
Calculation of ground states of few-body nuclei using 

NVIDIA CUDA technology 
 

M. A. Naumenko
1,a

, V. V. Samarin
1,2 

 
1 
Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 6 Joliot-Curie st., Moscow reg., 

Dubna, 141980, Russian Federation 

 
2 
Dubna State University, 19 Universitetskaya st., Moscow reg., Dubna, 141982, Russian Federation 

E-mail:  
a 
anaumenko@jinr.ru 

 

 
 

The possibility of application of modern parallel computing solutions to speed up the calculations 

of ground states of few-body nuclei by Feynman's continual integrals method has been investigated. 

These calculations may require large computational time, particularly in the case of systems with 

many degrees of freedom. The results of application of general-purpose computing on graphics pro-

cessing units (GPGPU) using NVIDIA CUDA technology are presented. The algorithm allowing us to 

perform calculations directly on GPU was developed and implemented in C++ programming lan-

guage. Calculations were performed on the NVIDIA Tesla K40 accelerator installed within the hetero-

geneous cluster of the Laboratory of Information Technologies, Joint Institute for Nuclear Research, 

Dubna. The energy and the square modulus of the wave function of the ground states of several few-

body nuclei have been calculated. The results show that the use of GPGPU significantly increases the 

speed of calculations. 
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1. Introduction 

In this work an attempt is made to use modern parallel computing solutions to speed up the calcu-

lations of ground states of few-body nuclei by Feynman’s continual integrals method [Samarin, 2015; 

Samarin, Naumenko, 2016; Naumenko, Samarin, 2016]. The algorithm allowing us to perform calcu-

lations directly on GPU was developed and implemented in C++ programming language. The energy 

and the square modulus of the wave function of the ground states of several few-body nuclei have 

been calculated using NVIDIA CUDA technology [NVIDIA; Sanders J., Kandrot E., 2011]. The re-

sults show that the use of GPU is very effective for these calculations. 

2. Theory and computing 

The energy 0E  and the square modulus of the wave function 
2

0 of the ground state of a system 

of few particles with coordinates q  may be calculated by Feynman’s continual integrals method using 

the propagator  , ; ,0EK q q  in Euclidian time   [Shuryak, Zhirov, 1984] 
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Here ( )g E  is the density of states with the continuous spectrum contE E . For the system with a dis-

crete spectrum and finite motion of particles the square modulus of the wave function of the ground 

state may be found in the limit   together with the energy 0E  
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The theoretical approach is described in detail in [Naumenko, Samarin, 2016]. The calculation of 

 , ; ,0EK q q  for the fixed   was performed by parallel calculation of exponentials F 
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for every random trajectory ( , )kq f q k  , where /N    . The same nucleon-nucleon interaction 

potentials  kV q  were used for all the studied nuclei. 

The Monte Carlo algorithm for numerical calculations was developed and implemented in C++ 

programming language using NVIDIA CUDA technology. The integration method does not require 

the use of any additional integration libraries. The calculation included 3 steps: 

1)  , ; ,0EK q q  was calculated in a set of multidimensional points q  and the maximum of 

 , ; ,0EK q q  (i.e. 
2

0 ) was found. 

2) The 0q  corresponding to the obtained maximum was fixed,  0 0, ; ,0EK q q  was calculated for 

several increasing values of  and the linear region of  0 0, ; ,0EK q q  was found. 

3) The time lin  corresponding to the beginning of the obtained linear region was fixed and 

 0 0, ; ,0E linK q q  (i.e. 
2

0 ) was calculated in all points of the necessary region. 

The principal scheme of the calculation of the ground state energy is shown in Fig. 1. The calcu-

lation of the propagator is performed using L sequential launches of the kernel. Each kernel launch 

simulates n random trajectories in the space evolving from the Euclidean time 0   to j , where 
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1,j L . All trajectories with  /j jN     time steps start at the same point (0)q  in the space and in 

the moment j  return to the same point (0)q  according to the chosen probability distribution. 

 

Fig. 1. The scheme of calculation of the ground state energy E0 

All threads in a given kernel launch finish at approximately the same time, which makes the 

scheme quite effective in spite of the possible delays associated with the kernel launch overhead. Be-

sides, the typical number of kernel launches L required for the calculation of the ground state energy 

usually does not exceed 100. 

Starting from the certain time lin  the obtained values of the logarithm of the propagator 
1

0 ln Eb K  tend to lie on the straight line, the slope of which gives the value of the ground state energy. 

The time lin  is then used in the calculation of the square modulus of the wave function. 

The principal scheme of the calculation of the square modulus of the wave function is shown in 

Fig. 2. Similarly, the calculation is performed using M sequential launches of the kernel. Each kernel 

launch simulates n random trajectories in the space evolving from the Euclidean time 0   to the time 

lin  determined in the calculation of the ground state energy. All trajectories start at the same point 
( )sq  in the space and in the moment lin  return back to the same point ( )sq  according to the chosen 

probability distribution. Here 1,s M , where M is the total number of points in the space in which the 

square modulus of the wave function must be calculated. 

One of the benefits of the approach is that the calculation may be easily resumed later. For exam-

ple, initially the square modulus of the wave function may be calculated with a large space step to ob-

tain the general features of the probability distribution, and later new intermediate points are calculat-

ed and combined with those calculated previously. This may be very useful because the calculation of 

the square modulus of the wave function is generally much more time-consuming since it requires cal-

culation in many points in the multidimensional space. 

An important feature of the algorithm allowing effective use of graphic processors is low con-

sumption of memory during the calculation because it is not necessary to prepare a grid of values and 

store it in the memory. 

To obtain normally distributed random numbers the cuRAND random number generator was 

used. According to the recommendations of the cuRAND developers, each experiment was assigned a 

unique seed. Within the experiment, each thread of computation was assigned a unique sequence 

378 



number. All threads between kernel launches were given the same seed, and the sequence numbers 

were assigned in a monotonically increasing way. 

 

Fig. 2. The scheme of calculation of the square modulus of the wave function 

Calculations were performed on the NVIDIA Tesla K40 accelerator installed within the hetero-

geneous cluster [Heterogeneous Cluster] of the Laboratory of Information Technologies, Joint Institute 

for Nuclear Research, Dubna. The code was compiled with NVIDIA CUDA version 7.5 for architec-

ture version 3.5. Calculations were performed with single precision. 

The energy of the ground state is negative and therefore only the first term in formula (1) in-

creases with the increase of  , whereas the energies of the excited states are positive and hence the 

other terms in decrease with the increase of  . The slope of the linear regression equals the energy of 

the ground state 0E . 

The obtained theoretical binding energies 0bE E   are listed in Tab. 1 together with the experi-

mental values taken from the knowledge base [Zagrebaev, Denikin, Karpov, Alekseev, Naumenko, 

Rachkov, Samarin, Saiko]. It is clear that the theoretical values are close enough to the experimental 

ones, though obtaining good agreement was not the goal. The observed difference between the calcu-

lated binding energies of 
3
H and 

3
He is also in agreement with the experimental values. 

Tab. 1. Comparison of theoretical and experimental binding energies for the ground states of the studied nuclei 

Atomic nucleus Theoretical value, MeV Experimental value, MeV 
2
H 1.17 ± 1 2.225 

3
H 9.29 ± 1 8.482 

3
He 6.86 ± 1 7.718 

4
He 26.95 ± 1 28.296 

The code implementing Feynman's continual integrals method was initially written for CPU. The 

comparison of the calculation time of the ground state energy for 
3
He using Intel Core i5 3470 (double 

precision) and NVIDIA Tesla K40 (single precision) with different statistics is shown in Tab. 2. Even 

taking into account that the code for CPU used only one thread, double precision and a different ran-

dom number generator, the time difference is impressive. This fact allows us to increase the statistics 

and the accuracy of calculations in the case of using NVIDIA CUDA technology. 

The comparison of the calculation time of the square modulus of the wave function for the 

ground state of 
3
He using Intel Core i5 3470 and NVIDIA Tesla K40 with the statistics 10

6
 for every 

point in the space and the total number of points 43200 is shown in Tab. 3. The value ~ 177 days for 
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CPU is an estimation based on the performance gain in the calculation of the ground state energy. It is 

evident that beside the performance gain the use of NVIDIA CUDA technology in certain cases may 

enable calculations impossible before. 

Tab. 2. Comparison of the calculation time of the ground state energy for 
3
He nucleus 

Statistics, 

n 

Intel Core i5 3470 

(1 thread, double precision), sec 

NVIDIA Tesla K40, 

(single precision), sec 

Performance gain, 

times 

10
5
 ~ 1854 ~ 8 ~ 232 

10
6
 ~ 18377 ~ 47 ~ 391 

5·10
6
 − ~ 221 − 

10
7
 − ~ 439 − 

Tab. 3. Comparison of the calculation time of the square modulus of the wave function for the ground state of 
3
He nucleus 

Statistics, 

n 

Intel Core i5 3470 

(1 thread, double precision, estimation) 

NVIDIA Tesla K40, 

(single precision) 

10
6
 ~ 177 days ~ 11 hours 

3. Conclusion 

In this work an attempt is made to use modern parallel computing solutions to speed up the calcu-

lations of ground states of few-body nuclei by Feynman’s continual integrals method. The algorithm 

allowing us to perform calculations directly on GPU was developed and implemented in C++ pro-

gramming language. The method was applied to the nuclei consisting of nucleons, but it may also be 

applied to the calculation of cluster nuclei. The results show that the use of GPGPU significantly in-

creases the speed of calculations. This allows us to increase the statistics and the accuracy of calcula-

tions as well as reduce the space step in calculations of wave functions. It also greatly simplifies the 

process of debugging and testing. In certain cases, the use of NVIDIA CUDA enables calculations 

impossible before. 
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