
Evaluation of monitoring systems for metric collection in
intelligent cloud scheduling

I.S. Kadochnikov1,a, N.A. Balashov1,b, A.V. Baranov1,c, I.S. Pelevanyuk1,d,
N.A. Kutovskiy1,2,e, V.V. Korenkov1,2,f, A.V. Nechaevskiy1,g

1 Joint Institute for Nuclear Research, 6 Joliot-Curie street, Dubna, Moscow region, 141980, Russia

2 Plekhanov Russian University of Economics, 36 Stremyanny per., Moscow, 117997, Russia

E-mail: a

kadivas@jinr.ru, b

balashov@jinr.ru, c

baranov@jinr.ru, d

pelevanyuk@jinr.ru,
e

nikolay.kutovskiy@jinr.ru, f

korenkov@jinr.ru, gnechav@jinr.ru

Infrastructure as a Service clouds have various uses: from application development and integra-
tion to parallel computing. Combined within the same cloud this leads to unbalanced and inefficient
use

of resources. Overcommitment with automated virtual machine migration can help improve effi-

ciency. However, this approach requires real-time information about VM load distribution, as well as
historical data to help guide migration strategies. The default

monitoring system built into the

OpenNebula cloud platform is limited in the possible collection and data processing options. Thus
arises the problem of selecting the external monitoring system most suitable for the task. One im-
portant aspect to consider is performance, as in large clouds it can be the critical limiting factor. This
study proposes a method to test and compare monitoring systems' performance in this context. The
monitoring server is installed on a physical machine and set up to collect a small fixed set of metrics
from virtual nodes. CPU, memory, disk and network use on the server are recorded for the duration of
the test. Monitored virtual machines are started hourly in groups of 50 up to the total of 1000. This
paper presents the test results for Ganglia, Icinga2, NetXMS, NMIS and Zabbix. Carrying out this ex-
periment also allowed to assess more subjective properties of these systems, such as documentation
quality and ease of use. Based on the performance results, as well the flexibility allowing to add cus-
tom metrics, Icinga2 was chosen as the load information collection system for the smart cloud sched-
uler project.

Keywords: cloud, monitoring, performance

This work was supported by RFBR grant #15-29-07027 "Development of a software package for intelligent scheduling and
adaptive self-organization of virtual computing resources based on the LIT JINR cloud center."

© 2016 Ivan

S.

Kadochnikov, Nikita

A.

Balashov, Aleksandr

V.

Baranov,

Igor

S.

Pelevanyuk, Nikolay

A.

Kutovskiy, Vladimir

V.

Korenkov, Andrey

V.

Nechaevskiy

279

Introduction

The Laboratory of Information Technologies of the Joint Institute for Nuclear Research has a
cloud based on the OpenNebula platform [Baranov et al., 2016]. This Infrastructure as a Service cloud
provides virtual machines to users with very varied computing demands, which creates irregular and
inefficient use of the cloud resources. To solve this problem, an intelligent scheduler is being devel-
oped, which would automate VM migration and improve efficiency by enabling overcommitment
[Balashov et al., 2016]. To apply a migration strategy it needs current and historical information about
CPU and memory load on the virtual machines. It is proposed that this data collection is done not by a
custom service, but by an existing monitoring system. The default OpenNebula monitoring module is
limited in the possible collection and data processing options. Thus arises the problem of selecting the
external monitoring system optimal for this project. Using taxonomy proposed by [Montes et al.,
2013], this project is concerned with a specialized case of cloud-service-provider-side vision of infra-
structure- and server-level monitoring.

Candidate systems

There are several criteria that we used to select candidate monitoring systems for further testing.
It needs to be extensible, which would allow adding custom metrics to monitor VMs through the hy-
pervisor. The stored metrics have to be available for use by the cloud scheduler. The system needs to
be popular and active so that we can expect performance, stability and a practical architecture. And
finally it has to be open-source and free. Table 1 lists the five selected candidates [Massie et al., 2004]
[icinga.org] [netxms.org] [opmantek.com] [Tader, 2010]. Nagios, a very popular and flexible system,
is not on the list, as Icinga2 is its fork and was tested instead as the likely superior candidate of the
class.

Table 1. Examined systems

Name Storage License Extensions Latest release

Ganglia RRD, graphite BSD plugin API, gmetric push 3.7.2 14.07.2016

Icinga2 graphite, influx, spool GPL plugin scripts 2.5.4 30.08.2016

NetXMS SQL GPL and LGPL push API, scripts 2.0.6 02.09.2016

NMIS RRD GPL SNMP only 8.6.0 14.10.2016

Zabbix SQL GPL SNMP only 3.2.1 30.09.2016

Performance testing process

Two physical machines are used for this benchmark. The monitoring server that collects and
stores data is installed on one node, the server, and configured to gather information from OpenVZ
containers running on the second node, the host. Thus all systems are in identical conditions during the
test with regards to physical resources, the network and data flow. Each OpenVZ container runs a
monitoring agent that reports to the server and represents a cloud host running VMs and sending their
status to the scheduler.

As the set of metrics required by the scheduler is small and uniform, the monitoring systems are
configured to collect a fixed list of values from the nodes describing CPU and memory use. The col-
lection interval is set at 5 minutes for all systems. CPU, memory, network and disk load are recorded
into CSV files using a simple script on both the server and the host for the duration of the test. On mi-

280

nute 30 of the test, the host begins launching OpenVZ containers hourly in groups of 50 until 1000 are
running. The system and the recording script runs for a day after starting all containers to check for
possible instabilities or memory leaks.

After the test the containers are stopped, and the server OS is reinstalled. Afterwards, the next
monitoring server is installed on the server and the virtual image is prepared with the agent.

Agent resource usage

During testing it was noticed that the Icinga2 and NetXMS servers lost connection to their agents
and marked many nodes as failed. The extent of this problem is illustrated by Figure 1 which shows
the aggregation of node status changes from the logging table in the NetXMS database. Further analy-
sis revealed this to be caused by high CPU load on the host machine produced by the agents running
on guests, which is shown on Figure 2. This problem makes performance results for Icinga2 and
NetXMS less reliable by lowering the amount of actual monitoring data received and processed by the
server, as can be seen on Figures 9 and 10.

Fig. 1. NetXMS agents by status Fig. 2. CPU load for resource intensive agents

As you can see on Figure 3, Ganglia, NMIS and Zabbix agents produce less total CPU load on
the host than the respective servers do on the server machine, so their agents are much lighter and they
do not exhibit this CPU overload problem. NMIS does not provide its own agent and is focused on
SNMP, so NetSNMP was used as the agent in this test. Both Icinga2 and NetXMS can use SNMP to
collect metrics, which gives a possible solution to this CPU overload. The protocol change could have
an effect on server performance, but it is unlikely to be significant.

In this benchmark only the CPU limit was encountered. For example on Figure 4 it is apparent
that there was enough memory for all tests. On bigger scales memory or other system resources may
interfere with the test, demanding changes to the benchmarking method. A possible improvement is to
use more hosts to run monitored containers, though this would require some basic synchronization
between the hosts.

Performance comparison

The final results to compare performance of the tested monitoring system is provided in Figures
5-10.

281

Fig. 3. Hypervisor and server CPU, lightweight agents Fig. 4. Server and hypervisor memory use in %

Fig. 5. CPU load on server in % Fig. 6. Memory use on server in %

Fig. 7. Disk reads on server in bytes/sec Fig. 8. Disk writes on server in bytes/sec

282

Conclusions

A small number of systems were evaluated in this study with a limited set of criteria related to a spe-
cific task. There are more general surveys of cloud monitoring systems [Fatema

et

al.,

2014].

The method discussed in this paper compares monitoring systems' performance in application to
a specific task. Suitability can depend on the job at hand, and performance

may be improved by fine-
tuning settings of the monitoring server, the database it uses, the operating system and hardware, as
well as network architecture and capacity. This study did not aim to isolate and quantify these effects,
default settings were used wherever possible for fairness.Beyond the performance results, this project
provided hands-on experience in working with the examined systems and allowed to take into account
other criteria when selecting the monitoring system to use. One of the most important features is ex-
tensibility. For example, when using a plugin module to report custom data to Ganglia, the list of met-
rics is provided on service start-up. This restricts application of Ganglia to collecting VM load from
the hypervisor, as the machines migrate and thus the reported metrics need to change often.

The performance results and other considerations allowed us to select Icinga2 as the system to be

used in the future to collect cloud data for the scheduler.

 References

 Balashov N., Baranov A., Korenkov V.

Optimization of over-provisioned clouds // Phys. Part. Nuclei
Lett. 2016. Vol. 13, № 5. P. 609–612.

Baranov A.V. et al.

JINR cloud infrastructure evolution // Phys. Part. Nuclei Lett. 2016. Vol. 13, № 5.
P. 672

–

675.

Fatema K. et al. A survey of Cloud monitoring tools: Taxonomy, capabilities and objectives // Journal

of Parallel and Distributed Computing. 2014. Vol. 74, № 10. P. 2918–2933.

Icinga -

Open Source Monitoring

[Electronic resource]. URL: https://www.icinga.org/ (accessed:
07.11.2016).

Massie M.L., Chun B.N., Culler D.E.

The ganglia distributed monitoring system: design, implementa-
tion, and experience // Parallel Computing. 2004. Vol. 30, № 7. P. 817–840.

Montes J. et al. GMonE: A complete approach to cloud monitoring // Future Generation Computer

Systems. 2013. Vol. 29, № 8. P. 2026 2040.

Fig. 10. Server network bytes/sec sent

Fig. 9. Server network bytes/sec recieved

Server Monitoring with Zabbix // Linux J. 2010. Vol. 2010, № 195.Tader P.

Electronic resource]. URL: https://www.netxms.org/ (accessed: 07.11.2016).[NetXMS

https://opmantek.com/network-management-system-nmis/ (accessed: 07.11.2016).

lectronic resource]. URL: [ENetwork Management System. Free Software Tools. NMIS

283

