Remembering the Important Things: Semantic
Importance in Stream Reasoning

Rui Yan!, Mark T. Greaves?, William P. Smith?, and Deborah L. McGuinness'

b Tetherless World Constellation, Department of Computer Science,
Rensselaer Polytechnic Institute, Troy, NY, USA
yanr2@rpi.edu, dlm@cs.rpi.edu,

2 Pacific Northwest National Laboratory, Richland, WA, USA
{Mark.Greaves,William.Smith}@pnnl.gov

Abstract. Reasoning and querying over data streams rely on the abil-
ity to deliver a sequence of stream snapshots to the processing algo-
rithms. These snapshots are typically provided using windows as views
into streams and associated window management strategies. In this work,
we explore a general notion of semantic importance that can be used for
window management of RDF streaming data using semantically-aware
processing algorithms. Semantic importance exploits the information in
RDF streams and surrounding ontologies for ranking window data in
terms of its contribution to solution mappings. We also consider how
a stream window management strategy based on semantic importance
could improve overall processing performance, especially as available win-
dow sizes decrease.

Keywords: semantic importance, stream reasoning, RDF, cache, buffer,
window

1 Introduction

Stream reasoning has been proposed with the goal of bridging both seman-
tic reasoning and stream processing [9]. In stream reasoning, streaming data
are referred as “RDF streams” [3][4] if RDF is leveraged for data annotation.
RDF streams are usually considered to be boundless, thus there is no way to
host the overall data view with “enough” computing and storage resources. As
a common solution, a sliding window [I] with a limited size is typically em-
ployed to isolate relevant portions of the RDF streams, as well as to execute the
queries.A window is generated by providing a preset size and step, in which the
size refers to the maximum window data capacity and the step indicates how
the window advances. The window is usually associated with a window manage-
ment strategy that controls how the data in the window is consumed, processed
and evicted. A simple timestamp-based window management strategy is first-
in-first-out (FIFO), where items are replaced in strict order of arrival. Several
implemented systems work this way. C-SPARQL [3] leverages either time-based
or count-based sliding windows, where data enters and exits in a First-In-First-
Out (FIFO) order. IMaRS [2] focuses reasoning tasks by both assigning each new

datum with a time-to-live periodﬂ and truth maintenance informatiorﬂ also in
FIFO order. Basically, all timestamp-based strategies implicitly assume that a
temporal ordering reliably reflects importance to the processing task, and thus
timestamp-based window management will maximize the processing algorithms
ability to deliver accurate interpretations of the stream.

Keeping the eviction order linked to the arrival order for data works well
in systems like [2] and [3], where the expiration timestamp is either absent or
assigned by the system. However, if data needs to exit the window out of order,
FIFO-based strategies will not generally be adequate. This can happen if the
streaming data itself carries out-of-order expiration timestamps, or if the expi-
ration of the data is determined by other data in the stream, or if the use case
supplies data in no particular order.

Our work is motivated by scenarios where stream reasoning needs more gen-
eral window management strategies that preserve the most important data in
the current window and preferentially evict the rest, so that the retained data
can continue maximally leveraged.

The technical contributions include (1) the introduction of semantic impor-
tance along with an empirical definition; (2) a conceptual model of semantic
importance that includes RDF stream management metrics; (3) an exposition of
how our semantic importance conceptual model can be used to encode orderings
and improve stream reasoning system performance.

2 Semantic Importance

Semantic importance enables order-aware window management that considers
not only the temporal attributes of the data, but also the data contributions to
solution mappings. We define semantic importance using a set of key metrics,
each of which captures different aspects, including but not limited to query
contribution, provenance, trustworthiness and domain awareness.

Specifically, for each datum EI , its semantic importance is a priority vector
[8] with elements preferentially ordered and with no restriction on the number of
vector elements. This allows us to consider multiple semantic importance met-
rics simultaneously while preserving the ability to prioritize some metrics. For
example, if an RDF stream is associated with an explicit expiration timestamp
(Tewp), the priority vector [7esp| will consider unexpired data to be important. If
the query contribution (qc) is included, the priority vector [Tesp, gc] can empha-
size Teyp over qc and thus encode that one unexpired datum is more important
than another if it contributes more to the result, and expired data becomes less
important however big its contributions are, in order to guarantee the constant
output with the latest answers. By explicitly characterizing the importance for

3 IMaRS attaches each data with an expiration timestamp that is calculated by adding
the arrival timestamp to the window size.

4 IMaRS incrementally materializes the inferences and manages both explicit and
implicit statements based on the expiration timestamp of the asserted data.

® for RDF this is a graph that can contain one or more triples

S——— Domain
’ Domain
Trust Model }7mode\S—> @) <—enable: Awareness
“ | geethinessy; noludes™ | Awareness

includes Semantic s |
Digital
Provenance subClassOf.

Importance
E— \v includes includes hasFrequency subClassOF
Logical subClassOf / \ 1
e

Provenance SubClassOf uery
e Provenance Query ‘ Frequency ‘ Participation

Contribution

‘ prwsieal | aunciessy Priority Vector 1 hasFrequency Particpation
- g subClassOf subClassOf _Frequency J
Temporal Reasoning |—hasRecency.
Provenance subClassOf \—‘ Participation ’»
inclides includes) hasFrequency” .
includes includes hasRecency ~ Query
" " P Query *{ Recenc: ‘ Reasoning
‘ Cencoics ‘ amival ‘ ‘ I ‘ Recent P.snmsemedsyg{ T Participation r ‘Panicipation

' Recenc;

-subClassOf
subClassOf

Fig. 1. Semantic importance conceptual model

each datum in the stream, we can enable order-awareness by ranking the seman-
tic importance priority vectors as follows: priority vector vq = [x1,¥1] compares
to vg = [x2,ys] by first comparing the most preferred element x; and xs. If
T1 > T, then vy > wo; if 1 < xo, then vy < wvo; if 1 = x5, then continue to
compare the next less preferred element y; and yo, if y1 < yso, then v; < vy; if
Y1 > Y2, then vy > vo; if y1 = yo, then v; = vs. Priority vectors with more than
two elements follow the same pattern.

3 Aspects of Semantic Importance

Figure shows the current four aspects (in green color) of semantic importance.
For query contribution, we further distinguish two components: frequency and
recency. Frequency is an integer value that describes how many times a valid da-
tum participates in the query, and recency describes the most recent timestamp
for a valid datum participating in the query. Further, we distinguish two types of
query contribution of a stream datum: query participation (direct graph pattern
matching), and reasoning participation (intermediate graph pattern matching
during reasoning) , where “participation” refers to the process in which the so-
lution mappingﬂ is generated by SPARQL query and streaming data. Both query
and reasoning participation have corresponding frequency and recency.
Provenance in Figure[l]is also a factor in judging the importance of a stream-
ing datum [5]. Temporal provenance includes (1) generation timestamp, assigned
by the streaming source, which describes when the data is generated; (2) arrival
timestamp, assigned by the processing system, which describes when the data
arrives at the system; (3) expiration timestamp, assigned by either the process-
ing system or the streaming source, which describes when the data expires; (4)
recency timestamp, assigned by the system, which is associated with the query
contribution recency. We include physical and logical provenance [6] as aspects
of semantic importance as well. For example, sensors’ physical geo-location and

S https://www.w3.org/TR/rdf-sparql-query/#sparqlSolutions

https://www.w3.org/TR/rdf-sparql-query/#sparqlSolutions

maintenance information fall into physical provenance; while sensor’s measur-
ing type falls into logical provenance. We also include provenance prominent
in social network contexts that we call digital provenance. Digital provenance
examples include digital geolocation information, user ID, and device ID. For
example, consider a system that processes a tweet stream about UEFA EURO
2016, and executes the query what is the sentiment distribution of UK residents
on England’s loss to Iceland?. Digital provenance can be used to filter the data
in the stream window because only those tweets with UK geolocation will be
important to the query.

Trustworthiness is another aspect of semantic importance. Consider a smart
city application where many traffic sensors are installed, and a shifting number
of them are broken and issue erroneous readings. Assigning a specific trustwor-
thiness score for each data element allows the system to manage the streaming
window based on whether the individual data elements can be trusted. [7] de-
scribes modeling trust in streaming data, and provides a theoretical foundation
to calculate a trust score online for each arrival data element. A trust range or
threshold can be provided to capture the data with an adequate trust score, and
be used to manage the window.

Query contribution, provenance, and trustworthiness are largely independent
of the precise subject matter of the RDF stream, and so they provide compo-
nents of a generic model of semantic importance. However, specific situated
topics and reasoning tasks can contribute significant domain-dependent consid-
erations. By examining the actual domain and specific streaming data use cases,
we can join generic aspects with domain-specific ones, and model semantic im-
portance in a more precise way. Our domain-aware aspect supports the modeling
use case requirements, such as the goal of the streaming analysis, background
knowledge and system constraints, etc. We are testing our approach in a soc-
cer offside offence detection use case, comprising data on the real-time position
of the ball and everyone on the field. Because only soccer players can commit
offside offences, we can conclude that positional data for the referees will never
contribute to an offside offence quers[’|, and can be flushed from the window.
In order to enable domain-awareness in stream reasoning systems, we can pro-
vide a domain-aware importance ontology that encodes the domain information
necessary for the pre-registered continuous queries. This is different from the
background ontology that encodes the essential knowledge of the domain, and is
specifically focused on capturing domain knowledge that impacts querying and
reasoning required to answer questions.

4 Remembering the Important Things

We discuss some interesting observations from our soccer use case experiments.
First, window generation and moving is not constrained by semantic importance,

" Referee’s position would be relevant for being in a position to “see” the offense but
not actually to “affect” if the offense really occurs.

whose focus is on window management. Second, semantic importance can inter-
act with data arrival order. In FIFA Laws of the Game, a player commits an
offside offence by being in an offside position before interfering with the play.
Thus :player :at :OffsidePosition data must arrive earlier than :player :interfere
:play. The query, who commits offside offence, will not yield the result if these
statements are not simultaneously in the window. Further, depending on the
nature of the query, it is possible that neither alone will participate in the query,
and so neither will be judged as semantically important without the other. And,
if either datum is evicted from the window because it is not important, then the
query will give an incorrect result. One possible solution is to decompose the
query to alleviate query constraints.

We can decompose our offside query by asking who is at an offside position
and who interferes with play. These two queries do not generate or combine
results in stream, instead, they look for offside offence relevant data so that
the window can update the semantic importance and rank the data to preserve
necessary information. Once all necessities are collected, the target query is
executed to provide final results.

Once the domain aware requirement ontology is in the system, domain lit-
erate filtering can be performed. Data can be ranked by its domain relevance,
then irrelevant data can be filtered out because it is not important. Using the
soccer offside example, any player information not used to calculate an offside
position should not be considered as important. Domain literate filtering can
significantly reduce the data space before the target query is executed, which
enhances system response. It is typically suitable when the query relevant data
is sparsely distributed in the data stream.

Semantic importance can be used to model several typical order-aware win-
dow management strategies: FIFO can be implemented as [, 7,4], where T, is
the expiration timestamp and 7, is the generation timestamp. Least Frequently
Used (LFU) as [re, frp, Tg|, where f,, denotes the reasoning participation fre-
quency and Least Recently Used (LRU) as [T¢, Typ, 74|, Where 7., denotes the
reasoning participation recency timestamp. If domain literate filtering needs to
be performed with FIFO, we can implement new strategy FIFO /DL as [dl, 7, 7]
where dl denotes the domain literate filtering indicator.

Implementing semantic importance increases system overhead for computing
the query contribution metrics because a reasoning explainer is required to trace
back to the reasoning process to collect asserted statements. Domain literate
filtering needs to perform a set of SPARQL queries that could potentially match
a large fraction of the streaming data, which takes some time.

5 Conclusion and Future Work

We presented our preliminary notion of semantic importance together with its
key aspects, and described how to use semantic importance to enable order-
awareness in stream reasoning. Semantic importance enables a flexible, power-
ful, efficient and customizable framework to support window management that

can maintain and potentially improve reasoning results in compute- and space-
limited settings. There are more details of our specific use of semantic importance
in the soccer offside offence use case EL where we have been able to show that
semantic importance can be used to identifiy important data, increase accuracy
in reasoning-based query answers and be the basis of streaming window man-
agement strategies. In the future, we will further develop the conceptual model
by both adding more aspects and enriching additional details of each aspect.

6 Acknowledgments

The research described in the paper is part of the Analysis in Motion research
initiative at the Pacific Northwest National Laboratory, a multi-program na-
tional laboratory operated by Battelle for the U.S. Department of Energy under
contract DE-AC06-76RLO-1830. The work was conducted under Laboratory Di-
rected Research and Development (LDRD) funding from PNNL to RPIL

References

1. Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru
Nishizawa, Justin Rosenstein, and Jennifer Widom. Stream: the stanford stream
data manager (demonstration description). In Proc. of the 2003 ACM SIGMOD
international conference on Management of data, pages 665-665. ACM, 2003.

2. Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and
Michael Grossniklaus. Incremental reasoning on streams and rich background knowl-
edge. In Fxtended Semantic Web Conference, pages 1-15. Springer, 2010.

3. Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and
Michael Grossniklaus. C-sparql: a continuous query language for rdf data streams.
International Journal of Semantic Computing, 4(01):3-25, 2010.

4. Jean-Paul Calbimonte. Rdf stream processing: let’s react. In Proceedings of the
3rd International Conference on Ordering and Reasoning-Volume 1303, pages 1-10.
CEUR-WS. org, 2014.

5. Ming Gao, Che-Qing Jin, Xiao-Ling Wang, Xiu-Xia Tian, and Ao-Ying Zhou. A sur-
vey on management of data provenance. Chinese Journal of Computers, 33(3):373—
389, 2010.

6. Hyo-Sang Lim, Yang-Sae Moon, and Elisa Bertino. Research issues in data prove-
nance for streaming environments. In Proc. of the 2nd SIGSPATIAL ACM GIS
2009 International Workshop on Security and Privacy in GIS and LBS, pages 58—
62. ACM, 2009.

7. Hyo-Sang Lim, Yang-Sae Moon, and Elisa Bertino. Assessing the trustworthiness
of streaming data. Technical report, Technical Report TR 2010-09, CERIAS, 2010.

8. Thomas L Saaty. Decision-making with the ahp: Why is the principal eigenvector
necessary. Furopean journal of operational research, 145(1):85-91, 2003.

9. Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel. It’s
a streaming world! reasoning upon rapidly changing information. IEEFE Intelligent
Systems, 24(6):83-89, 2009.

8 https://tw.rpi.edu/web/Courses/Ontologies/2016/projects/soccer

https://tw.rpi.edu/web/Courses/Ontologies/2016/projects/soccer

	Remembering the Important Things: Semantic Importance in Stream Reasoning

