
Application of TRIE data structure and corresponding

associative algorithms for process optimization in GRID

environment

V. V. Kashansky
a
, I. L. Kaftannikov

b

South Ural State University (National Research University), 76, Lenin prospekt, Chelyabinsk, 454080, Russia

E-mail:
a
vladislav.kash@gmail.com,

b
kil7491@gmail.com

Growing interest around different BOINC powered projects made volunteer GRID model widely used last

years, arranging lots of computational resources in different environments. There are many revealed problems of

Big Data and horizontally scalable multiuser systems. This paper provides an analysis of TRIE data structure and

possibilities of its application in contemporary volunteer GRID networks, including routing (L3 OSI) and spe-

cialized key-value storage engine (L7 OSI). The main goal is to show how TRIE mechanisms can influence de-

livery process of the corresponding GRID environment resources and services at different layers of networking

abstraction. The relevance of the optimization topic is ensured by the fact that with increasing data flow intensi-

ty, the latency of the various linear algorithm based subsystems as well increases. This leads to the general ef-

fects, such as unacceptably high transmission time and processing instability. Logically paper can be divided into

three parts with summary. The first part provides definition of TRIE and asymptotic estimates of corresponding

algorithms (searching, deletion, insertion). The second part is devoted to the problem of routing time reduction

by applying TRIE data structure. In particular, we analyze Cisco IOS switching services based on Bitwise TRIE

and 256 way TRIE data structures. The third part contains general BOINC architecture review and recommenda-

tions for highly-loaded projects. We suggest some BOINC architectural changes, new ways of TRIE integration

to make data processing faster and less dependent on user quantity. We summarize our research highlighting

TRIE’s benefits and disadvantages, compare it with other data structures like linked lists, hash tables and search

trees.

Keywords: Bitwise TRIE, 256-way TRIE, CEF, CFS, volunteer GRID optimization, BOINC

© 2016 Vladislav V. Kashansky, Igor L. Kaftannikov

284

1. Introduction

In computer science TRIE is an ordered multi-way tree type data structure that is used to store

byte arrays (strings, structures, dwords, qwords), and especially dictionaries, in extremely effective

way. The term trie comes from "retrieval". Due to this etymology it is pronounced [tri] ("tree"), alt-

hough some encourage the use of "try" in order to distinguish it from the more general term. Unlike a

search tree, there is no key stored inside a specific node. Instead, node’s position in the tree shows

what key is associated with it. Each node contains an array of pointers. There is one pointer for each

character in the alphabet and all “descendants” of node have a common string prefix associated with

that node. Values are normally stored in any node, not only in leaves. The root is associated with the

structure’s entry point.

Fig. 1: Example of classic TRIE based storage

Let’s consider a classic example, shown on the figure 1. As you can see, root “ancestor” node has

an array of pointers to its “descendants” {A, I, T}, one for each allowed alphabet character. All the trie

node pointer-fields that don’t point to an internal or leaf node are represented using null pointers. To

access an information node by key “THERE”, we need to move down a series of nodes, extracting

characters consequently. Values are represented as "sharp" signs. Values may be simple flags, indicat-

ing string existence, or pointers to more complicated structures. By Applying the Big O notation for

lookup, insertion and deletion it becomes O(k), which can be written as O(1). Thus these operations

are performed in constant time irrespective of the TRIE’s items quantity. The constant value only de-

pends on alphabet type, pointer array organization and hardware properties.

2. OSI Layer 3 optimization. Cisco fast switching technology (CFS)

There are many general-purpose structures and algorithms used to build and operate routing ta-

bles. The simplest way to search best suitable route for a given IP address is to view (search) records

in a table stored in the memory as a linear data structure. For example, a linked list or array. The com-

plexity of the algorithm in this approach will be O(n), where n is a number of entries in the routing

table. A similar approach has been implemented in all hardware and “software” routers by default. Of

course, this approach is not optimized in terms of search time.

Figure 2 shows a Bitwise TRIE. This structure is considered to store a sequence of N bits as a

key. There is no key stored in the intermediate nodes, but an array of pointers is defined. Access to the

285

subsequent elements of specific node is possible to get by index in this array respectively 0 or 1. The

access time is O(n), where n is a key length, in the worst case of 32 bits for IPv4.

Fig. 2: Storing data in the Bitwise TRIE by 0101 prefix

In CFS technology this structure acts as caching. It requires information from the RIB and ARP

tables for its construction, which is then cached in the respective nodes. Traversal is performed on the

basis of IPDEST information, extracted from packet. And prefixes are not unique. Therefore, highest

priority route, obviously, will be the last extracted (with the largest mask length). The existence of the

route is identified by the existence of the ultimate ways of nesting in the tree. There are 32 total per-

mitted (4 * 8 BYTE IPv4) nesting level respectively.

CFS technology highlights:

�x This structure allows very fast retrieval of information from the cache. That in turn leads to

lower latency;

�x The organization of storage requires additional CPU and RAM resources of router;

�x When you change the information in the ARP tables, corresponding cache entries should be

invalidated and removed.

3. Cisco express forwarding technology (CEF)

Cisco express forwarding (CEF) technology is a further development of CFS technology. It is

one of the most progressive and advanced algorithms available today. CEF technology involves using

of the 256 way TRIE data structure known as well as the FIB (Forwarding Information Base). In this

approach all opportunities of cache aging are eliminated. 256 way TRIE includes 4 levels of nesting,

combining 256 (2
8
, size of one IPv4 octet) options at each level. Endpoints of the 4th level contain

specific pointers to the data stored in a separate structure. This structure is known as the Adjacency

Table - AJT. Forwarding Information Base (FIB) or CEF Table is based on the RIB and Adjacency

Table. Adjacency Table is based on the ARP table.

Generally CEF was created to optimize the routing processes on large networks and considered to

be better than any other switching mode. Usually it is used in backbone routers with a very high load,

improving performance of wide area networks. Of course, such improvements in a WAN performance

deeply influence volunteer GRID (BOINC based) systems, making it more reliable and fast.

286

4. OSI Layer 7 optimization. Improvements of BOINC GRID environment

Despite huge popularity among desktop users and the availability of well-known advantages, the

BOINC system has a number of unpleasant features. Their negative impact on the system performance

increases proportionally to the number of users involved in the calculations, depending on the type of

jobs (work units) assigned.

First of all, BOINC combines file server and web server (fig. 3). In fact, uploading and down-

loading of possibly "heavy" executable and data files (their size usually ranging from a few megabytes

to tens of gigabytes) are performed by the Apache web server. This web server is also far from the

fastest solution in comparison, for example, with Nginx. This feature can, of course, be ignored when

the project has low user base and uses the web server solely for BOINC service purposes, such as file

sharing and statistics manipulation via RPC. For highly-loaded projects we strongly recommend to

rethink your project architecture in terms of non-blocking socket technologies (select, poll, epoll sys-

tem calls) to successfully deal with c10k problem. Neglecting it can lead to a serious performance

drop down even during early stages of project’s lifespan.

Fig. 3: Architecture of BOINC server-side project

The second fact is that BOINC using Oracle MySQL Server as data storage. It stores the news-

feed, statistics, user data, and other metadata of the entire system. The relational database often be-

comes a scalability bottleneck and should not be directly accessible by user, especially if you are al-

ready suffering from c10k problem.

To achieve maximum performance at different stages of project’s lifespan we suggest next ap-

proach. Whole project’s backend should be divided into two parts: “lightweight-backend” (next l-b) and

“heavyweight-backend” (next h-b). Really important concept here is the way (l-b) accesses the data.

Instead of expensive SQL queries to a relational database, (l-b) reads the data from a fast non-blocking

TRIE key/value storage by default. Meanwhile, (h-b) collects all changes from the database and syn-

chronizes them to key/value storage. TRIE could be considered here as engine for NoSQL key/value

storage along with other data structures like RB-trees and Hash tables, bringing O(1) complexity. TRIE

key/value storage could also be combined with powerful full-text search engine like Elasticsearch for

quick full text search, bringing optimal performance for the entire project.

5. Conclusion

Using of TRIE data structure as storage dramatically improved extraction algorithm in terms of

access time. Therefore, it's strongly recommended to use TRIE to increase the collision-free efficiency

of GRID computational environment. Of course, such a kind of solution is a compromise and should

be applied wisely. Despite the fact that optimizations allow fast data manipulation and reduce latency

on different OSI layers, it turns into additional resource consumption. More than that, you will have to

287

rethink your system’s architecture. Nevertheless, in most cases, when it is required to provide quick

access to data records TIRE can be considered as engine for NoSQL servers of GRID environment

(OSI L7), as well as for routing storages (OSI L3 CFS,CEF).

Now take a look on the tables 1 and 2 with experimental data. This data was collected during

synthetic tests of linked list and bitwise TRIE as storage engines (access operation).

Table 1 – Experimental data output. Linear storage (linked list).

 N –entries count, T seconds spent to access

N 2822 8512 13223 19357

T 1.014 2.449 3.742 6.208

Table 2 – Experimental data output. Bitwise TRIE.

 N-Key’s bits count, T seconds spent to access

N 8 16 24 32

T 0.046 0.086 0.119 0.147

As you can see, using “extraction by key” approach over TRIE storage gives:

�x Significant reduction of the access time (see. Table 2). Accessing the elements takes record

minimum time. The access time is only proportional to the length of the Key (32 bits for ex-

ample for CFS);

�x Avoid cross-node comparisons of keys and storing them in nodes;

�x Avoid tree balancing problem;

�x Avoid hash table collisions;

�x More efficient spending RAM and CPU resources (compared to other ADT). The CEF tech-

nology compared with CFS reduces the load on the CPU and RAM because of more optimal

allocation of nodes and key’s modified structure.

Meanwhile, using “brute force” over linear storage gives:

�x Less RAM resource consumption (data size considered to be the same);

�x Search time is proportional to the size of the table;

�x Significant consumption of CPU resources, which is proportional to entry count.

References

Robert Sedgewick. Algorithms in C++, Fundamental Algorithms, Data Structures, Sorting, Searching.

// “Addison Wesley”, 1999.

Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Second Edition.

// “Addison Wesley”, 1998.

Douglas. E. Comer. Internetworking with TCP/IP Principles, protocols and Architecture. // “Pearson

Education, Inc.”, 2014, 2006, 2000.

How to Choose the Best Router Switching Path for Your Network. [Electronic resource]. URL:

http://www.cisco.com/c/en/us/support/docs/ip/express-forwarding-cef/13706-20.html (accessed

20.10.2016).

Cisco IOS Switching Services Configuration Guide. [Electronic resource]. URL:

http://www.cisco.com/c/en/us/td/docs/ios/12_2/switch/configuration/guide/fswtch_c/xcfcef.html

(accessed 20.10.2016).

288

