
Query Templates for RDF Stream Processing

Robin Keskisärkkä

Linköping University, Linköping, Sweden
robin.keskisarkka@liu.se

Abstract. In recent years there has been a growing interest in using
Semantic Web technologies to process streaming information, and several
RDF Stream Processing (RSP) systems have been developed to bridge
the gap between static and streaming Linked Data. However, the lack of a
standardized query language makes testing and benchmarking of systems
difficult, since queries need to be developed for each supported language
in parallel. This process is both time consuming and error prone.

The RDF Stream Processing W3C Community Group1 is currently work-
ing towards a standardized query language for RSP (RSP-QL). This pa-
per proposes an extension to the SPIN Modeling Vocabulary to support
the representation of RSP-QL queries as RDF. The vocabulary provides
mechanisms to capture queries as parameterized templates that can be
shared and queried using standard Semantic Web technologies.

The vocabulary is query language agnostic, and we demonstrate how
different serializations (CQELS, SPARQLstream, and C-SPARQL) can
be supported by modeling the queries of the CSRBench benchmark as
a single set of RSP-QL queries. We also show some of the language
features that are currently only supported in RSP-QL, and discuss some
additional features that the SPIN extension might offer.

We argue that templates increase the flexibility and re-usability of queries,
and by extension we believe that this can help in the more general adop-
tation of RSP technologies.

Keywords: RSP-SPIN, RDF Stream Processing, RSP-QL, Complex
Event Processing

1 Introduction

The amount of data made available as online streams is growing rapidly, and
with it the need for handling streaming data efficiently. Applications requiring
real-time processing are pushing the limits of traditional data processing infras-
tructures [12]. There are several parallel lines of development in this direction,
ranging from the re-purposing of Database Management Systems (DBMS) into
Data Stream Management Systems (DSMS)[1, 3], to technologies building on
completely new paradigms for data stream processing. These systems depend
on long-running continuous queries as opposed to one-time queries, and may

1 https://www.w3.org/community/rsp/

be either data driven (where data is processed as it arrives), or rely on batch
processing.

In recent years there has been a growing interest in using Semantic Web
(SW) technologies for leveraging semantics in data streams. Traditional SW
technologies are optimized for performance on more or less static data and do
not scale well for continuous querying of volatile data. As a result several RDF
Stream Processing (RSP) systems have been implemented, designed to handle
the dynamic character of streaming data while still supporting static background
information.

A challenge in the development of RSP technologies is that there are cur-
rently no standards for the syntax and semantics of RSP. Typically, RSP lan-
guage extensions are based on SPARQL but take inspiration from SQL-based
stream processing languages (e.g., Oracle CQL) and event processing languages,
to enable querying of streaming data. This causes implementations, which super-
ficially appear very similar, to be incompatible with respect to how queries are
expressed and processed. However, the RSP Community Group2 is working on
defining a standardized RSP Query Language (RSP-QL), and the current drafts
incorporate many of the features in existing RSP implementations. Notably, the
draft adds the notion of streaming RDF graphs rather than RDF triples.

The effort required to develop and verify any type of non-trivial query against
streaming data is often considerable. The fact that data is dynamically changing
means that it is difficult to anticipate the correct results, especially if not working
against recorded or generated streams. This problem becomes very challenging
if a query has been designed to match very rare patterns, where a result may not
be produced in hours, day, or even weeks. In the worst case scenario a query may
never find a match, and we would be unable to validate our query on any actual
results. Despite the effort that goes into writing and validating queries little or
no attention has been directed at making RSP queries reusable and shareable.
At present, anyone who wants to reuse a query will need to manually modify the
query string, a process that in itself risks introducing errors or inconsistencies
into the query.

In this paper we present an extension to the SPIN Modeling Vocabulary3

to encapsulate RSP-QL queries as reusable parameterized query templates in
RDF. The rest of the paper is organized as follows: Section 2 describes current
state-of-the-art in RSP, the ongoing work in defining a standardized RSP Query
Language (RSP-QL), and gives an overview of SPIN. Section 3 presents the
RSP-SPIN extension of SPIN and discusses the extensions of the vocabulary
required to support RSP-QL. In Section 4 we evaluate the extension by extending
the SPIN API to support RSP-SPIN. We show how RSP-SPIN can be used to
model the RSP-QL sample queries4, and show that the template functionality of
SPIN is compatible with the RSP-SPIN extension. We also demonstrate proof-
of-concept serializers from RSP-SPIN into three RSP language extensions based

2 https://www.w3.org/community/rsp/
3 http://spinrdf.org/spin.html
4 https://github.com/streamreasoning/RSP-QL

on the queries of CSRBench [6], and we discuss some of the trade-offs involved
when handling unsupported query features. In Section 5 we discuss the results of
the evaluation in the context of current RSP standardization efforts, and describe
some implications with regard to the adoptation of RSP technologies outside the
Semantic Web community. Finally, we summarize our findings in Section 7.

2 Background

There are a number of RSP implementations that each provide its own exten-
sion of SPARQL to support the processing of streaming data. EP-SPARQL [2],
C-SPARQL [4], CQELS[9], INSTANS [11], and SPARQLstream [5] are examples
of the most well-known extensions. Although these query language extensions
may look very similar on the surface they are incompatible at the query level.
This means that any user facing the task of choosing between one of the avail-
able RSP systems needs to make a commitment towards that particular system,
since all queries would have to be formulated and verified against any other
system. This divergence in RSP language extensions, both on the semantic and
syntax level, has motivated the standardization efforts of the RSP Community
Group5, which is now in the process of defining a common RSP query language
(RSP-QL) semantics and syntax for RSP.

Developing and validating the correctness of any non-trivial continuous query
is time consuming. Where a static context allows errors to be detected by sim-
ply comparing the results of a query with the expected output, this is often not
possible in a streaming context, where the underlying data is constantly chang-
ing. This becomes a problem when queries should detect low-frequency patterns,
since an issue with a query can go undetected for long periods of time.

The time required to develop and validate, as well as maintain, queries in
a streaming context is therefore substantial. Using prepared queries that can
be modified on demand, similar to how stored procedures are used in relational
databases, would be useful, but there is currently no way of defining such reusable
structures for RSP queries. Prepared queries also have several other advantages,
for example, they can be used to enforce data access control and to prevent
query injections. Additionally, templatized queries do not require the user to
have much experience in writing queries, which is often especially important if
domain experts are to use the system.

Although a general template manager, such as Mustache6 or FreeMarker7,
would be a viable option for defining flexible templates they fail to take advan-
tage of the background data, such as ontologies, that is typically available in
the context of RSP. This data can be used, for example, to support constraint
checking, or to provide input suggestions for parameters.

SPIN was developed to support standard compliant SPARQL 1.1 queries, and
enables information expressed as RDF do be used, for example, when defining

5 https://www.w3.org/community/rsp/
6 https://mustache.github.io/
7 http://freemarker.org/

constraints for a parameter in a query template. In this paper we propose to
extend SPIN to capture RSP-QL queries, to provide flexible query templates
that can be reused and shared using standard SW technologies.

2.1 The RSP Query Language

The RSP Community Group is in the process of standardizing the RSP query
language (RSP-QL). One important difference with regard to other RSP exten-
sions is that RSP-QL assumes the streaming of annotated RDF graphs rather
than triples. A model defining the semantics of RSP-QL has been proposed that
makes some of the hidden assumptions of some RSP implementations explicit [8].
This model captures the query model and the operational semantics of existing
RSP systems.

With regard to the query syntax of RSP-QL the current draft has been
compared to other RSP languages [7]. This comparison is useful as a starting
point, though the requirements document draft suggests that not all features are
yet captured in the query language examples, for example, that of referring to
named graphs in windows. Here the assumption appears to be that all graphs
in a window are added to the window’s default graph, while any information
captured by the graph structure in the stream is lost. This would make it difficult
to support Complex Event Processing (CEP) [10] if named graphs are to be used
to represent and encapsulate event objects. Adding this feature to RSP-QL would
not pose any restrictions with regard to any of the current query examples, and
this paper will assume that this will be supported.

The new language extends SPARQL 1.1 and reuses many of the features
found in CQELS [9], C-SPARQL [4], and SPARQLstream [5]. RSP-QL supports
named windows over streams, where windows can be either count-based or time-
based. It also supports the declaration of the output stream operator of queries,
where ISTREAM outputs data not present in the previous window, RSTREAM
outputs all data, and DSTREAM outputs data present in the previous window
but not the new one.

The example query in Listing 1.1 illustrates some of the features of RSP-QL.
The query counts the rides that exceed a given distance every hour by referencing
a named graph inside a named window clause. In the available RSP-QL sample
queries8 no distinction is made between queries and streams in the REGISTER
AS clause, and STREAM will therefore be assumed to indicate any continuous
query.

8 https://github.com/streamreasoning/RSP-QL/

PREFIX : <http://debs2015.org/streams/>
PREFIX debs: <http://debs2015.org/onto#>

REGISTER STREAM :longTrips AS

SELECT ISTREAM (count(?ride) AS ?rideCount)
FROM NAMED WINDOW :w ON :trips [RANGE PT1H STEP PT1H]
WHERE

{ WINDOW :w
{ GRAPH ?g

{ ?ride debs:distance ?distance
FILTER(?distance > 2)

}
}

}

Listing 1.1. RSP-QL query counting the rides that exceed a given distance.

2.2 The SPIN Modeling Vocabulary

The SPARQL Inferencing Notation (SPIN)9 provides mechanisms to capture
reusable SPARQL queries in RDF. This can be used to construct rules and
constraints implemented as SPARQL queries. Rules allow new information to be
inferred from existing data, while constraints can be used to check, for example,
violations in data. The RDF representation enables queries to be represented
and shared using standard Semantic Web formats.

The vocabulary defines a lightweight collection of classes and properties that
can be used to represent SPARQL queries as RDF. The model also allows pa-
rameterized templates to be defined on top of queries. The SPIN API provides
methods for working with queries, constraints, rules, and templates. The API
can also be used to validate parameter bindings for query templates.

There are two main ways of expressing queries in SPIN; as query strings, or as
decomposed RDF. The former simplifies the maintenance of queries by making
them human-readable, while the latter provides a syntax agnostic representation
that allows multiple templates to be defined over the same query, supports the
sharing of partial queries, and which can be queried using standard SPARQL.

3 Extending SPIN for RSP-QL

In this paper we propose the RSP-SPIN Vocabulary10 as an extension of SPIN
to support the features of RSP-QL. More specifically, the vocabulary extension

9 http://spinrdf.org/spin.html
10 http://w3id.org/rsp/spin

adds classes and properties for the definition of named windows over streams,
window clauses, output stream operators, and register clauses.

RSP-QL provides a way of specifying the output stream operator for a
query, that is, whether to produce the ISTREAM, RSTREAM, or DSTREAM. The
REGISTER AS clause lets the name of the produced stream be specified as part
of the query. Both features are illustrated in Listing 1.2.

@prefix : <http://w3id.org/rsp/spin#> .
@prefix sp: <http://spinrdf.org/sp#> .
@prefix stream: <http://debs2015.org/streams/> .

<#query> a sp:Select ;
:registerAs stream:longTrips ;
:streamOperator :Istream .

Listing 1.2. Representing REGISTER AS and the declaration of the output stream
operator in RSP-SPIN.

RSP-QL supports three types of named windows over streams: logical win-
dows (defined in terms of a time range), logical windows in the past (defined
with an upper and lower time bound), and physical windows (defined in terms
of number of streamed elements). Examples of each window type represented in
RSP-SPIN are shown in Listing 1.3.

@prefix : <http://w3id.org/rsp/spin#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix stream: <http://debs2015.org/streams/> .

<#query>
:fromNamedWindow [a :LogicalWindow ;

:range "PT1H"ˆˆxsd:duration ;
:logicalStep "PT1H"ˆˆxsd:duration ;
:streamIri stream:trips ;
:windowIri :w1

] ;
:fromNamedWindow [a :LogicalPastWindow ;

:from "PT2H"ˆˆxsd:duration ;
:to "PT1H"ˆˆxsd:duration ;
:logicalStep "PT1H"ˆˆxsd:duration ;
:streamIri stream:trips ;
:windowIri :w2

] ;
:fromNamedWindow [a :PhysicalWindow ;

:size 1000 ;
:physicalStep 10 ;
:streamIri stream:trips ;
:windowIri :w3

] .

Listing 1.3. RSP-QL window types represented using RSP-SPIN.

Referencing named windows is analogous to how named graphs are referenced
in SPIN. Listing 1.4 shows an example where a named window is defined with a
basic graph pattern.

@prefix : <http://w3id.org/rsp/spin#> .
@prefix sp: <http://spinrdf.org/sp#> .

<#query>
sp:where (
[a :NamedWindow ;

:windowNameNode :w
sp:elements (
[sp:subject [sp:varName "ride"ˆˆxsd:string] ;
sp:predicate debs:distance ;
sp:object [sp:varName "distance"ˆˆxsd:string]

]) ;
]) .

Listing 1.4. Referencing a named window in RSP-SPIN.

The meta-modeling mechanisms and templating vocabulary of SPIN still
apply in the extended model, and the reader is referred to the official SPIN
documentation for details11. For reference, Listing 1.5 shows a basic template
with a single parameter defined over a query. A full example has been excluded
for brevity but is available along with the RSP-SPIN vocabulary12.

@prefix spin: <http://spinrdf.org/spin#> .
@prefix spl: <http://spinrdf.org/spl#> .
@prefix arg: <http://spinrdf.org/arg#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<#template>
a spin:SelectTemplate ;
spin:body <#query> ;
spin:constraint [a spl:Argument ;

spl:predicate arg:distance ;
spl:valueType xsd:integer ;
spl:optional true

] .

Listing 1.5. A SPIN template stating that the variable distance in the reference
query is an optional integer parameter.

RSP-QL extends the output of CONSTRUCT queries to support named graphs.
While this is not supported in the SPIN API it is a limitation of the SPARQL 1.1
syntax, rather than the SPIN vocabulary as such. The API extension provided
with RSP-SPIN adds support for RSP-SPIN as described above, and includes a
parser and serializer for RSP-QL.

11 http://spinrdf.org/spin.html
12 http://w3id.org/rsp/spin

4 Evaluation of RSP-SPIN

In this section we demonstrate and evaluate the functionality of RSP-SPIN and
the API extension. The API has been made available as open source13 and
contains convenience classes for managing RSP-SPIN templates and queries, as
well as proof-of-concept serializers for three RSP language extensions.

Query templates in SPIN allow constants to be lifted to variables that can
be bound when the template is instantiated, and parameter constraints can be
applied to any variable specified in the query. The RSP-QL parser provided
with the RSP-SPIN API supports variables for the output stream name, input
stream names, window steps and ranges, as well as any standard SPARQL 1.1
query variable. The API does not support parameterization of the output stream
operator or named windows since no scenario could be identified where this would
be required. The modeling capabilities of SPIN with respect to templates have
not been effected by the RSP-SPIN extension. For this reason the evaluation will
focus on query representation only, and for full examples of templatized RSP-QL
queries the reader is referred to the example and test code of the API.

4.1 RSP-QL Queries

The sample queries of the RSP Community Group were used as a reference
in evaluating RSP-SPIN and the API. Most of the queries contained minor
syntax errors, such as missing prefix declarations, miss-spellings, and unbalanced
parentheses. For the purpose of the evaluation these errors were corrected prior
to parsing. One query contained more severe errors but since the intention the
query was clear it could be corrected accordingly.

All sample queries except one were successfully parsed into RSP-SPIN and
serialized back as an equivalent RSP-QL query (i.e., the original queries matched
the queries serialized from the RSP-SPIN representation). The query that failed
was not parseable as RSP-QL at all since it contained a nested CONSTRUCT
query in a named window clause, something that has not been considered in the
development of RSP-SPIN since nesting CONSTRUCT queries is not supported
in SPARQL 1.1.

One additional query was tested to illustrate a feature not present in any of
the current example queries, namely the use of named graphs in window clauses
and in CONSTRUCT results (see Listing 1.6). This type of query is useful when
filtering a stream with an arbitrary structure without modifying the elements
in the stream. All the referenced queries and their RDF representations are
available in the RSP-SPIN repository.

13 ibid.

PREFIX : <http://debs2015.org/streams/>
PREFIX debs: <http://debs2015.org/onto#>

REGISTER STREAM :filteredTrips AS

CONSTRUCT ISTREAM {
GRAPH ?g { ?s ?p ?o }
?g ?p2 ?o2 .

}
FROM NAMED WINDOW :w ON :trips [RANGE PT1S]
WHERE
{ WINDOW :w
{ GRAPH ?g

{ ?ride debs:distance ?distance .
FILTER (?distance > 2)
?s ?p ?o .

}
?g ?p2 ?o2 .

}
}

Listing 1.6. RSP-QL query filtering a stream of named graphs.

4.2 RSP-SPIN Serialization

RSP-QL has been shown to capture the semantics of CQELS, C-SPARQL,
SPARQLstream [7]. The RDF representation of RSP-SPIN is query language
agnostic and could therefore be used to capture any of these three RSP lan-
guages. This could potentially be very useful since it would be possible to define
a query once in RSP-SPIN and from it provide serializations in any of the lan-
guages. This would also mean that the template support for RSP-QL would
propagate to any of the three languages.

As a proof-of-concept we implemented serializers for each of the three query
languages above. The strategy for handling unsupported features present in
RSP-QL but not the target language was to resort to either exclusion or simplifi-
cation. The definition of the stream operator is only supported in SPARQLstream,
while REGISTER AS is only supported by C-SPARQL. In both cases the lan-
guages that lack support would need to exclude the feature. On the other hand,
only CQELS supports multiple windows over the same stream, a case in which
simplification for C-SPARQL and SPARQLstream would be required. Here we
instead identify the outer bounds of a single window to include all named win-
dows and use the smallest step size provided in the definitions. Finally, named
graphs in streams and output results are supported by neither language and are
collapsed into the default graph.

To evaluate the viability of this approach we used the CSRBench queries as
the starting point, since the benchmark provides equivalent queries expressed

for each of the relevant query languages. The seven queries of the benchmark
were expressed once using RSP-QL and parsed as RSP-SPIN. The serializations
for each language were then compared with the manually constructed queries
provided in the benchmark. The full list of queries and RDF representations are
available in the RSP-SPIN repository14. For each of the serializations the query
string returned was equivalent, but not identical, to the expected query.

We then attempted to serialize the RSP-QL sample queries into the three
RSP languages. The strategies employed for unsupported features resulted in
queries that were in some respects “rough” approximations of the original query,
but for this initial proof-of-concept implementation we made no further inquiries
into how these approximation could be improved further.

5 Discussion

The dynamic nature of data in a streaming context makes it difficult to verify
the correctness of any type of non-trivial query. When a query is defined to
match rare patterns considerable time may pass before a match is found, which
complicates matters further. Additionally, queries in RSP applications are often
long lived and run against data that is constantly in motion. After long periods of
time a query is not unlikely to become inactive (e.g., if an input stream becomes
unavailable), or invalid (e.g., a relevant ontology is updated). This means that
many RSP queries also need to be maintained over time.

The API extension was used to parse the RSP-QL sample queries into RDF,
and each query could be serialized back into the original query. Since the pro-
posed vocabulary extension is fully compatible with standard SPIN this also
enables templates and parameter constraints to be defined for any query that
can be represented using RSP-QL.

We also provided an implementation of serializers from RSP-SPIN to CQELS,
C-SPARQL, and SPARQLstream. The serializations were verified against the
CSRBench queries, where each serialization was compared with the reference
query. This show that RSP-SPIN could, for example, be useful in the develop-
ment and maintenance of queries that are used for benchmarks, as well as for
users who wish to retain the option of switching between RSP systems, or who
wishes to compare engine performance without requiring a lot of time to be
spent on rewriting queries.

The representation of RSP-QL queries as RDF adds some complexity to the
management of queries. As an alternative SPIN provides a basic property for
attaching pure string based queries. Both solutions have their merits and both
are compatible with RSP-SPIN and templates. However, the RDF representation
provides a way of describing RSP-QL queries in a syntax agnostic way, allows its
structure to be queried using standard SW technologies, and supports sharing
of partial query structures between queries and templates. Purely string-based
approaches are also at the risk of query injections, and complicate validation of
input parameters.

14 ibid.

6 Conclusion

Despite considerable energy spent on defining RSP queries little or no effort has
been devoted to making the queries reusable. Instead, RSP queries are shared
only as query strings, which have to be manually modified to fit a new use
case. However, users of RSP-based systems cannot be expected to be experts
at formulating RSP queries. Predefined queries, by contrast, allow regular users
to leverage these technologies with minimal intervention. By providing a way of
defining parameterized queries the flexibility of each prepared query is increased
manifold. This process is very similar to how some types of stored procedures in
RDMS are used and defined.

In this paper we have introduced RSP-SPIN, an extension to the SPIN Mod-
eling Vocabulary for supporting encapsulation of RSP-QL queries as parame-
terized query templates. We demonstrated how the extension could be used to
represent the sample queries of the RSP Community Group, and that RSP-SPIN
can support serialization into different RSP languages. We argue that support
for this type of templates is valuable not only within the RSP community but
also in the adoptation of RSP in other domains.

Acknowledgments This work was supported by the EU FP7 project Visual
Analytics for Sense-making in Criminal Intelligence Analysis (VALCRI) under
grant number FP7-SEC-2013-608142.

References

1. Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Erwin, C.,
Galvez, E., Hatoun, M., Hwang, J., Maskey, A., Rasin, A., Singer, A., Stonebraker,
M., Tatbul, N., Xing, Y., Yan, R., Zdonik, S.: Aurora: A Data Stream Management
System. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data. p. 666 (2003)

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: A Unified Lan-
guage for Event Processing and St ream Reasoning. In: Proceedings of the 20th
International Conference on World Wide Web (2011)

3. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani,
R., Srivastava, U., Widom, J.: STREAM: The Stanford Data Stream Management
System. Technical Report 2004-20, Stanford InfoLab (2004)

4. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF
streams with C-SPARQL. SIGMOD Record 39(1), 20–26 (2010)

5. Calbimonte, J.P., Corcho, O., Gray, A.J.G.: Enabling Ontology-based Access to
Streaming Data Sources. In: Proceedings of the 9th International Semantic Web
Conference on The Semantic Web – Volume Part I. pp. 96–111. ISWC’10, Springer-
Verlag, Berlin, Heidelberg (2010)

6. Dell’Aglio, D., Calbimonte, J.P., Balduini, M., Corcho, O., Della Valle, E.: On
Correctness in RDF Stream Processor Benchmarking. In: Proceedings of the 12th
International Semantic Web Conference - Part II. pp. 326–342. ISWC ’13, Springer-
Verlag New York, Inc., New York, NY, USA (2013)

7. Dell’Aglio, D., Calbimonte, J.P., Valle, E.D., Corcho, O.: Towards a Unified Lan-
guage for RDF Stream Query Processing. In: Gandon, F., Guéret, C., Villata, S.,
Breslin, J.G., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC (Satellite Events).
Lecture Notes in Computer Science, vol. 9341, pp. 353–363. Springer (2015)

8. Dell’Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: RSP-QL Semantics:
A Unifying Query Model to Explain Heterogeneity of RDF Stream Processing
Systems. Int. J. Semant. Web Inf. Syst. 10(4), 17–44 (October 2014)

9. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A Native and Adaptive
Approach for Unified Processing of Linked Streams and Linked Data. In: Proceed-
ings of the 10th International Conference on the Semantic Web. pp. 370–388 (2011)

10. Luckham, D., Schulte, R.: Event Processing Glossary Version 2.0 (2011), http://
www.complexevents.com/2011/08/23/event-processing-glossary-version-2-0/

11. Rinne, M., Nuutila, E., Törmä, S.: INSTANS: High-Performance Event Processing
with Standard RDF and SPARQL. In: Proceedings of the ISWC 2012 Posters and
Demonstrations Track. Boston, US (2012)

12. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 Requirements of Real-time
Stream Processing. SIGMOD Rec. 34(4), 42–47 (December 2005)

