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Abstract. Processing data as they arrive has recently gained momen-
tum to mine continuous, high-volume and unbounded sequence of data
streams. Due to the heterogeneity and the multi-modality of this data,
RDF is widely used to provide a unified metadata layer in streaming
context. In response to this ever-increasing demand, a number of sys-
tems and languages were produced, aiming at RDF stream processing
(RSP). However, most of them adopt a centralized execution approach
which puts a barrier to ensure correct behavior and high scalability un-
der certain circumstances such as concurrent queries and increasing input
load. Only few systems sought to distribute processing, but their imple-
mentation is still in its infancy. None of them provide a full-fledged and
production-ready RSP engine that is easy-to-use, supports all SPARQL
1.1 operators and adapted to industrial needs. As a solution, we present
a distributed, fault-tolerant and scalable RSP system that exploits the
Apache Storm framework.

1 Introduction

In most parts of the world, fast growing urbanization has faced several chal-
lenges throughout the last decades. Achieving sustainable, environment-friendly
and highly operating cities for a better quality of life requires innovative solutions
brought by cutting edge technology. Creative ways of thinking have opened a
brand new world of possibilities such as smart grids, smarter buildings and smart
transportation systems. Most of these systems exploit sensor networks, an im-
portant component of the Internet Of Things, forcing to provide spatio-temporal
processing that shares characteristics with Big Data ecosystems. Indeed process-
ing streaming data requires technologies to face the high volume and velocity
at which this data is coming into the system. Moreover, due to the heteroge-
neous nature of streaming data, the Semantic Sensor Web [11] has been designed
with the aim to increase interoperability and derive contextual information. As
such, processing semantic sensor streams has been the focus of different RSP
engines. Well-known examples are C-SPARQL [3] and CQELS [8] which provide
their own architecture, SPARQL-like query language and operational semantics.
They make use of continuous queries based on windowing techniques as defined



in Data Stream Management Systems (DSMSs), and they enable reasoning over
dynamic data. However, none of them could handle massive streaming data and
address scalability issues as they have been mainly designed to run on a single
machine. A recent RSP benchmark [7] evaluating the above systems highlights
the decrease of precision and recall of output results when increasing input load.

To address the scalability issues, efforts have been made to design a new
generation of RSP engines based on modern big data frameworks. Their imple-
mentation is still at an early stage and their usage is not practical when it comes
to execute simple SPARQL queries. To remedy these limitations, we propose the
so-called WAVES3, a new distributed RSP system built on top of popular big
data frameworks and supporting continuous queries over event-based streaming
data. In a nutshell, sensor data which could be sampled are transformed into an
RDF format, compressed and sent to a messaging broker. Then, a distributed sys-
tem is invoked to handle windowing operations, querying and rendering results.
The system is open-source4, fully configurable, easy-to-use and general-purpose.

The remainder of this paper is organized as follows. In Section 2, we provide
an overview of related work. Then, we describe the architecture of WAVES in
Section 3, and we detail our data compression strategy in Section 4. Section 5
presents a preliminary evaluation, and Section 6 provides the conclusion with an
outlook on future work.

2 Related Work

In the past few years, dynamic data streams have attracted considerable inter-
est within the semantic web community. Processing these streams has recently
been the focus of RSP systems which are mostly based on centralized execution.
Recognizing the scalabability limitations of single-machine systems, efforts have
relied on generic stream processing frameworks such as S4 [9] and Storm [12] to
distribute querying over a cluster of machines. For example, CQELS-Cloud [10]
is the first distributed system which focuses on elasticity and scalability aspects
such as memory size, network bandwidth and process speed. The architecture
of CQELS Cloud consists of one Execution Coordinator and several Operator
Containers. The Execution Coordinator is used for distributing processing tasks
and each Operator Container is used to execute one single operation such as
union, aggregation, etc. Although the approach seems interesting, the system is
not generic enough and does not allow end users to define customized queries.
Indeed, to the best of our knowledge, CQELS Cloud is not open source which
obstructs its application in many use cases. Moreover, according to the link5 pro-
vided by CQELS team, users need to modify the source code in order to define
their own queries and input data. They need also to modify several parameters
(e.g., number of executors for each task, type of aggregation, number of output
buffers) which is not practical for industrial applications. As we cannot access

3 Details on WAVES project available at http://waves-rsp.org/
4 It will be available on GitHub. Please contact us at: contact[at]waves-rsp.org
5 https://code.google.com/archive/p/cqels/wikis/CQELSCloud.wiki
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the source code or run our queries, we did not consider this system in our experi-
ments. Another RSP engine called KATTS [5] has been proposed based on graph
partitioning algorithm to optimize the network bandwidth and distribute query-
ing. However, it does not support the SPARQL syntax and users are obliged to
transform a query into a XML tree format. Besides, several SPARQL operators
are not supported such as OPTIONAL, LIMIT, SUM to name a few. Querying over
static data is also not possible. Different from these systems, our design aims to
provide a generic, complete and production-ready distributed RSP engine that
could be easily used and practical for various applications.

3 WAVES Architecture

Fig. 1: WAVES Architecture overview

Figure 1 depicts an overview of WAVES architecture. The system processes dy-
namic and event-based data which are handled by distributed components, i.e.,
Redis [2] as an in-memory store, Kafka [13] as a publish-subscribe distributed
message broker and Storm [12] as a distributed stream processing framework. A
typical scenario in our system is as follows. First, measures are captured from
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a given sensor network. Events from these streams are cleansed, filtered and
possibly sampled before being transformed into a compressed RDF format and
submitted to the Kafka message broker for distribution to the querying compo-
nents. The step related to data cleansing takes place before the RDFization and
right after receiving sensors input. The module that addresses this part is op-
tional and relies on statistical models such as min-max value based outlier anal-
ysis. After that, the Smart’Ops read compressed RDF events from Kafka topics,
store them to create data sets (windows) and, once an execution point (step) has
been reached, evaluate a configured SPARQL query against the dataset. Query
results produce new (compressed RDF) events that are outputted to Kafka to
be processed by another Smart’Op, archived or displayed to the end-user by a
visualization module in which the goal is to ease the interpretation of analyzed
streams through different forms of graphics. WAVES comes with a JAVA API6

to help developers make desired extensions. Finally, the end-user could easily
parametrize the system based on an RDF configuration file which includes pa-
rameters such as the window size, step, continuous query, etc.

3.1 Event modeling and Time reference

WAVES, as an RDF streaming processing (RSP) engine, models data streams as
an unlimited flow of events where each event is a set of RDF triples associated to
a timestamp. The overall structure of an event in WAVES represents the obser-
vation recorded by the sensor and associated with a specific timestamp. Opposite
to many RSP engines, WAVES does not consider events as a set of independent
timestamped RDF triples but as an atom (timestamp graph) that can not be
split. Hence, WAVES evaluates the continuous query against whole events in the
window. This guarantees output consistency as no event fails to match the SE-
LECT clause because some of its triples are missing from the current evaluation
window, as this may occur in other RSP engines due to throughput issues [7].

While WAVES was designed as a real-time stream processing engine con-
suming sensor measures as they are being produced, many use cases mandate
processing past data recorded on files. For such cases, WAVES does not use the
current system clock but its own time reference. This time reference is a dis-
tributed, synchronized, shifted and accelerated clock; shifted to align WAVES
clock on the timestamp of the events read from files and accelerated so that
WAVES can process months of legacy data within minutes. Using this time ref-
erence, WAVES can synchronize the reading of timestamped data from many
input files distributed on a cluster so that events that occurred at the same
moment in the past are processed at the same time.

3.2 Kafka Message Broker and Storm-based Smart’OP

The Kafka component is becoming a de-facto standard in stream processing
engines and can be connected to most open-source streaming engines such as

6 WAVES Java API available at http://waves-rsp.org/api/index.html

4



Fig. 2: Waves Smart’OP

Apache Spark Streaming and Apache Storm. It acts as a distributed message
broker, based on a publish-subscribe approach.

Events are fetched from Kafka by a Storm-based Smart’Op component, which
consists of a set of distributed nodes implemented by a Storm topology, i.e. a
network of the so-called spouts and bolts. A spout is the source of stream and can
read data from an external source such as a Kafka topic. A bolt is a processing
logic unit which can perform any kind of processing such as filtering, joining,
aggregation or interacting with external data stores. Each spout or bolt executes
as tasks distributed across a Storm cluster, each task corresponds to one thread
of execution. Topologies execute across one or more worker, each worker being
a physical process running the Java Virtual Machine (JVM) and executing a
subset of all the tasks for the topology.

WAVES was designed to be a fault tolerant platform that enables the sys-
tem to continue operating properly when some of its components fail. Storm as
a stream processing engine guarantees that the processing runs infinitely, au-
tomatically restarting any workers if there are faults. The core of Storm is an
acking mechanism that can efficiently determine when a source tuple has been
fully processed. Storm will replay tuples that fail to be fully processed within
a topology-configurable timeout. So the core mechanisms in Storm provide an
at-least-once processing guarantee for data.

In a WAVES topology, each spout subscribes to a single events stream rep-
resented by a Kafka topic. As many spouts as streams taking part in query
evaluation are needed. For each stream, a windowing bolt is in charge of stor-
ing received events until a execution point (processing step) is reached. Due to
the distributed nature of WAVES topologies, a need for shared storage arose.
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WAVES relies on Redis in-memory store that natively supports rich data struc-
tures (such as sorted sets) and range queries as well as replication and periodic
on-disk persistence. Once a processing step has been reached, the query bolt
gathers the events in the current window for each input stream from the store,
uncompresses them to populate an in-memory RDF store and triggers the exe-
cution of the SPARQL query. The query results, if any, form the resulting event
for this step. After RDF encoding and compression, the Serializer bolt writes
this event into the Kafka topic associated to the output stream of the topology.

4 Stream Compression in Distributed Context (D-RDSZ)

A distributed architecture for semantic reasoning requires high scalability and
low latency to cope with massive real-time streams. However, frequent data
transfers between several components (e.g., messaging middleware, data stores,
etc.) produce significant overhead on the network and could affect the band-
width. There are various methods to deal with the complex issue of network
overhead. The one we will focus on is data compression, since RDF has a ver-
bose data structure. Being able to reduce the size of each RDF transfer is of
critical importance within a distributed architecture. As a solution, Garcia et
al. [6] proposed a new approach called RDSZ which takes the stance that events
in a given stream share structural similarities, i.e., the shape of the RDF graphs
are more or less the same. A new graph (e.g., set of RDF triplets, RDF file, RDF
event) can be represented on the basis of the previous graph. The main principle
is to break up each graph into two parts, namely the Pattern and the Bindings.
For each incoming graph, the subjects and the objects are replaced by variables
x0, x1,...xn. The pattern represents the relationships (i.e. RDF properties) be-
tween these variables, and the bindings represent the correspondences between
each variable and its value. Once the pattern extracted, the system checks if
it exists in a cache or not. If the pattern exists, its identifier is recovered and
associated with the bindings of the current graph. Otherwise, the pattern is at-
tributed a new identifier and stored in the cache. This ensures that each graph
pattern is stored only once in the cache and attributed a unique identifier. Then,
the bindings of the current graph N are compressed using a differential approach
based on the bindings of the previous graph N − 1. If the graph N shares bind-
ings with the graph N − 1, then they are replaced by blanks. Finally, only the
bindings and the pattern identifier are sent in the stream compressed using zlib7

which exploits additional redundancies to compress even more. Using the RDSZ
approach enables us to reduce the data streams up to 60% on average in our
experiments, which is already a significant rate.

In this work, we propose an extension of RDSZ to improve compression and to
adapt it for a distributed architecture. Our approach called D-RDSZ (Distributed
RDSZ), uses gzip8 instead of zlib. Introducing gzip scales down the initial data
amount more than zlib in our experiments. Then, we propose to reduce the

7 http://www.zlib.net/
8 http://www.gzip.org/
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URLs, which are long chains by introducing the namespaces. With each pattern,
we associated the list of prefixes and related namespaces. As a result, the new
URLs in the bindings appear much shorter than the original URLs, leading to
higher compression rate than the original RDSZ. Listing 1 represents an example
of bindings in our dataset after the D-RDSZ compression.

0- waves:event_1j_sh
1- waves:obs_1j_sh
2- waves:Q_DT01
3- "2015-01-01T01:15:00"^^xsd:dateTime
4- ssn:SensorOutput
5- "1.3E-1"^^xsd:double
6- ssn:ObservationValue

Listing 1: Example of Bindings after D-RDSZ compression

Fig. 3: D-RDSZ compression in distributed environment

In addition, as for RDSZ, the mechanism is still not adapted for distributed
architecture since encoding the current graph N is based on the bindings of
the previously processed graph N − 1. This requires data exchange between
distributed machines if the graphs N and N −1 are processed in different nodes,
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thus leading to a network overhead. To solve this problem, we propose to encode
the current graph N based on the bindings of the initially processed graph from
which the pattern has been extracted and stored. Hence, we create the so-called
D-RDSZ context with which we associate the pattern, the bindings of the graph
from which the pattern has been extracted and the prefixes. All the incoming
graphs are encoded based on the context with which they share the same pattern.
To guarantee the access to contexts in a distributed environment, we need to
store them in a centralized system. Redis has been chosen for storage due to its
convenient features (e.g key-value in-memory store, fast read/write, etc.). Each
context created is automatically stored in Redis as shown in Figure 3. Since the
contexts are stored in a centralized system, all the machines should have access
to compress and decompress RDF graphs. In addition, each machine benefits
from its local cache LRU (Least Recently Used). That is each machine contains
a cache with latest recently used patterns to speed up the read access.

5 Experiments

5.1 Evaluation Scenario

For evaluation, we use a real world dataset describing different water measure-
ments captured by sensors spread throughout the underground water pipeline
system. Values of flow, pressure and chlorine are examples of these measure-
ments. Basically, the set-up is built upon two queries with ascending complexity
to evaluate the behavior of each engine under varying environments. More pre-
cisely, we use the following two queries:

– Query 1: It returns the list of sensors that have measures between 5 and 12,
along with the observation timestamp.

– Query 2: It corresponds to the overall consumption represented by the sum
of input flow grouped by the observation timestamp.

For each of the above queries, we parametrized the window size (2 seconds
and 4 seconds) and the step (2 seconds and 1 second resp.) thus evaluating
respectively tumbling windows and sliding windows. Concerning the amount of
input streams, it is controlled by the number of sensors configured in the stream
generator, in which the interval between each sensor measurements is set to 1
second. We replicated each experiment 5 times to gain consistent results and
illustrate the distribution of result metrics obtained for (i) precision, recall to
evaluate output correctness; and (ii) execution time to evaluate performance.

5.2 Evaluation Metrics

– Stream Compression: The stream compression has been evaluated by mea-
suring the ratio between the uncompressed size and compressed size.

– Oracle Metrics: To check the correctness of query results, we used an oracle
that determines the validity (i.e., correct or incorrect) of the query results by
measuring the precision and recall. To achive this, we have used the oracle
proposed by the YABench RSP benchmark [7].
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– System Performance: To check the effectiveness of our distribution model
based on Apache storm, we have implemented a measurement toolkit which
analyzes thoroughly the behavior of the WAVES platform. To evaluate the
performance, we have measured the average execution time to run queries.

5.3 Stream Compression

Evaluating the D-RDSZ approach on our dataset produces the results shown
in Table 1. We can observe that applying gzip on streaming graphs increases
the compression rate by 15% compared with zlib. The addition of namespaces
improved this rate by 22% on average. We also observe that data compression
is very fast where the time to compress a single event is about 0.006 millisec-
onds. These results attest the effectiveness of our D-RDSZ approach to improve
compression and makes it feasible in distributed environment.

File number Size RDSZ RDSZ+gzip RDSZ+Ns D-RDSZ (RDSZ+gzip+Ns)

1 1.3 Kb 84.3% 89.2% 92.6% 93.5%

1000 1.4 Gb 62.4% 78.3% 72.4% 84.6%

Table 1: Compression results for one file and for 1000 files –Ns stands for Namespaces-

5.4 Precision and Recall

In this experiment, we compare our system with the conventional centralized
version of C-SPARQL engine. Even though C-SPARQL is not tailored towards a
distributed environment, we chose it to make the comparison due to the lack of
available and ready-to-use distributed RSP engines. According to certain bench-
marks [7, 4], C-SPARQL is known to be a popular RSP engine that delivers
correct results even under high input load compared with existing engines. Ta-
ble 2 shows the results of precision and recall for each of the three load scenarios
(small: s= 10 sensors, medium: s= 50 sensors, and high: s= 100 sensors). The
complexity of the scenarios is in the ascending order, from the least complex
configuration (i.e. scenario 1) that loads roughly 1.500 triples, to the most com-
plex configuration (i.e. scenario 3) that injects more than 20.000 triples. We can
observe that WAVES succeeds to maintain 100% precision and recall under small
and medium load (i.e. s = 10 sensors and s = 50 sensors) whereas C-SPARQL
achieves slightly lower values (precision is at 100% only under small load). Gen-
erally, we observe that recall is lower than precision for C-SPARQL, where the
values drop down dramatically when the engine is put under big load (e.g. s =
100 sensors). WAVES remains robust through all the scenarios with values above
75% for precision and recall.
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(a) Scenario1 (b) Scenario 2 (c) Scenario 3

WAVES C-SPARQL WAVES C-SPARQL WAVES C-SPARQL

Precision
Q1-2s/2s 100% 100% 100% 94% 98% 80%

Q1-4s/1s 100% 100% 100% 88% 84% 78%

Recall
Q2-2s/2s 100% 93% 97% 95% 79% 56%

Q2-4s/1s 100% 91% 94% 84% 72% 43%

Table 2: Precision/recall results for WAVES and C-SPARQL for (a) s= 10 sensors,
(b) s= 50 sensors and (c) s= 100 sensors.

5.5 System Performance

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Fig. 4: Q1 and Q2 execution time for the 3 scenarios: (a) s= 10 sensors, (b) s= 50
sensors and (c) s= 100 sensors.

To assess the scalability performance of WAVES, we use a metrics toolkit based
on the Dropwizard library [1]. By varying the number of EC2 instances that run
the apache Storm engine, we can confirm our distribution model effectiveness.
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The experimentation is based on three different set-ups by increasing the number
of nodes: 5 nodes, 10 nodes and 20 nodes. The graphs on Figure 4 indicate the
execution time with indicators for the windows for different input load (small:
s= 10 sensors, medium: s= 50 sensors, and high: s= 100 sensors). We found that
WAVES is generally two to three time faster than C-SPARQL with a 5 nodes
distribution model. However, the gap diminishes slightly under an important load
(i.e. s= 100 sensors) due to the notable set-up time the nodes take to process,
gather and send the results. It is also noticeable that WAVES system shows
the best overall results under medium distribution (i.e. 10 nodes), therefore the
overall performance gain for the 20 nodes set-up is not that significant.

6 Conclusion

In this paper, we have presented the design of a distributed and production-ready
RDF stream processing engine. Our generic architecture is based on the use of
popular big data frameworks which have proven to be useful in countless scien-
tific and industrial applications. The WAVES system is able to run continuous
queries on event-based streaming data in distributed environment. Moreover, it
is practical for various applications as the end-user needs just to manipulate few
parameters in the configuration file such as window size, step, query and par-
allelism degree. Finally, the evaluation results attest the performance and the
robustness of our system. In the future, we plan to enable querying directly over
compressed streams thus we do not need to decompress data which may improve
the performance. We also aim to extend the architecture by introducing novel
successful distributed frameworks such as Spark Streaming and Flink which have
recently proven to be effective for stream processing.
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