowledge including initial and goal states,
our learning framework can generate the problem instances
along with the benchmark domain models. Thus it is possi-
ble to state a planning task independently of the knowledge
of state representation.

The remaining 10% of static facts are those for which AS-
CoL generates a cyclic graph (work in progress). ASCoL
generates static facts for such facts but require manual in-
vestigation of the graph for now. This includes the suit com-
patibility of cards in column piles.

We found the combined results of LOCM + ASCoL for
patience games domain model learning, to be adequate for
use by solvers to solve low to medium complexity problems.
Low to medium complexity problems involves the problems
that have less complex configurations include low ranked
cards near to top of column piles to easily work towards
achieving the goal as the home cells build stacks of four
suits starting from low rank up to higher ranks. A factor
that requires further work is that the ASCoL system gener-
ates game constraints that are generally based on a complete
set of input plan traces, while the LOCM generated problem
instances are specific to each input plan. To manually fix this
problem needs a human designer to allow only the required
subset of constraints according to the objects involved in the
problem instance (or input plan). Beside, as mentioned by
LOCM authors, to use the action schema model for plan-
ning, it is not understandable due to predicates with auto-
matically generated unique labels. To understand the com-
monly generated problem instances, the automatically gen-
erated state labels must be converted to a sensible form be-
fore general use.

Performance of State-of-the-Art Planners
Patience card games are considered some of the most dif-
ficult domains in classical planning and the evidence is the
poor performance of most of the general purpose planners
on the domain. The critical and the most complex situation
while solving Patience card games problems is the deadlock
situation. It is a situation when one particular action, say
A, cannot be executed because it requires action B as pre-



Domains FF Lpg Mp
Cov Time Cov Time Cov Time

Freecell (6) 100 58 100 1252 11 4
Klondike (8) 100 69 100 1442 0 –
Bristol (8) 100 76 0 – 17 14

Table 1: Percentage of solved instances (Cov) and average
CPU-time (seconds) of FF, Lpg and Madagascar on bench-
marks from considered patience games. Total number of in-
stances shown between brackets.

requisite, which in turn requires action A to occur and the
generalisation of such situations leads to a waiting condition.
The deadlocks can be represented as cycles of the graph
when the state space of the game is characterised by directed
graph (Paul & Helmert 2016). A number of methodolo-
gies have been designed that exploit graph analysis in or-
der to investigate the complexity of the problems (Gupta &
Nau 1992; Helmert 2003) and planning heuristics (Helmert
2004).

We empirically evaluated the complexity of the
previously-introduced patience games, in order to check
their exploitability as benchmarks for comparing planners’
performance. Here we consider FF (Hoffmann 2003), Lpg
(Gerevini, Saetti, & Serina 2003), Madagascar (Rintanen
2014) (hereinafter Mp) and Yahsp3 (Vidal 2014). All of
them took part in IPC, with notable results. Specifically,
Yahsp3 was the winner of the Agile track of IPC 2014,
which focused on runtime, while Madagascar has been
awarded as the runner-up (Vallati et al. 2015). Moreover FF
and Lpg, due to their good performance and to the fact that
they are easy to use, are currently exploited in a number
of real-world planning applications. Planners have been
run on a set of instances from the different patience games
using the benchmark and hand written domain models.
The complexity of the problem instances increases due to
initial arrangement and number of cards included in the
game setup. We designed the instances starting from low
complexity by including only 32 cards (all four suits till
rank 8) and went up-till 40 cards (up-till rank 10) to be
placed in the four home piles to achieve the goal conditions.
Experiments were run on 3.0 Ghz machine CPU with 4GB
of RAM. Cutoff time was 1800 CPU-time seconds

Table 1 shows the performance of FF, Lpg and Mp on in-
stances from the considered patience games in terms of per-
centage of solved problems and CPU-time seconds. Yahsp3
results are not shown since the planner did not solve any
considered instance. Interestingly, we observe that most re-
cent planners, i.e. Mp and Yahsp3, perform less well than
FF and Lpg in terms of both CPU-time and coverage. None
of the considered planners was able to solve problems with
a larger number of cards. Most of the failures are due to the
planners running out of time, while a few are due to memory
limits being exceeded.

In terms of quality, solutions look very similar for all the
considered solvers. Number of actions ranges between tens
and few hundreds.

Lessons Learnt
Many domain acquisition systems use other inputs in addi-
tion to plan traces to learn the output domain model. Empir-
ical analysis suggests that only plan traces can be an inter-
esting test bed to generate a domain model that is complete
or near to complete. We learnt that plan traces to act as a
fruitful source of knowledge, should not include only sin-
gle instance of static types in operator parameters, rather it
should be in the form of pairs to learn static factors effec-
tively. Specially, for our framework one of the assumptions
of ASCoL is based on the condition of at-least two objects
of same type to allow analysis of totally ordered graphs.

Characteristic differences exist between goal oriented in-
put plan traces and randomly generated ones in terms of
learning. Goal oriented (GO) solutions are generally expen-
sive in that a tool or a planner is needed to generate a large
enough number of correct plans to be used by the system, but
it can also provide useful heuristic information. Random-
walk (RW) generators can be used to artificially include an
almost equal spread of all operators in plan traces and pro-
duce large sequences. However, problems can occur from
this approach as it can fail to achieve goals due to its ran-
dom execution of actions.

In accordance with above mentioned facts and our empir-
ical analysis, LOCM supports GO solutions better than RW
as GO allows it to produce better and more complete finite
state machines (FSMs) for involved objects while most of
FSMs generated with RW solutions are incomplete as many
operators appear rarely (or not at all) in the randomly gener-
ated plan traces. Also because random walks makes it nearly
impossible to identify goal states and constraints controlling
home cells. In general, for ASCoL, no strict balance exist
between the number of plans, or actions per plan, required
for the number of operators or number of static facts in the
domain. Rather, it depends on the types of static precon-
dition and the frequency of actions in plan traces exploited
by the domain. Specifically card games facts require a large
set of goal-oriented plan traces in order to learn a complete
graph; as one missing edge can prevent linearity in the out-
put and so leads to a partially ordered graph with no utility.

Conclusion and Future Work
In this paper we envision the exploitation of solitaire card
games as a set of interesting benchmarks with automatic
generation of these benchmarks from the set of input train-
ing data only with no background information. We exploit
state-of-the art tools for automated domain model generation
–LOCM and ASCoL– for extracting domain models corre-
sponding to a number of solitaires, and finding the underly-
ing patience game constraints which are mainly described in
the problem definition (e.g., the initial setup, stacking rules
etc.).

The work is at an early stage, but we still have obtained
useful results and can see many pathways for future work.
We want to improve ASCoL to produce static game con-
straints for a specific range of objects in a particular problem
instance without manual handling. We also plan to identify
domain models for other games including broad games and



other logic-based combinatorial number placement puzzle
games. As a comparative study, we also want to try to learn
these domains using other domain learning systems men-
tioned in the related work.

References
Chrpa, L.; Vallati, M.; and McCluskey, T. L. Determining
linearity of optimal plans by operator schema analysis. In
SARA.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M.
2013. Acquiring planning domain models using locm. The
Knowledge Engineering Review 28(02):195–213.
Elyasaf, A.; Hauptman, A.; and Sipper, M. 2011. Ga-
freecell: Evolving solvers for the game of freecell. In Pro-
ceedings of the 13th annual conference on Genetic and evo-
lutionary computation, 1931–1938. ACM.
Gerevini, A. E.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG. Journal of Artificial Intelligence Research (JAIR)
20:239–290.
Gregory, P., and Cresswell, S. 2015. Domain model acqui-
sition in the presence of static relations in the lop system.
In ICAPS, 97–105.
Gupta, N., and Nau, D. S. 1992. On the complexity of
blocks-world planning. Artificial Intelligence 56(2):223–
254.
Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. Artificial Intelligence
143(2):219–262.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, volume 4, 161–170.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. J. Artif. Intell. Res.(JAIR) 22:215–
278.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state vari-
ables. Journal Artificial Intelligence Research (JAIR)
20:291–341.
Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati,
M. 2014. Automated Knowledge Engineering Tools
in Planning: State-of-the-art and Future Challenges. In
The Knowledge Engineering for Planning and Scheduling
workshop (KEPS).
Jilani, R.; Crampton, A.; Kitchin, D.; and Vallati, M. 2015.
Ascol: a tool for improving automatic planning domain
model acquisition. In AI* IA 2015, Advances in Artificial
Intelligence. 438–451.
Kowalski, J., and Szykuła, M. 2016. Evolving chess-like
games using relative algorithm performance profiles. In
European Conference on the Applications of Evolutionary
Computation, 574–589. Springer.
Paul, G., and Helmert, M. 2016. Optimal solitaire game
solutions using a search and deadlock analysis. Heuris-
tics and Search for Domain-independent Planning (HS-
DIP) 52.

Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012.
Inspect, edit and debug PDDL documents: Simply and ef-
ficiently with PDDL studio. System Demonstrations and
Exhibits at ICAPS 15–18.
Rintanen, J. 2014. Madagascar: Scalable planning with
SAT. In Proceedings of the 8th International Planning
Competition (IPC-2014).
Russell, S. J.; Norvig, P.; Canny, J. F.; Malik, J. M.; and
Edwards, D. D. 2003. Artificial intelligence: a modern
approach, volume 2. Prentice hall Upper Saddle River.
Vallati, M.; Chrpa, L.; Grzes, M.; McCluskey, T. L.;
Roberts, M.; and Sanner, S. 2015. The 2014 international
planning competition: Progress and trends. AI Magazine
36(3):90–98.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva,
J. R. 2007. itSIMPLE 2.0: An Integrated Tool for De-
signing Planning Domains. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 336–343.
Vidal, V. 2014. Yahsp3 and yahsp3-mt in the 8th inter-
national planning competition. In Proceedings of the 8th
International Planning Competition (IPC-2014).
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action
models from plan examples using weighted max-sat. Arti-
ficial Intelligence 171(2):107–143.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learn-
ing complex action models with quantifiers and logical im-
plications. Artificial Intelligence 174(18):1540–1569.
Zhuo, H. H.; Yang, Q.; Pan, R.; and Li, L. 2011.
Cross-domain action-model acquisition for planning via
web search. In ICAPS.


