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Abstract
This paper is an experience report on the results of a collab-
orative one year feasibility study called “SimplyfAI” funded
by Innovate UK. This concerned sourcing and enriching ur-
ban traffic data, and using this data as inputs to a system to
generate urban traffic strategies in order (primarily) to im-
prove air quality. This paper reports on the development sur-
rounding the AI planning component of that work: the engi-
neering and configuration issues that were found in this appli-
cation. It discusses a range of issues and lessons we learned
through the experience of collaborating with end users and
technology developers.

Introduction
Conventional road traffic signal management techniques
(e.g. traffic-responsive systems such as SCOOT (Taale,
Fransen, and Dibbits 1998) or fixed time light changes opti-
mised using historical data) work reasonably well in normal
or expected conditions. In exceptional or unexpected con-
ditions, however, these established methods work less well.
In these cases Transport Operators may struggle to find a
strategy tailored to solve the unexpected situation. Creating
such strategies is a manual task that may take several days
or weeks, and is therefore infeasible to be done in real-time.

This paper describes an attempt to utilise AI planning
technology in the regional management of urban road traffic
flows. The long term aim of the work is to provide a tool
for urban transport operators that can generate, in real time,
strategies to deal with exceptional or emergency situations.
For example, transport operators may want to reduce traffic
concentrations in a targeted urban area to ameliorate effects
of predicted road traffic pollution; or optimise the flow of
saturated road links due to an emergency road closure; or
produce a strategy to deal with a forthcoming complex situ-
ation (e.g. optimising the light timings to deal with the com-
bination of a concert, a football match and some emergency
roadworks).

The work reported was carried out during 2016, and
formed one of the deliverables of an Innovate/NERC -
funded 1 year feasibility study1. We choose one traffic re-

1The grant was funded from the call ”Solving Urban Challenges
with Data”, with a consortium consisting of The University of Hud-
dersfield, KAMfutures, InfoHub, British Telecom (BT) and Trans-
port for Greater Manchester (TfGM)

gion for testing the feasibility - a very busy urban area of
Salford, Greater Manchester - where real time and historical
data sources could be readily obtained. Though, in the end,
we had to focus on a relatively small road network within
this region of Salford, the project demonstrated the effec-
tiveness of the auto-generation of goal-directed strategies.
The planner used in the project was the well known domain
independent planner UPMurphi (Della Penna et al. 2009),
which inputs models in PDDL+ (Fox and Long 2006). To
produce a working executable of UPMurphi, we had to per-
form several cycles of iterations over the engineering of the
PDDL+ models.

The quality of the strategies output from the planner was
evaluated firstly by hand inspecting the strategies to check
that they were “sensible”. In this case the strategies were
inspected to check they embodied common sense plans in
them. Secondly, their effect was compared against opti-
mised strategies derived from historical data by simulating
their execution using both the AIMSUN micro-modelling
software2, and the off-the-shelf SUMO (Krajzewicz et al.
2012) micro-modelling software. In each case members
of the consortium compared the results of simulations us-
ing both automated planning generated strategies, and opti-
mised strategies derived from historical data. In both these
simulators, run by different members of the consortium, the
planner-generated strategies produced sufficient savings to
convince the consortium to aim to adopt AI planning within
a product for use generally in busy urban areas. On the other
hand, the study highlighted several challenges to be over-
come before a fielded implementation could be achieved, in
particular the ever present problem of scale-up.

Context
This section provides some background on urban transport,
and some key advances in configuring planning applications
to work in the urban traffic management domain.

Urban Traffic Management (UTM)
Over the years, as traveller safety was built into road traf-
fic infrastructure (e.g. using intergreen delays in traffic sig-
nals), road traffic management in urban areas was left with

2https://www.aimsun.com/



one other goal: to minimise delay to the traveller. Trans-
port support infrastructure –particularly traffic signals– are
nowadays optimised to meet this one goal, and in normal
circumstances they tend to work reasonably well. There is a
need, however, for traffic control support systems to help in
the management of traffic by being able to achieve more fo-
cussed or detailed goals than simply minimising delay. For
example, we may want to prioritize air quality goals explic-
itly: this is pivotal importance in congested urban areas. At
the same time, modern traffic management has the oppor-
tunity to take advantage of the huge amount of sensor data
available. This sensor data provides real time information on
the state of traffic in a network. In particular, the data could
alert a Transport Operator to the fact that a region is pre-
dicted to exceed an air quality limit in the near future. Gen-
erating a detailed strategy of interventions (such as changes
to traffic signal timings over a period of time) to avoid this in
real time is considered to be beyond the capacity of human
operators.

Hence there is a need to be able to produce strategies in
real time which deal with abnormal or unexpected events
(such as capacity losses through road closures). These cause
huge delays and decreased air quality because of excessive
congestion and stationary traffic. Looking to the future,
there is a need for technology which has the capability of
taking into account a range of controls regionally: not just
traditional traffic lights, but real-time support in forming
strategies combining traffic signals and other controls e.g.
variable speed limits, variable message signs and extra lane
introduction.

AI Planning applied to UTM
While there are many examples of the application of gen-
eral AI techniques to road traffic monitoring and manage-
ment (Various 2007; Miles 2006), the application of AI Plan-
ning to help in the management of road traffic is fairly novel
(McCluskey and Vallati 2014; Cenamor et al. 2014). The
most mature work coming out of the ICAPS community
appears to be SURTRAC, a distributed scheduling system
which controls traffic signals in urban areas (Xie, Smith, and
Barlow 2012). Run by a schedule-driven intersection control
algorithm, the system is intended for use in grid-based town
centres. It is currently being trialled in Pittsburgh, USA,
with its distributed approach suggestion better scale-up but
less flexibility than a centralised AI planner.

One of the technologies seen as important in the EU’s
COST Action 1102 “Autonomic Road Transport Support
Systems” (ARTS) (McCluskey et al. 2016) was AI Plan-
ning, and through work in that Network a particular role for
planning emerged: to help manage operations during excep-
tional events (Jimoh et al. 2013). This work, and subsequent
work (Chrpa et al. 2015), took a microsimulation approach
to planning, meaning that vehicles were specified individu-
ally in the domain and problem model, and durative actions
were used to describe the movement of traffic (at a micro-
scopic level) between junctions. While this line of work
looked promising, the problem of scaling up to larger urban
regions (involving thousands of vehicles) was still beyond
reach.

It was with this background that the SimplyfAI pro-
posal was formed, under the assumption that, once we had
achieved automation of interpretation of a wide range of sen-
sor data, some general planning technology would be avail-
able to generate strategies to help Transport Operators deal
with excessive traffic and consequent extra pollution in ex-
ceptional situations. Whether this would be feasible was
still unclear when the consortium was formed. Two achieve-
ments in 2015, however, both initiated by the COST ARTS
Network, gave us more confidence that AI planning would
scale sufficiently3.

The first work (chronologically) was initiated by Matija
Gulic while on a COST-funded short term scientific mission
(STSM) visit to the University Carlos III of Madrid, with
hosts Ricardo Olivares and Daniel Borrajo (Gulić, Olivares,
and Borrajo 2016). This work involved joining together a
SUMO simulator (Krajzewicz et al. 2012) to an AI Planner,
via a monitoring and execution module called the “Intelli-
gent Autonomic System”. The planning representation was
done using PDDL 2.1 (Fox and Long 2003), with no explicit
representation of vehicles in the planner. Instead, traffic con-
centrations on road links are represented by relative descrip-
tors, such as very-low, low, medium and high. Light change
actions are enumerated to cover all the ways that a particular
configuration would effect the arrangements of road links:
for example, an action to change the density of vehicles on
a road link from medium to low, by green lighting ways out
of that road link, is given in (Gulić, Olivares, and Borrajo
2016). By abstracting away from explicit counts of vehicles,
the system can deal with regions containing thousands of ve-
hicles. In their work vehicles are not explicitly modelled, but
considered as density. Also, the close coupling with SUMO
demonstrates the use of monitoring and replanning very ef-
fectively, and allows exhaustive testing of the system under
sets of disturbances (vehicle influx, road closures).

The second was initiated by another COST STSM, the
visit of Mauro Vallati to the Delft University of Technol-
ogy, where he worked with Bart De Schutter, member of
the Delft Centre for Systems and Control. In that research
centre, modelling traffic “flows” and analysing them using
Model Predictive Control, was a well established practice
(Lin 2011; van den Berg et al. 2004). They approached
Daniele Magazzeni, a co-author of the AI planning engine
UPMurphi (Della Penna et al. 2009), and started a collabo-
ration which resulted in the encoding of a flow model of ve-
hicles through junctions in PDDL+, and the configuring of
UPMurphi to solve goals (in terms of numbers of vehicles on
road links) by changing traffic signals over a period of time.
With a particular PDDL+ representation and heuristics, they
demonstrated that UPMurphi could solve traffic problems
containing thousands of vehicles, in response to exceptional
conditions (Vallati et al. 2016). They showed the efficacy
of the resulting strategy by comparing its execution with a
“fixed time” plan using SUMO. The largest scenario used

3these two achievements were recognised in October 2015 as
they were joint winners of ”The Second COST ARTS Competition:
Increasing the Resilience of Road Traffic Support Systems by the
Use of Autonomics” https://helios.hud.ac.uk/cost/comp2.php



was a hand simulation of a real problem that had occurred
in Manchester in 2015. There had been an emergency clo-
sure of a link in the inner ring road causing all the traffic to
re-route through the City Centre. The strategy generated by
UPMurphi was shown by SUMO to be approximately twice
as efficient as a fixed time strategy.

A possible advantage in using the continuous PDDL+ -
based approach over the classical PDDL approach was that
the representation contained exact counts of vehicles, and
modelled continuous change of vehicle numbers on road
links during green times. In other words, the use of PDDL+
was semantically closer to the problem conceptualisation
than using a discrete PDDL. than On the other hand, there
are very few PDDL+ planners apart from UPMurphi, and the
tests of the PDDL+ method generated strategies in SUMO
did not involve monitoring and re-planning. In the end, how-
ever, the use of UPMurphi appeared to be the best choice for
SimplyfAI, given the accuracy of the continuous models it
uses, and the demonstration of its potential to scale up.

The Application
The initial focus of the one-year SimplyfAI project (Septem-
ber 2015 - spring 2016) concentrated on the Semantic En-
richment of the data in a collaboration involving BT and
members of the PARK research group at Huddersfield. The
raw data was taken from transport and environment sources
and integrated into a BT “Data Hub”, using semantic tech-
nologies such as the universal RDF triple format and a data
ontology. The method was to take real time feeds and pro-
cess them until they produced logical facts about a traffic
scenario, which could serve at part of an initial sate of a AI
planner. Figure 1 indicates the anticipated architecture of
the final system, built around a sense-control loop typical of
autonomous systems. To work towards that, however, the
data enrichment and strategy generation have to be tested in
a real scenario, hence rather than taking in real-time current
data, we adjusted the system so that what would be trans-
lated into the current state would be from historical data.
This would allow checking the performance of the system
against the observed performance from historical data, in
order to assess its feasibility, before real trials of the sys-
tem in a future project. Also, although environmental data
was gathered into the data hub, for simplicity we decided to
concentrate on the targeted reduction of congestion, and in-
vestigate effects on air quality after that had been achieved.

The Main Data Sources
As a basis for exploring exceptional or emergency traf-
fic conditions, we chose to use historically averaged traffic
data from a time/day when the road links were most con-
gested: morning rush hour, between 8am and 9am on a non-
holiday weekday. The main data source was the “Saturn”
system4. From this and other Transport Engineer documen-
tation records our partners BT and TfGM extracted, for the
Salford region:

1. the topology of the road links (a link is a uni-directional
part of a road between two junctions);
4http://www.saturnsoftware.co.uk/saturnmanual

2. the vehicle capacity of all the road links (in numbers of
“passenger car units” –pcu– which takes into account the
differing size of vehicles) ;

3. the average traffic flows between links in number of pcu’s
per second. This number represented the number of ve-
hicles flowing through a particular junction at a certain
time of day, when the corresponding traffic signal phase
is green. A special case of this were flows in and out of
boundary junctions.

4. the traffic signal position, stages of signals, minimum and
maximum time that a signal stage can be set for;

5. inter-green timings between each of the stages of the sig-
nals,

6. the data at a certain instance that the plan is expected to
start from: number of vehicles on each link, and the set-
tings of each light stage.

These data items made up the “initial state” of a problem
file in planning terms. The “goal” language of the planner
is what the actions in the domain model can effect - in this
case the goals are made up of numerical expressions denot-
ing predicates on the occupancy levels of road links.

Initial Trials
As is the case in fielded trials, as academics we had no over-
all control over many of the system parameters: in this case
the region chosen, the nature of the data feeds and the vali-
dation of the end result was largely in the hands of the rest of
the consortium. After the data describing an initial region of
Salford was used to populate a PDDL+ initial state, UPMur-
phi was initiated with a simple test goal, and using a similar
configuration to our previously published earlier work(Val-
lati et al. 2016). The initial region contained over 200 road
links, 70 junctions, and over 300 vehicle flows. Whilst the
initial region contained a similar number of vehicles to the
hand crafted region that had been used in the successful trials
with with UPMurphi, the number of road links and junctions
used in the earlier work were approximately 10% of the size
of the real scenario. Also, the previous tests used simple
junctions - in the real situation some of the junctions were
complex. Junction 1202 in Figure 2, for example, contains a
cycle of seven stages, where each stage is defined by a dif-
ferent set of flows being active. Hence, we failed to produce
a runnable executive, and it became clear that scenarios with
hundreds of road links and flows were not feasible.

Exacerbating the problem was the fact that our represen-
tation was making certain assumptions that were not realis-
tic –notably we were not modelling the time between con-
secutive light stages (“inter-greens”). The duration of inter-
greens often varied –it could be as much as 25 seconds for
pedestrian crossings across a busy junction, or 0 seconds if
the difference between 2 stages was the green lighting of a
filter arrow.

After several iterations of reducing the region’s size, with-
out success, we attempted to use other AI Planners capable
of inputting a form of PDDL+, such as DReal (Bryce et al.
2015) and Popf (Coles and Coles 2014). Like UPMurphi,
none of these options worked and the reason appeared to be



Figure 1: The Target Architecture

the same: the size of the problem was prohibitive. We also
experimented with larger memories courtesy of the HPC lab
that had been used for IPC 2014 (Vallati et al. 2015). This
provided no significant scale up. The project was at this
stage in its last few weeks, hence another option of changing
to a simpler PDDL representation, and following the work
of Gulic (Gulić, Olivares, and Borrajo 2016), was infeasible
in the time left.

A successful approach
Our final course of action was motivated by the fact that
the project was a feasibility study, and hence showing any
working system with the real data was better than none. We
agreed with the Transport Engineers (Figure 2) a reduced re-
gion to focus on, and adopted a systematic approach, starting
from the simple, to encode it, as follows: (i) create a model
of a very small portion of the network (with only 2 junc-
tions - 1202 and 1349, in figure 2 and 3), and successfully
apply the planner (UPMurphi) to solve a simple goal. This
involved stripping the initial state file provided to us by the
Consortium of all details apart from surrounding area of the
2 junctions. (ii) extend the modelled network until the limits
of the planner were reached. We added new junctions until
the configuration would no longer compile. (iii) re-represent
the model to improve efficiency until the configuration com-
piled. We iterated three times over steps (ii) to (iii). We
concentrated on engineering the PDDL+ model in a very ef-
ficient way, so to minimise the size of groundings produced
by the planner. Focusing on this, we were also able to repre-
sent features that made the model more realistic, such as the
addition of inter-green processes to all the junctions, and the
introduction of processes representing roadworks.

The final modelled region within the Salford district of
Manchester abstracted in Figure 3, and identified by its “Sat-
urn” numbering for junctions. Directed links are identified
by the concatenation of the names of their start and end junc-
tions.

• The model consists of 15 junctions and 34 road links:
7 junctions are controllable junctions (in red) and the 8

Figure 2: The Modelled Area

outer junctions are not modelled as controllable, but act
as a boundary to the region.

• The controllable junctions have 69 controllable flows in
total between them. For instance, junction “1349” has 12
flows, as a vehicle has a choice of 3 exits when entering
from any of the 4 directions.

• Each controllable junction has between 2 and 7 variable-
time light stages. A stage determines which of the flows
through that junction are on and have traffic flowing.
When the set of flows that are on at any instant changes,
this is identified as a stage change.

• Each light stage has a fixed inter-green period between
its end of green and the start of the next green light stage.
The duration of each inter-green is dependent on the stage
and junction, and may be 0 (e.g. when a new stage con-
sists of the previous stage augmented with a filter arrow
turning on) or over 20 seconds (e.g. when a pedestrian
crossing is in use between stages). All flows are consid-
ered off during the inter-green.

• Roadworks could be placed in links as follows: they were
modelled as simple junctions with 2 flows, one off and
one on at any point in time. The intergreen would vary
in size depending on the size of the roadworks. A sim-
ilar model could be used for pedestrian crossings. In
both cases, however, the introduction would add two extra
links and two extra process flows to the total.

• Each boundary road link going into or out of the region
was modelled as a single flow process.

This configuration was at the edge of the limit for the ver-
sion of UPMurphi that we were using –to add roadworks, for
example, we needed to abstract outgoing process flows (this
would abstract any limit on the volume of traffic leaving via
an out link) leading from the region. Where the abstracted
outgoing process flows were not near road links involved in
goals, this had little or no effect on the result.

As a comparison, beside all the extensions needed for
modelling intergreens, in/out-flows, etc., the largest test pre-
sented in (Vallati et al. 2016) involved 9 junctions with be-
tween 2 - 3 light stages, 21 links, and 27 controllable flows.



Figure 3: Modelled Flows and Links in the Salford Area:
Abstracted View

Evaluation
Test Set-Up
We tested the software configuration on a range of classes of
problems (i) to clear a saturated road link as soon as possi-
ble; (ii) to clear several saturated road links as soon as pos-
sible; (iii) to clear a region as soon as possible; and (iv) to
clear a saturated road link with nearby road works.

The idea behind the tests was that, when a problem was
spotted, the normal fixed time strategy would be turned off,
and replaced by the planner-generated strategy. When the
plan achieved the goal, the fixed time strategy would be
turned back on.

All the goals in the tests below have the format:

X1 < N1 & X2 < N2 ...

where Xi is the road link occupancy, and Ni is the desired
occupancy level. Hence, in this context, clearing road links
equates to lowering the occupancy to less than a certain –
predefined– value.

UPMurphi is configurable using two types of heuristics
(as described in (Vallati et al. 2016)). One allows certain
preconditions to be put on action choices, and another spec-
ifies the goal heuristic. In a nutshell, the first heuristic can
provide some guidance about when it is more promising to
apply available actions, while the goal heuristic provides an
estimation of the distance of the current state from a goal
state.

For all the tests with the configuration below, we specified
only the goal heuristic, as the other heuristic did not seem to
play a clear role in the success of the tests. The goal heuristic
amounted to minimising the values of link occupancy in the
goal expression (X1, X2, ...). The tests that completed gen-
erated strategies in less than 30 seconds, on a standard Linux
PC with 2GB of memory. The strategies (plans) were com-
posed of sequences of the instantiation of the single operator
schema in the PDDL+ model: to move on a traffic a signal

stage on to the next stage (respecting intergreen intervals, of
course).

Validation of the strategies generated was carried out in
several steps:

1. Comparison with what would be expected in a “common
sense” solution.

2. Comparison of the effects of the generated strategies with
a fixed strategy which had been optimised for the time
of day by Transport Engineers, using simulation software
(SUMO and AIMSUN). Clearly this fixed strategy was
not generated to deal with the exceptional event, but nev-
ertheless this was assumed a good comparison as that
strategy would be operational when an event occurred.

3. Estimates of savings in terms of tail-pipe emissions.

Results
The first test was in part intended to investigate the con-
nection between the planner’s internal traffic model (based
on flow values), the microsimulation model SUMO be-
ing utilised by Infohub, and the AIMSUN microsimulation
package used by TfGM. We were aware that if the PDDL+
model was correct/sufficiently accurate, then its generated
strategy was guaranteed to solve the goal when executed;
and if the independent simulation tests showed that it does
not, then we would conclude that the planner’s PDDL+
model was not correct or sufficiently accurate.

The first test was inspired by a possible scenario. Assume
there was an extreme vehicle build upon a link (in our case
3966 1202) entering into the region, and the consequent air
quality implications around the link were unacceptable. This
problem would be to clear the link as soon as possible. It is
formalised by assuming the link contains at the initial state
an unexpectedly large number of vehicles (in this case, 300),
and the goal state is to reduce the number to less than 10. In
the test scenarios, this was the only time that we introduced
our own data into the problem formulation, in order to sim-
ulate the occurrence of some exceptional event.

The common sense, approximate strategy to solve this
kind of problem would be as follows. At the junction that
the link leads to (in this case 1202) called the “primary junc-
tion”: give maximum green time to those light stages which
allow vehicles to leave the link, and minimise those stages
which do not, so that the lights will quickly cycle back to
the stages letting out traffic. At the junctions that lead off
from the primary junction (in this case 6013 and 1349): give
at least enough green time to the links leading in from the
primary junction to make sure that the links do not get con-
gested and the increased level of traffic can go through them
smoothly. This strategy may have to be repeated through
junctions further away if necessary. To visually inspect the
quality of the strategy, we checked that it was indeed close
to this common sense solution.

Considering the simulation, the traffic models (AIMSUN
and SUMO) were run independently by the transport author-
ity and InfoHub, respectively, using the planner-output strat-
egy and the optimised strategy. In the first test, after validat-
ing that the simulations were fairly consistent, the reduction
in time to clear a junction using the planner-output strategy



Original Planned
run 1 730 700
run 2 907 800
run 3 733 710
run 4 907 690
run 5 763 700

Table 1: Seconds required for achieving the goal set for the
first test by the fixed strategy, and by the strategy generated
using the proposed planning-based approach. Simulation
has been performed using SUMO. In order to take into ac-
count the variability of traffic flows, five independent runs
have been considered.

was approximately 12% using all the simulations. Table 1
presents the results of SUMO simulation in terms of time
needed for achieving the set goals using the fixed strategy
and the planned strategy. In order to take into account the
variability of traffic (e.g., acceleration, brake, bus stops, etc.)
five independent runs have been executed.

The next batch of tests was run to test the idea of clearing
congestion from several links at the same time, which lead
into the region from a particular direction. For example, 3
links may be in an air quality management zone, and some
exceptional event is forcing traffic into the region from this
direction. A common sense, approximate strategy to solve
these kinds of problems is much more difficult to formulate
than for the single link examples (and hence one of the rea-
sons for automation). Clearly, we need to give a great deal
of green time to let the vehicles out of the links from which
they are emanating. However, given the congestion, other
measures need to be put in place such as keeping other traffic
flows into the region down, and maximising the flows away
from the congestion. This is further complicated by the fact
that, when moving the green light stages from one stage to
another, several flows may be affected (some which might
help and some not). However, a sensible pattern appeared
to exist in the planner-generated strategies, to green light the
correct junctions. Similarly, simulations with the planner-
generated strategy versus the optimised strategy proved that
the former achieved the goal in much less time, at least 20%.
Tests dealing with larger subregions of the targeted region,
and the introduction of traffic lights, produced similar sav-
ings.

Reductions in Tail-pipe emissions
The assumption we use is that clearing a junction (in particu-
lar, reducing it from a level of saturation as quickly as possi-
ble) will lead to a reduction in tail-pipe emissions, and hence
overall pollution. We illustrate this by deriving the expected
emission reduction along the strategic link 3966 1202 of test
1. The potential emission reduction achieved by the strategy
has been calculated, very approximately, as follows:

Emissions Reduction = (Y - X) * (E1 - E2)

where:

• Y = Time taken for the goal to be reached by the normal
strategy provided that the link is congested;

• X = Time taken for the goal to be reached by the planned
strategy provided that the link is congested;

• E1 = The Emission expected given that the model is con-
gested and the normal strategy is being used;

• E2 = The Emission expected given that the model is not
congested and the normal strategy is being used.

E1 and E2 emissions have been provided from a “capac-
ity” case (E1) and a normal case (E2). For both, default fixed
timings were used in the AINSUM model. In the ’normal’
case, SATURN demand for the L3966 1202 link was used.

The overall effect of applying the planner-generated strat-
egy was measured using the TRACI5 impact assessment tool
built into SUMO.

As well as estimating the emissions reduction in the link
referred to in the goal, the emissions reduction from the
overall effect of applying the strategy to the model given that
certain links carry more weight (e.g. those that are in an air
quality management zone) was calculated. The emissions
around the link to be cleared were calculated to drop by 5%,
whereas the overall drop over the region was 2.5%. It must
be stressed that these results are preliminary, however, with
still much more testing to be done.

Discussion
At the end of the project, the consortium was convinced
enough by the results of using AI planning as to want to
pursue field trials and potentially a software product. Using
a domain independent planning engine was, in the end, ade-
quate for showing the proof of concept of a planning-driven
approach to the solution of a real problem. While we did
not get to the stage of monitoring and re-planning, the plan
generation speeds during the trials made re-planning in real
time look feasible.

The main advantage of the planning approach appears to
be its ability to generate a useful strategy in real time to meet
the needs of a new unexpected situation. This relies on the
flexibility of the approach, as well as the speed of a plan-
ner, in that goals involving different road links, and different
initial states, can be generated in real time to suit the kind
of problem to be solved. The ability to generate complete
initial states and triggered goals in real time (and so be re-
sponsive to a detected event) was also a persuasive factor for
the consortium in the use of an AI Planning approach. Also,
new effectors such as the exploitation of variable speed lim-
its or variable message signs (affecting traffic flows) can be
added to the planner’s domain model modularly, meaning
that new strategies generated will contain instances of those
effectors if they help achieve a goal.

There were many lesson learned, however, and challenges
still to be overcome: we summarise the main ones below.

• Problems with the data: the “meaning” of the flow val-
ues obtained from Saturn were not as we had anticipated
them. While we expected these values to be the maximum
number of vehicles –expressed in a suitable unit, such as
PCU– that could flow assuming a queue was formed in

5http://link.springer.com/article/10.1007/s10098-010-0338-9



the oncoming link, in fact they denoted the flow averaged
for the particular time of day.

• Problems with adequacy of our representation: the
PDDL+ model embodied several assumptions that made
it inaccurate. Firstly, it assumed that as soon as vehicles
enter into a link, they are queued at the next. Secondly,
there were breaks in links that we did not model, such as
roundabouts and pedestrian crossings.

• Problems in complexity measures: the field trial demon-
strates the crucial importance of estimating accurately
measures of the trial (region) size a priori, and acquir-
ing planning machinery which would cope with that. In
our case the measure of “number of vehicles in a region”
was not as relevant for determining limits as other factors
such as the total number of links, and consequently we
were over optimistic in our expectations.

• Problems with understanding the chosen planning en-
gine: Several classes of scenarios when input to UPMur-
phi would not yield results - for example in the first class
of tests, instead of raising the occupancy of a road link to
300 (well about its maximum value), the normal approach
would be to increase greatly the flow-in value. In such a
scenario we were unable to obtain an output. From ex-
tensive tests it appeared that if the goal was one in which
actions could make immediate progress towards, then an
answer would be extracted. On the other hand, if UPMur-
phi was initiated in a heuristic “canyon” it was likely that
no result would be output. Given a fixed number of vehi-
cles to start, however, the path to the goal heuristic (min-
imise occupancy on 3966 1202) was monotonic, which
seemed to guarantee a resulting plan.

• Problems with a purely goal directed strategy: while the
effect of a generated plan was successful for solving the
goal, other junctions through the region were not opti-
mised. In fact the light signals in other junctions in the
region were all left to run to maximum (actions to move
them on a stage would not be taken unless it helped to-
wards solving the specific goal). Also, goals such as the
maintenance of a goal value are desirable in some situa-
tions. For a future system, we need to design a richer goal
language.

• Problems in joining up the technology: When engineer-
ing a planning component into a larger application we
naturally use the high level interface input language –
in this case PDDL+. Components of the initial state
are assembled automatically from the data hub. In our
application, a different team had responsibility for pro-
ducing the tool which assembles PDDL+ elements. As
this work was chronologically scheduled first, there was
an over-commitment to a particular target representation.
The work following on from this involved configuring the
planner, and required changing the PDDL+ representation
of the problem domain many times, during the extensive
testing with the simulated scenarios. Hence the coding of
a PDDL+ –assembling tool, and hence any work on the
end to end effectiveness of the system, would need to be
completed only after a final PDDL+ representation had

been agreed upon.

Conclusions
In this paper we have described the operation and results of
the SimplyfAI project, a collaboration between a transport
authority, academics, a large technology provider and two
SME’s, which included in its remit the use of AI Planning
to generate plans of traffic light changes to achieve transport
goals. The trials involved using historical data describing
the traffic in an area of Salford, Greater Manchester. The
plans (timing changes of traffic signals) output were judged
to be useful for dealing with exceptional situations, using
both hand inspecting the strategies to check that they were
sensible and simulating their execution using two different
traffic modelling software packages AIMSUN and SUMO.
We believe that this is the first successful demonstration of
AI Planning technology to create useful strategies for UTM
where the overall control for the region chosen, the nature of
the data feeds and the validation of the end result was largely
in the hands of non-academic stakeholders.

On the other hand, the success is limited by several factors
discussed above. While the results of the plan generation
component seem acceptable to the stakeholders, a certain
amount of scale-up is required in terms of traffic area cov-
ered, and granularity of representation, before the project
can progress further. Whether this can be achieved by a fu-
ture PDDL+ planner, or by the utilisation of a discrete rep-
resentation as in the work of (Gulić, Olivares, and Borrajo
2016), remains to be seen.
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