
Lucas-Interpretation from Users’ Perspective

Walther Neuper
University of Technology, Graz, Austria

wneuper@ist.tugraz.at

IICM, Institute for Computer Media

Requirements-engineering for educational software [14] raised the question, how much efforts would be required
for implementing substantial material from mechanics [16, 17] in a system based on technology from Computer
Theorem Proving (TP). The question appears relevant for several kinds of “users”: for decision makers, for
course designers and last not least for staff from faculties of engineering, who is interested to implement their
own examples and exercises in the future.

Since TP is new in the field, there are some general informations about how to implement material in a
TP-based system: First there needs to be a so-called “theory” which collects or imports all definitions used in
the material and which formalizes respective theorems and proofs. The system under consideration is Isac [3],
a prototype based on the TP Isabelle [2]. Isabelle’s standard distribution contains most of the mathematics
required, multivariate analysis 1 etc. Further material is in the Archive of Formal Proofs [1]. And what is not
yet covered by these sources, can be defined as axioms preliminarily, see for instance2 . Specification of problems
is not much effort, see some prototype implementations3 . The focus of the paper are the methods solving the
problems.

The paper is organised as follows: §1 presents LI as a slight extension of usual interpreters for programming
languages and introduces an example used throughout the paper 4, §2 discusses the present state and future
development of Isac’s programming language. Because the latter is purely functional, without any statement
for input or output, there is the question “Where are the Interactions from?” raised in §3 before a conclusion
reshapes LI’s advantages for educational software.

1 A Slightly Extended Interpreter

An interpreter of a programming language works as sketched in Fig.1 on p.2: The interpreter reads a statement
at a certain location in a program; the statement is interpreted such that the location moves on to another
statement to be read next; the interpreter also maintains an environment, which pairs identifiers encountered in
statements with respective values; a step of interpretation updates the environment according to the interpreted
statement.

A Lucas-Interpreter (LI) extends the above with additional elements and actions: First a step of calculation
is constructed by each step of interpretation. Guarantee of correctness for steps in calculations is the purpose of
the additional elements; for logical details see [12], here follows a general explanation according to Fig.1:

A theory provides the language elements for certain logical expressions collected in a context [18]. In each step
of interpretation the context provides the logical facts required to correctly deduce the next step of calculation;
this action is called prove in Fig.1. A blue square in this figure indicates, that input of a formula or tactic to
the calculation is proved correct by automated provers using the current context, which is updated at each step
of interpretation.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

1https://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate_Analysis/index.html
2https://intra.ist.tugraz.at/hg/isa/file/e7afa662670b/src/Tools/isac/Knowledge/Biegelinie.thy
3http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index_pbl.html
4The running example is part of another example used with another perspective in [14].

https://isabelle.in.tum.de/dist/library/HOL/HOL-Multivariate_Analysis/index.html
https://intra.ist.tugraz.at/hg/isa/file/e7afa662670b/src/Tools/isac/Knowledge/Biegelinie.thy
http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index_pbl.html

Figure 1: Survey on Lucas-Interpretation

The scope of environments with respect to programs with nested sub-programs has been clarified in the
discipline of compiler-construction. However, the scope of contexts in the presence of theories and “locales” is
not yet settled [18]. Isac uses the following scoping rules: a context is initialised by the pre-conditions at the
start of interpretation, it is visible in sub-programs; the context of a sub-program remains local except predicates
containing variables declared in the output of the respective sub-program.

The execution of the program’s statements is done by rewriting, as usual with functional programs (where one
speaks about “evaluation” of “functions” instead of “execution” of “programs” as we do here). In the present
state of Isac’s prototype there are lots of evaluators: for list-expressions in programs, for normalisation of user
input (for checking correctness). for pre-conditions, etc. Compiling these evaluators is an elaborate, expensive
and error-prone task. So migration of Isac’s programming language to Isabelle’s function package [5] shall free
the programmer from these tasks. As soon as this integration is done, all the functions available for Isabelle/HOL
are ready for LI, including those which implement computer algebra (see for instance [7, 13]).

A program is accompanied by a “guard”; guard and program together are called a “method” in Isac. The
guard is not contained in Fig.1; below an example is copied from [14] §.1:

1 Guard:

11 Given: Masses m = 2 kg, Length l0 = 0.3 m, Consts {c1 = 1.1 kg
s2
, c2 = 2.2 kg

s2
}, Damper d = 0.4 Ns

m

12 Where: 0 < m ∧ l0 < 0
13 Find: Matrixes {M(m), D(d), C(c1, c2)}, DiffEq M · ẍ + D · ẋ + C · x = F
14 Relate: ∃x. ∀t. t > 0⇒M · ẍ + D · ẋ + C · x = F

Given in line 11 lists the concrete input items to the program, Find declares the output item(s). Where is the pre-
condition, which shows, that the Guard is a conjunction of predicates restricting input (and restrictions imposed
by physical contants could be added here as well). In Relate the post-condition relates input and output (in the
sense of [4]); this particular post-condition can be proved by the theory of differential equations, but it is not
immediately useful for an engineer, who wants the solution of an equation and not only some promise by ∃.

2 The Interpreted Language

Isac’s programming language has been implemented [9] before the “function package” [5] has been introduced
to Isabelle. But Isac’s language has been designed such, that it anticipated the function package and now the
former can be explained in terms of the latter.

Functions in Isabelle/HOL must be total in order to keep the logic consistent. Isac’s programs are not total
in general, their input is restricted by pre-conditions as shown in §1. Thus Isac’s programs are declared as
partial function in Isabelle.

A major difference between Isabelle and Isac concerns the purpose of functions: while the former is built
for proving properties of functions, for evaluating them and probably generating efficient code from them, the
latter is built for stepwise construction of calculations solving problems in (applied) mathematics. Construction
of calculations comprises interactively specifying and solving the respective problem. Below the guard from §1
above is re-used by the Specification (thus not shown again and folded in) for a Problem with a Solution as
follows:

21 Problem [determine, 2-mass-oscillator, DiffEq]:
211 Specification:
212 Solution:
2121 forces of springs
2122 [Fc1 = c1x1, Fc2 = c2(x2 − x1), Fc3 = c1x2]
2123 forces of dampers
2124 [Fd1 = dẋ1, Fd2 = dẋ2]
2125 mass times acceleration equals sum of all forces
2126 [mẍ1 = −Fc1 + Fc2 − Fd1 − F1, mẍ2 = −Fc2 − Fc3 − Fd2 + F2]
2127 Substitute [Fc1, Fc2, Fc3, Fd1, Fd2]
2128 [mẍ1 = −c1x1 + c2(c2 − x1)− dẋ1 − F1, mẍ2 = −c2(c2 − x1)− c1x2 − dẋ2 + F2]
2129 Rewrite Set normalise
212a [mẍ1 + dẋ1 + c1x1 − c2(x2 − x1) = F1, mẍ2 + dẋ2 + c2(x2 − x1) + c1x1 = F2]
212b switch to vector representation

212c

(
m 0
0 m

)(
ẍ1

ẍ2

)
+

(
d 0
0 d

)(
ẋ1

ẋ2

)
+

(
c1 + c2 −c2
−c2 c1 + c2

)(
x1

x2

)
=

(
0
F1

)
+

(
0
F2

)
22

(
m 0
0 m

)
ẍ +

(
d 0
0 d

)
ẋ +

(
c1 + c2 −c2
−c2 c1 + c2

)
x =

(
0
F1

)
+

(
0
F2

)
The above Solution is considered as close to a calculation written by hand on a blackboard as possible; on the
left margin there are the formulas of the calculation (indented according to the calculation’s structure), on the
right margin there are the tactics and hints; the rest should be self-explanatory. The Solution is the result of
Lucas-Interpretation of this program:

. partial function diffeq 2 mass oscil (m, l 0, [c 1, c 2], d, springs, dampers, sums) =
1 let

11 begin parallel

1101 springs = Take springs “forces of springs”
111 parallel

1111 dampers = Take dampers “forces of dampers”
112 parallel

1121 sums = Take sums “mass times acceleration equals sum of all forces”
12 end parallel

13 diffeq = Take sums “”
14 diffeq = Substitute [springs, dampers]
15 diffeq = Rewrite Set normalise
16 diffeq = Rewrite Set vectorify “switch to vector representation”
2 in

21 diffeq

The partial function diffeq 2 mass oscil gets the arguments (m, l 0, [c 1, c 2], d, springs, dampers, sums)
from the preceeding specification phase. The first lines 2122..2126 of the calculation could have been constructed
in arbitrary order; this is reflected by the lines 11..12 in the above function: the statement parallel models
parallel execution, while the remaining statements 13..17 represent a sequence.

Above there are specific statements, called “tactics” in weak analogy to TP: Take, Substitute and
Rewrite Set as examples for some dozen others. Tactics are handled by LI like “break points” by debug-
gers: interpretation halts at the tactics and passes control to the dialog component, which decides how to pass
control back to LI, see the next section.

3 Where are the Interactions from?

As shown in §2 by example, a program in Isac is purely functional as is an Isabelle function, without side-effects
and without input or output. However, LI creates side-effects in a specific way and cooperates with a dialogue
component. The architectural design is shown in Fig.2. The WorksheetDialog implements the observer pattern
[6] and listens to two active components: the Worksheet as interface to the user on the one side and to the
MathEngine as interface to LI on the other side; the latter is active in the sense, that response may be delayed
due to heavy prover activity:

Here come some details, how automated dialog generation works, by use of the running example: LI starts
after successful completion of interactive specification, reads line 11 in the function on p.2 and halts at the tactic

Figure 2: Isac’s dialog component

Take. By delivering a CalcEvent the MathEngine passes control to the WorksheeDialog. Now the dialogue is
free to choose various kinds of interaction from the DialogRules according to the UserModel : the user can be
a novice and might prefer to watch passively, or the dialog-mode is set to “exam” and forces the student to be
active, etc. So, the dialog might . . .

• allow the student to request the next formula (passive watching)
• suggest the kind of next step by “forces of springs”
• provide a partial next formula like [Fc1 = . . . , Fc2 = . . . , Fc3 = . . .] to be completed as shown by [14].Fig.2.
• suggest further parts of the formula (some more activity)
• enforce input of the formula (maximal activity on the student’s side): each of the lines 2122, 2124 or 2126

could be input due to the parallel statement. And the input formula can have arbitrary format as long
as it is algebraically equivalent, due to simplification to a normal form in the MathEngine.

• allow to review the method helping in construction of the calculation (if not in “exam” mode)
• allow to investigate Isac’s mathematics knowledge base, look at other examples and continue with the

calculation eventually.
• etc.

Depending on the decision of the WorksheetDialg after some UserActions and DialogActions the respective
CalcRequest is sent to the MathEngine. The latter responds with a CalcEvent, which notifies the Worksheet (by
the way controlled by the WorksheetDialog) that a new CalcElement waits to be fetched from the MathEngine
via a CalcIterator, which has read-access to the whole calculation under construction by LI.

The kind of interaction described above can be considered a dialog between partners on an equal base: both,
the student and the system, are able to do steps of calculation more or less actively. The architecture reflects
this balance, where LI is the source of power on the system side during interactive calculation.

In the present state of development the DailogRules are implemented only to an extent which allows demon-
stration of LI by Isac’s prototype. A general machinery [8] is ready to cope with the complexity of interaction
expected in the future. Respective “dialog authoring” will be an efficient investment: interactions in doing math-
ematics are considered independent from various areas of mathematics; also differences in behaviour of novices
versus experts are considered the same in all areas.

The present state of development, the UserModel is still a stub. The stub is designed such, that each student
is assigned an indiviual data set, which can be preset as well as updated during a session: error rates on specific
knowledge items (rule, problem, method, example), preferences in interaction and current dialog mode. Three
modes are envisaged at least: investigation, exercise, examination (the modes are subsets of DailogRules).

Relevant in the context of questions about efforts for implementation of interactive TP-based course material
is: the implementation of functions is not concerned with interaction at all, a “mathematics author” can focus
mathematics and nothing else.

4 Conclusion

In spite of higher complexity of TP-based systems with Lucas-Interpretation as compared with a Computer
Algebra System, the implementation of course material does not require more efforts in principle, as soon
as Isac’s programming languages has migrated to Isabelle’s function package. Purely functional programs are
specifically interpreted by so-called Lucas-Interpretation (LI), which generates steps of calculation and respective
dialogue guidance as side-effects of steps in interpretation.

Lucas-Interpretation maintains a context, which provide the most powerful technology available with logical
facts for checking correctness of user-input. Thus there is maximal freedom for input – for algorithmic sequences
as well as for formula representation: equivalence modulo a theory is checked with maximal reliability. The
ability to propose a next step in calculations is the novel feature contributed by Lucas-Interpretation.

No additional efforts are required when programming methods to solve engineering problems: checking steps
and proposing steps is done by Lucas-Interpretation automatically and in cooperation with a dialogue module
user-guidance is generated automatically.

Finally, after fifteen years of conceptual work and of prototyping, a successful proof of concept [10, 11, 15]
some time ago and after the recent requirements engineering, Isac appears ready to start development for a
professional release usable at universities of applied sciences.

References

[1] Archive of Formal Proofs. http://afp.sourceforge.net.

[2] Generic proof assistant “Isabelle”. http://isabelle.in.tum.de/.

[3] Isac-project. http://www.ist.tugraz.at/isac/History.

[4] Dines Bjørner (2006): Software Engineering. Texts in Theoretical Computer Science 1,2,3, Springer, Berlin,
Heidelberg.

[5] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkk & John Matthews (2008): Imperative
Functional Programming with Isabelle/HOL. In Otmane Mohamed, Csar Muoz & Sofine Tahar, editors:
Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science 5170, Springer Berlin /
Heidelberg, pp. 134–149, doi:10.1007/978-3-540-71067-7 14. Available at http://dx.doi.org/10.1007/

978-3-540-71067-7_14.

[6] Ralph Johnson Erich Gamma, Richard Helm & John M.Vlissides (1994): Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.

[7] Florian Haftmann, Andreas Lochbihler & Wolfgang Schreiner (2014): Towards abstract and executable multi-
variate polynomials in Isabelle. Isabelle Workshop 2014, http://www.infsec.ethz.ch/people/andreloc/
publications/haftmann14iw.pdf.

[8] Markus Kienleitner (2012): Towards “NextStep Userguidance” in a Mechanized Math Assistant. Master’s
thesis, IICM, Graz University of Technology. Bakkalaureate Thesis.

[9] Walther Neuper (2001): Reactive User-Guidance by an Autonomous Engine Doing High-School Math. Ph.D.
thesis, IICM - Inst. f. Softwaretechnology, Technical University, A-8010 Graz.
http://www.ist.tugraz.at/projects/isac/publ/wn-diss.ps.gz.

[10] Walther Neuper (2006): Angewandte Mathematik und Fachtheorie. Technical Report 357, IMST – Innova-
tionen Machen Schulen Top!, University of Klagenfurt, Institute of Instructional and School Development
(IUS), 9010 Klagenfurt, Sterneckstrasse 15.
http://imst.uni-klu.ac.at/imst-wiki/index.php/Angewandte_Mathematik_und_Fachtheorie.

[11] Walther Neuper (2007): Angewandte Mathematik und Fachtheorie. Technical Report 683, IMST – Innova-
tionen Machen Schulen Top!, University of Klagenfurt, Institute of Instructional and School Development
(IUS), 9010 Klagenfurt, Sterneckstrasse 15.
http://imst.uni-klu.ac.at/imst-wiki/index.php/Angewandte_Mathematik_und_Fachtheorie_2006/2007.

[12] Walther Neuper (2012): Automated Generation of User Guidance by Combining Computation and Deduc-
tion. pp. 82–101, doi:10.4204/EPTCS.79.5. http://eptcs.web.cse.unsw.edu.au/paper.cgi?THedu11.5.

[13] Walther Neuper (2014): GCD — A Case Study on Lucas-Interpretation. In: Joint Proceedings of the
MathUI, OpenMath and ThEdu Workshops and Work in Progress track at CICM, Coimbra, Portugal.
http://ceur-ws.org/Vol-1186/paper-17.pdf.

http://afp.sourceforge.net
http://isabelle.in.tum.de/
http://www.ist.tugraz.at/isac/History
http://dx.doi.org/10.1007/978-3-540-71067-7_14
http://dx.doi.org/10.1007/978-3-540-71067-7_14
http://dx.doi.org/10.1007/978-3-540-71067-7_14
http://www.infsec.ethz.ch/people/andreloc/publications/haftmann14iw.pdf
http://www.infsec.ethz.ch/people/andreloc/publications/haftmann14iw.pdf
http://imst.uni-klu.ac.at/imst-wiki/index.php/Angewandte_Mathematik_und_Fachtheorie
http://imst.uni-klu.ac.at/imst-wiki/index.php/Angewandte_Mathematik_und_Fachtheorie_2006/2007
http://dx.doi.org/10.4204/EPTCS.79.5
http://eptcs.web.cse.unsw.edu.au/paper.cgi?THedu11.5
http://ceur-ws.org/Vol-1186/paper-17.pdf

[14] Walther Neuper (2016): Rigor of TP in Educational Engineering Software. In: submitted to CICM, Bia-
lystok, Poland. http://www.ist.tugraz.at/projects/isac/publ/tp-engin-sw.pdf.

[15] Walther Neuper & Johannes Reitinger (2008): Begreifen und Mechanisieren beim Algebra Einstieg. Technical
Report 1063, IMST – Innovationen Machen Schulen Top!, University of Klagenfurt, Institute of Instructional
and School Development (IUS), 9010 Klagenfurt, Sterneckstrasse 15.
http://imst.uni-klu.ac.at/imst-wiki/index.php/Begreifen_und_Mechanisieren_beim_Algebra-Einstieg.

[16] Wolfgang Steiner (2012): Vorlesungsskriptum Technische Mechanik II. Sommersemester 2012. FH OÖ
Campus Wels.

[17] Wolfgang Steiner (2015): Vorlesungsskriptum Technische Mechanik III. FH OÖ, Fakultät für Technik und
Umweltwissensschaften.

[18] Makarius Wenzel (2015): The Isabelle/Isar Implementation. http://isabelle.in.tum.de/

website-Isabelle2015/dist/Isabelle2015/doc/implementation.pdf.

http://www.ist.tugraz.at/projects/isac/publ/tp-engin-sw.pdf
http://imst.uni-klu.ac.at/imst-wiki/index.php/Begreifen_und_Mechanisieren_beim_Algebra-Einstieg
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/implementation.pdf
http://isabelle.in.tum.de/website-Isabelle2015/dist/Isabelle2015/doc/implementation.pdf

	A Slightly Extended Interpreter
	The Interpreted Language
	Where are the Interactions from?
	Conclusion

