Thesis abstract: “Design and development of a
tool based on Coq to write and format
mathematical proofs”

Théo Zimmermann Hugo Herbelin (supervisor)

Coq is an interactive proof assistant relying on a foundation language which is
both a logical framework and a strongly-typed programming language. It has
recently increased in popularity thanks to two ACM prizes and some significant
proof developments by George Gonthier and his team. Foundational mathe-
maticians have started to be really interested in Coq, in particular in the links
between type theory and homotopy theory. Yet, it is still a tool that requires
some “hacker” skills to use.

A general aim of my PhD thesis is to progress along the path of making Coq
easier to use for any mathematician. In particular, I wish to make it attractive
by transforming it into a tool to write and format mathematical proofs.

Mathematical writing

There has already been a lot of work in this direction, for various proof assistants.
We can cite in particular Mizar and its Journal of Formalized Mathematics, and
Martijn Oostdijk’s and Yann Coscoy’s PhD theses.

I plan to create a tool to transform proof scripts through a number of steps,
each adding constraints to the form the proof script should take. Coq’s tactic
language is indeed very flexible and the proof scripts can take many forms and
styles. We will target a style that is as close as possible to informal mathematical
writing so that the last step, which will be to transform a proof script into
English (and LaTeX), is as straight-forward as possible. Preliminary experiments
have shown that it is indeed possible to produce such a “mathematical” style in
Coq, using its tactic language, unmodified. Additionally, we want to make the
last translation (from Coq to English) reversible, so that the generated articles
can be re-interpreted and checked by Coq.

Technically, this tool will be based on Arnaud Spiwack’s infrastructure to in-
strument proof script execution, which is available in Coq 8.5. This will allow
transforming the scripts while they are being written, thus providing useful
feedback to the mathematician.



On a theoretical level, one of the goals is to understand how transformations
between various proof styles maintain the ability to reconstruct the implicit
information (information which can be reconstructed by the unification algorithm
or some decision or semi-decision procedure).

In this thesis, we restrict ourselves by targeting only arithmetical proofs. However,
we also want to make the tool easily extensible, so that other domains can be
added. I will evaluate the quality of the tool by using it on some examples of
formalization projects and promote its testing by enthusiastic early adopters.

CICM being a community in which this project perfectly fits, I will try to attend
each of its meetings where I will strive to publish and present my progress.

Internship work continued: Theorem transfer

I had previously started working on ideas which make proof formalization closer
to pen-and-paper mathematics during an internship with Hugo Herbelin, now
my PhD supervisor. The main goal of the internship was to help reason modulo
isomorphism. The work I did then was to devise and implement an algorithm to
automatically transfer theorems between two related types, given the right kind
of user-provided declarations.

I generalized upon the work of Matthieu Sozeau, on generalized rewriting, and
of Cyril Cohen, et al., on type refinements, and obtained a set of inference rules
which allow the transfer to take place. I presented this work at CICM 2015 in
the work-in-progress track. The anonymous referees then pointed me to other
works on the topic, in the context of Isabelle, of which I had not yet been aware.
The ideas behind Isabelle’s Transfer package, which are described in great detail
in Ondrej Kuncar’s PhD thesis, are very close to my own, which, while validating
the path I had taken, also make it harder to publish my own work as novel.

Since the conference, I have finished implementing a prototype of my transfer
method. The implementation is a small library!, relying on Coq’s type class
mechanism. It is able to transfer all sorts of theorems, including theorems
about predicates, such as induction principles. Following my work and Jérémie
Koenig’s binary logical relation library, Matthieu Sozeau is now, with my help,
extending once more the rewriting capabilities of Coq to include rewriting with
heterogeneous binary relations (relations between elements of two distinct types).
I foresee that theorem transfer will then become a special case of generalized
rewriting, benefiting at the same time from a more robust implementation.

IThis library is available at https://github.com/Zimmi48/transfer.


https://github.com/Zimmi48/transfer

	Mathematical writing
	Internship work continued: Theorem transfer

