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Abstract 
This paper presents a novel approach in the field of behaviour 
networks, using data packets to traverse a behaviour network 
enabling an agent to more accurately select appropriate be-
haviours. Behaviour networks are used as an action selection 
mechanism to allow agents to select the most appropriate be-
haviour in a given situation. Behaviour networks incorporate 
an energy spreading mechanism that allows it to determine 
which behaviours to execute.  This research demonstrates 
that there are better methods for spreading activation energy 
around an action selection mechanism (ASM) and this is 
shown by implementing data packets to give an accurate se-
lection of behaviours in a behaviour network. 

 Introduction  
For many years’ robots have been developed to solve a va-
riety of tasks (Brooks 1986; Min & Cho 2010; Dorer 1999; 
Paikan et al. 2013; Petrick & Foster 2013). Each of these has 
applied a different control architecture to enable robotic per-
formance of various tasks, but all have struggled to support 
flexibility in the face of dynamic environments.  One mech-
anism which may help in this regard is the behaviour net-
work, an action selection mechanism that can be used in 
control architectures (Lee & Cho 2014) to enable agents to 
select appropriate actions in changing situations. 
 A behaviour network typically consists of a directed 
graph representing the behaviours that an agent can perform 
and the restrictions upon them. Depending on the situation, 
considering both goals and sensor data, such a network will 
reactively select the best behaviour for the prevailing con-
straints, though with certain limitations (Tyrrell 1994).   
 This work aims to address these limitations with the in-
troduction of quantization and recording of the energy used 
to evaluate the network. The idea is to send data packets 
through the behaviour network to transport the necessary en-
ergy from one behaviour to another. By embedding 
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metadata into the data packets it is possible to solve the lim-
itation outlined above. 
 The rest of this paper is organised as follows. Section 2 
presents background and related work for behaviour net-
works. Section 3 describes the proposed data packet concept 
in detail. Section 4 shows the results of the experiments of 
the proposed solution. The Final section presents a summary 
and future works. 

Background  
In the early 90s Maes proposed the Agent Network Archi-
tecture (ANA) (Maes 1991c; Maes 1991b; Maes 1991a) as 
a planning mechanism to enable the selection of the most 
appropriate behaviour from a range of alternatives.  This 
mechanism is based on the idea of a notional 'energy', which 
is allocated to a goal and spreads through a connection net-
work to possible actions.  Behaviours may contribute to-
wards goals or inhibit their attainment; the combination of 
the network connectivity and the energy spreading mecha-
nism determines which behaviour is preferred at any given 
time.  This mechanism encapsulates a combination of reac-
tive and planned behaviour selection, and is well suited to 
dynamic environments. 
 The behaviour network is defined by a collection of links 
amongst nodes representing behaviours, goals and the envi-
ronment.  Energy is added to the network by applying it to 
goal nodes or environment nodes, which encapsulate obser-
vations that the agents make of the environment.   Figure 1 
(Tyrrell 1994) shows the components of a behaviour node, 
and the types of link which connect to it.  Each link allows 
the transfer of energy to or from other nodes.  
 Each behaviour contains a precondition list, consisting of 
a list of propositions that must be true in order for the be-
haviour to be executable. Behaviours also have an 'add list' 
of propositions that the behaviour makes true once it has 

 



been executed. Finally; the behaviours have a 'delete list' of 
propositions that the behaviour makes false once it has been 
executed. 
 

 
Figure 1. The components of a behaviour (Brooks 1986, Maes 

1991, Tyrrell 1994) 

 The predecessor links in the network connect two behav-
iour nodes when; a proposition is false, the proposition is in 
the precondition list of node A and the proposition is in the 
add list of node B. So node B (once executed) can help node 
A become executable, will create an active predecessor link 
from node A to node B.  
 The successor links in the network connect two behaviour 
nodes when; a proposition is false, the proposition is in the 
add list of node A and the proposition is in the precondition 
list of node B. So node A (once executed) can help node B 
become executable, will create an active successor link from 
node A to node B.  
 A conflictor link in the network inhibits a behaviour node 
when; a proposition is true, the proposition is in the precon-
dition list of node A and the proposition is in the delete list 
of node B. So node B will prevent node A from been exe-
cutable and will create an active conflictor link from node A 
to node B.  
 The goal links in the network join behaviour nodes with 
goal nodes when; the activation energy in a goal is more than 
zero and goal Y is in the add list of node A. So node A is 
able to achieve goal Y.  
 The environment links in the network join behaviour 
nodes with environment nodes when; a proposition is true 
and the proposition is in the precondition list of node A. So 
node A is relevant to the given situation.  
 To begin the network evaluation process, the external 
nodes (goal and environment nodes) pass energy into the 
network according to formula defined rules (Tyrrell 1993; 
Tyrrell 1994). Once activation energy has been added to the 
behaviour nodes of the network from the external sources, 
then the energy is spread to identify the ideal action. The 
amount of energy that is spread from one node to another is 
a defined percentage of that node's activation energy. Each 
of the nodes in the behaviour network are connected by a 
combination of predecessor, successor and conflictor links. 
Predecessor and Successor links will increase the amount of 

energy in each node, while conflictor links will inhibit the 
spreading of the activation energy.  
 When the energy spreading mechanism is complete, the 
average energy of all nodes is normalised, and nodes with 
energy levels above a defined threshold are selected as can-
didates for activation.  At any given time, the node with the 
greatest energy represents the preferred behaviour. 
 The original rules and formulas for each of the link types 
were reviewed and improved by (Tyrrell 1993; Tyrrell 
1994) and then extended by (Decugis & Ferber 1998) who 
claimed to have solved some of the problems found in the 
original behaviour network (such as deadlock between mul-
tiple conflicting goals and improving reactivity between ac-
tions). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. An example behaviour network 

  
An example behaviour network is shown in Figure 2. It 
shows two goals and two environment nodes connected to 
eight different behaviours forming a behaviour network. A 
more complex, real world situation is described as a behav-
iour network in Figure 4. 
 The behaviour network was designed to work in dynamic 
environments and is therefore more reactive than traditional 
deliberative planning mechanisms. More recent work has 
been done to combine both these types to create a hybrid 
system (Lee & Cho 2014), They combined the behaviour 
network with a planning mechanism, to plan the sequence 
of actions that could also be adjusted according to excep-
tions and environmental changes.  
 Behaviour networks have not received a lot of interest in 
recent years as other techniques in AI have become more 
active and established in the field of controlling robot be-
haviour. The motivation for returning to the technique in this 
work stems from a larger project to assist robots in complex 
and dynamic environments.  
 During the implementation process of the behaviour net-
work, some key issues were noted that have not been raised 
in any of the supporting text (Maes 1991a; Tyrrell 1993; 
Tyrrell 1994). These issues revolve around the process of 



spreading energy around the network. (Tyrrell 1993) ex-
plains that energy must first enter the network via the goal 
nodes and the environment nodes. The energy is passed be-
tween the nodes via the predecessor, successor and conflic-
tor links. However; there is little discussion on the order in 
which the behaviour nodes should pass energy between 
themselves, and this leads to a variety of problems in more 
complex networks.   
 For any given network there may be many possible op-
tions for the order in which the energy should be spread. De-
pending on the order of evaluation of the behaviour nodes, 
for the energy spreading process, the energy allocated to 
specific behaviours after each iteration can vary. This incon-
sistent distribution of energy in the network, could be caused 
by selecting different start nodes, nodes not receiving all 
their energy before distributing their own and the possibili-
ties of feedback loops between the behaviours. 

Method  
Each of the methods that were used during the implementa-
tion of a behaviour network adopted a general set of rules 
prior to selecting the order that the behaviours should spread 
the energy between themselves. The external nodes, such as 
the goals and environment nodes, would spread energy into 
the network first before the internal behaviours could spread 
energy. This was to ensure that there was sufficient energy 
in the network to begin with. Links augmenting other nodes' 
energy levels (predecessor and successor links) were se-
lected before inhibition nodes (conflictor links) again to en-
sure that there was energy in the nodes prior to spreading the 
energy.  
 The early stages of implementation revealed a variety of 
different problems, relating to the mechanism of energy 
spreading and the consistency of its results.   One such issue 
is possibility of a cyclical structure within the network (as 
shown in Figure 2, for example, prevents a clear definition 
of completion of energy spreading, since each node in the 
cycle passes energy to its successors, which in turn pass en-
ergy back.  Such loops must be interrupted arbitrarily, and 
the resulting energy at each node depends upon the point of 
interruption in the cycle (which is not desired).  
 Even if a given network does not contain cycles, the re-
sults can depend on the order of evaluation of links.  For 
example, energy can be spread from each connected behav-
iour in sequence following the links from each node in a 
depth-first search pattern, following the links until the end 
of the tree is reached and then back tracking to an unex-
plored node. This mechanism is simple, but has the flaw that 
the system does not know whether a behaviour has received 
all of its inputs before sending energy to the next node. This 

                                                
 

makes the resulting energy spread depend on the order of 
evaluation of the nodes in the network rather than its struc-
ture. 
 Further, if the energy spreading mechanism is applied it-
eratively, as Maes suggests, the resultant energy distribution 
varies with iteration, and does not necessarily converge.  De-
pending on the number of iterations of the energy spreading 
mechanism, the behaviour network may select different be-
haviours to execute.  
 A variety of tests were performed on a behaviour network 
(Figure 2), starting with a random order for which to select 
behaviours and spread energy. A sample of the results from 
this test in shown in Table 1.  
 
After 1 it-
eration 

After 10 it-
erations 

After 100 it-
erations 

After 1000 it-
erations 

B1 (0) B1 (0) B1 (0) B1 (0) 
B2 (0) B2 (0) B2 (0) B2 (0) 
B3 (0) B3 (0) B3 (0) B3 (0) 
B4 (0) B4 (0) B4 (0) B4 (0) 
B5 (3.59) B5 (3.1) B5 (3.07) B5 (3.07) 
B6 (2.93) B6 (3.41) B6 (3.44) B6 (3.45) 
B7 (2.89) B7 (2.89) B7 (2.89) B7 (2.89) 
B8 (0.00) B8 (0.00) B8 (0.00) B8 (0.00) 

Table 1. Results from using a random order of behaviour nodes. 

 The results in Table 1 differed each time the simulation 
was executed. Proving that; not only is order that the energy 
spread important, but also that an uneven distribution of en-
ergy exists in the network. An alternative method for select-
ing the order to spread the energy was then tested, based on 
a depth first approach, however; this then led into issues 
with potential feedback loops existing in the network. The 
previously suggested methods for spreading energy through 
the network are clearly inadequate for more complex net-
works, each leading to an undesirable distribution of energy 
in the behaviour network.  
 We propose a new mechanism to allow the behaviour net-
work to evenly distribute energy around the network regard-
less of the order of evaluation or the number of iterations: 
the use of data packets. 

Data Packets  
The main problem of instability in the behaviour network 
occurs for two reasons.  Firstly, for a node to correctly dis-
tribute energy to its successors, it must first have received 
its full complement from all its predecessors.  Whether or 
not this has happened is hard to determine, and depends 
upon the order of evaluation of the nodes.  Secondly, if the 
network contains cycles, whether or not a given node has 

 



received all its input energy remains undefined because 
some of the energy it emits will return as an input. 
 The proposed solution to both of these issues is to treat 
the energy as packets with associated metadata rather than 
simple values. When a behaviour needs to send its energy to 
the next behaviour it will create a packet to send (Figure 3). 
In addition to an energy value, each packet contains a list of 
all of the previous behaviours from which it has received 
energy, this permits a recipient behaviour to reject energy 
which has originated from itself, or if required to prevents it 
from sending more energy to a node which has already re-
ceived it. 
 An additional modification to behaviour nodes accommo-
dates the tracking of energy packets. Each behaviour now 
stores not only its current energy level, but also, a list of all 
of the data packets that it has received and a total energy 
value which is a sum of its energy and the energy of all of 
the packets that it contains. 
 
 
 
 
 
 
 

Figure 3. The contents of a behaviour and a packet 

 
 When a behaviour needs to send energy it will create a 
packet and put a proportion of its own energy into the packet 
(using a formula based on the link type) (Tyrrell 1994). The 
packet will then travel along the links of the same type (e.g. 
predecessor). When it arrives at a new behaviour the packet 
will be stored in that behaviours list of packages. The system 
will then check if the behaviour that packet arrived at has an 
outward link of the same type and if so, the behaviour will 
create another packet and send a proportion of energy (from 
the packet it just received) to the next behaviour. This pro-
cess of creating and sending packets will continue until no 
packet can travel any further through the network. 
 This approach to labelling and tracking energy in packet-
ized form allows much simpler and more consistent evalua-
tion of the network.  Because at any given time a node's en-
ergy is stored as a list of component packets rather than a 
single value, a node can spread only new energy each time 
it is received without the duplication inherent in maintaining 
only a single value.  The order of evaluation of nodes ceased 
to be of importance; all that is required is that each node is 
evaluated once.  Cycles in the network (which are valid log-
ical constructions, but make evaluation difficult) also cease 
to be a problem; because each packet contains a list of the 
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nodes which have contributed to its energy, it can be pre-
vented from giving energy to a node from which it has al-
ready received it.  There can therefore be no evaluation 
loops, and iteration becomes unnecessary. 

Results  
The data packet approach was tested on a basic behaviour 
network, containing a small number of arbitrary behaviours 
each connected via different types of links. Figure 4 shows 
this test scenario in a behaviour network. Here there are two 
goals a robot could have; ‘Explore’ will have the robot ex-
plore and learn about its environment and ‘Collect Yellow 
Blocks’ would have the robot find and move yellow blocks 
to a different location. The goal ‘Explore’ can be achieved 
with a behaviour ‘Move’, which will have the robot move in 
a random direction. The behaviours ‘Pick up Yellow Block’ 
and ‘Put down Yellow Block’ allow the robot to interact 
with a yellow block to achieve the goal of ‘Collect Yellow 
Blocks’. Finally, ‘Pick up Blue Block’ is included allow for 
conflict in the system; this is a desirable action but one 
which prevents the robot performing others. The situation of 
the environment is that the robot is in front of a yellow block 
which is ready to be picked up, the robot's hand is empty and 
it is too far from a blue block to interact with it without mov-
ing. Using these conditions, the appropriate links are used to 
connect the behaviours, shown in Figure 4. 
 The first implementation of the data packet approach fol-
lowed the same approach as (Tyrrell 1994) where energy 
was sent into the network first via the goal and environment 
links. The predecessor links were then used to send energy 
around the network followed by successor links and con-
cluding with inhibiting energy via the conflictor links. The 
results from this implementation is shown in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. An example of a real world situation shown as a behav-
iour network.  



  
Behaviour Energy  Total Energy  
Put down Yellow Block 0 60 
Pick up Yellow Block 20 60 
Move 30 30 
Pick up Blue Block 0 27.5 

Table 2. Results from using the packet approach with different 
types of links. 

 The results in Table 2 show that the agent does not have 
a clear choice for what it believes that the best action to take 
would be. The behaviours “Put down Yellow Block” and 
“Pick up Yellow Block” had equal highest energy even 
though the “Put down Yellow Block” behaviour cannot be 
executed given the situation of the robot. The reason for 
these results is the order in which the energy is passed via 
the links. The results in Table 2 followed the order; prede-
cessor, successor and conflictor.  
 The literature on behaviour networks states, that once the 
energy spreading mechanism has concluded, the system 
should check for behaviours whose energy is greater than a 
global threshold. If there are no matches then the energy 
spreading mechanism should be repeated until a behaviour 
has surpassed the global threshold. It was then noted that 
there was a possibility for the “Move” behaviour to win out 
over the other behaviours, especially after multiple itera-
tions of the energy spreading mechanism. This is because 
the “Move” behaviour is in a separate ‘system’ to the other 
behaviours, making it so it does not need to pass its energy 
to any other behaviour and that it will not be inhibited either. 
This is a problem if the other ‘systems’ in the behaviour net-
work are what we would like the robot to do, more than ex-
ploring the environment. To solve this the amount of energy 
passed from the goal ‘Explore’ would need to be reduced or 
have some other inhibition setting that could be applied to 
it.  The method that the behaviours use to pass energy to 
other behaviours is to send a proportion of energy based on 
its current energy level. This could explain the unsatisfac-
tory results as when a behaviour sends energy to another be-
haviour via a predecessor link, it is reducing the amount of 
energy that behaviour has. When that same behaviour then 
has to send energy via a different link type it may find that 
its energy level is lower than expected or empty. For exam-
ple; say behaviour 1 has an energy of 50 and it sends 40 en-
ergy to behaviour 2 via a predecessor link. Behaviour 1 then 
has 10 energy left for when it needs to send energy to be-
haviour 3 via a successor link. However; behaviour 1 could 
have also received a packet of energy from another behav-
iour making it so that behaviour 1 has 10 energy and a 
packet of 30 energy. The current solution of the system has 
the behaviour only send energy from its own source and not 
from any packets it may have received. This would work 
fine if there was only one type of link to consider but when 

multiple links are introduced the system needs to be modi-
fied. 
 The second implementation involved merging the energy 
in each of the packets with the remaining energy stored in 
each behaviour for each type of link. For example; following 
from the previous example; behaviour 1 has sent 40 of its 50 
energy to behaviour 2 via a predecessor link and it has re-
ceived a packet from another behaviour. Previously it would 
create a packet using the remaining 10 energy it has and send 
that via a successor link, instead; before it creates a new 
packet it will merge the energy in its current list of packets 
with the 10 energy it has remaining and send that proportion. 
This concept will show that the data packets can now dis-
tribute an even amount of energy around the network. 
 

Behaviour Energy  
Put down Yellow Block 120 
Move 30 
Pick up Yellow Block 23.75 
Pick up Blue Block -8.75 

Table 3. Results from using the packet approach with merging us-
ing different types of links. 

 Table 3 shows the results from using this approach with a 
link order of; predecessor, successor and conflictor. It shows 
that the ‘Pick up Blue Block’ has a negative value, this value 
is accurate as it is a behaviour that does not benefit the sys-
tem. The ‘Put down Yellow Block’ has the most energy with 
120, even though it is a behaviour that cannot be executed 
based on the current situation that the robot is in. Finally; 
the ‘Pick up Yellow Block’ has a value of 23.75, which 
again based on the current situation is incorrect. The order 
of the links was then changed to successor, predecessor and 
conflictor for the third implementation and the results are 
shown in Table 4. 
 

Behaviour Energy  
Pick up Yellow Block 46.25 
Move 30 
Pick up Blue Block 13.75 
Put down Yellow Block 0 

Table 4. Results from using the packet approach with merging us-
ing different types of links. 

 Table 4 shows the results from using the packet approach 
with energy merging following the link order of; successor, 
predecessor and conflictor. Here the ‘Pick up Blue Block’ 
behaviour has a value of 13.75 which is low in comparison 
to the values in other behaviours. This means that this be-
haviour would be unlikely to be chosen for activation. The 
‘Put down Yellow Block’ behaviour has a value of 0, which 
again is correct given the current situation the robot is in. 
Finally; the ‘Pick up Yellow Block’ behaviour has the most 



energy in that subsystem with a value of 46.25, making this 
the most likely behaviour to be selected. Overall these re-
sults show that the two executable behaviours were favoured 
over the non-executable behaviours in the system.  

Conclusion  
Behaviour networks are useful action selection mechanisms 
and are used in a variety of different control architectures. 
As documented there are potential flaws in the original text 
(Maes 1991a; Tyrrell 1994) whereby the order of the energy 
spreading mechanism greatly affects the outcome of the se-
lected behaviour for execution. This work presents a solu-
tion to this problem by introducing data packets to traverse 
and distribute energy throughout a behaviour network. The 
data packets have been shown to be able to distribute energy 
throughout the network regardless of the order that the be-
haviours are selected to distribute energy in.  
 The results show that the data packet approach is the op-
timum method for spreading energy around a behaviour net-
work accurately. The results show that the best method is to 
implement the energy merging technique and to follow the 
order of successor, predecessor and Conflictor for sending 
packets through a behaviour network.  
 The preliminary results presented in this paper form part 
of a larger project to develop a dynamic behaviour network. 
A system which can manipulate the behaviours in the be-
haviour network allowing an agent to work in complicated 
and unstructured environments. The future work will be to 
test the data packet methodology in more complicated and 
challenging scenarios. This work will then be implemented 
into the larger project of developing a dynamic behaviour 
network.  
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