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Abstract. When dealing with large volumes of data in 
organizations, there is always a need to associate data 
with its appropriate meaning, since the same data object 
may have different meaning to different users. This 
creates a problem of delivering search results that is 
different from a requester’s intended purpose. To solve 
this problem, we propose a parallelizable framework 
capable of capturing user specified constraints that are 
both semantically relevant to a search/domain in 
question as well as contextually relevant to a user and/or 
organization.  

I.  INTRODUCTION  
When attempting to find data that is relevant to a 

user and/or organization based on a query, it is very 
common to retrieve exact matches in response to a 
search. While using the exact matching of strings as 
user search keywords can retrieve exact results, a user 
may be looking for data with a specific meaning 
based on his or her intended search preferences but 
the data that is provided by a system or organization 
may have a completely different meaning. This 
problem is further compounded by having to ensure 
that data that has recently been ingested into a system 
is consistent with data that currently resides on the 
same system. This can create an intractable problem 
for a user such as having to constantly poll and 
classify new data or accept new data that may be 
inappropriately classified to ensure the semantic 
meaning of the data is consistent. In addition, the 
problem of new data being added to a system on a 
massive scale necessitates a scalable solution. We 
propose an approach which allows users to 
personalize search terms according to the same set of 
concepts where search results can be universally 
understood by the same community of users 
according to personalizable search profiles. Our 
approach also enhances the accuracy of search results 
by returning semantically similar results from a 
specific domain. The impact of our approach 
dramatically enhances the ability of users to 
personalize a search thus retrieve more accurate 
results. With the introduction of our framework, we 
make a few key contributions: 

1) We allow user specified search preferences to be 
expressed with robust semantics resulting in 
higher precision and recall that closely match the 
user's intended search terms.  
 

2) We have developed a method for user specified 
semantics to be expressed probabilistically in the 
search. Search results that have a semantic 
similarity to a set of user specified preferences 
are also returned enabling us to handle 
uncertainty in our approach as well. 

 
3) We have developed a way for multiple sets of 

user specified preferences to be expressed using 
the same ontology. 

 
4) Our methodology allows for robust semantics to 

be expressed in a parallelizable way. 
 
5) We have implemented a prototype and evaluated 

our methodology by conducting experiments 
using precision and recall as metrics. 
 
Motivating Example: Many municipalities often 

have a need to capture semantically relevant data for 
an intended purpose. For example, Bob, a detective 
with the city of Baltimore, needs to get the current 
statistics of all aggravated theft incidents between 
1964 and 2013, in Baltimore, Maryland, USA. Bob 
wants to compare this data with the same data on a 
national scale over the same time period. 
Furthermore, there are different types of data on thefts 
that Bob wants to compare against. To further 
compound the issue, different vendors provide 
different labels for the same type. The impact of 
capturing more semantically relevant data and getting 
more accurate results enables law enforcement 
officials to make better informed decisions because 
the information they are looking for is more precise 
and relevant to a specific situation for which the 
officials need to make a decision about. 

We describe our approach in section II, and then 
we continue on with a discussion of our experiments 
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in section III, a validation of our approach in IV, and 
then a discussion of relevant work in section V. We 
then finish up our work with concluding thoughts and 
proposed future work in section VI. 

II. APPROACH 
To begin our learning, we make use of a single 

ontology that represents our categories of context, 
with each category of context represented via separate 
branches of the ontology.  

Continuing our motivating example, we show a 
sample representation of our ontology using figure 1 
to show the taxonomical tree of terms that a user can 
select as user preferences and how they organized. 
Utilizing the Operational of Context [1] we model our 
ontology using 5 separate categories of context. 

 
Fig. 1 Sample representation of an ontology: 

Operational Definition of Context [1], we model our 
ontology using 5 separate categories of context. They 
are: 

1. Individuality Context - The individuality context 
are attributes that describe an entity’s type such 
as specifying the type of theft 

 

2. Time Context - The time context is anything that 
describes any kind of temporal attributes related 
to an entity such as a year 

 
3. Location Context - The location context describes 

any kind of location attribute related to an entity 
such as a city or state 

 
4. Activity Context - The activity context describes 

a goal related to entity such as how much of 
something a law enforcement official may be 
looking for such as a total amount of violent 
crime 

 
5. Relations Context - The relations context are 

attributes of an entity that describe an entity’s 
relation to another entity or its parts 

 
User preferences in our ontology are saved with 

literals that are added to each node a user has selected.  
We chose not to add countries in our ontology 
because we are assuming that our domain is within all 
50 states within the USA. Bob the detective stores his 
preferences in a user profile that matches parts of the 
ontology (in figure 1) such as all aggravated thefts 
that have occurred in Baltimore, Maryland, between 
1964 and 2013. A special depth first search algorithm 
then searches the ontology and matches saved user 
specified literals for each node within each branch of 
the ontology and creates a special in memory tree 
model. This in memory tree model is a sub-tree of the 
ontology that matches all of the user selected 
preferences that were found in the original ontology. 
Referring again to figure 1, only parts of the ontology 
that match aggravated theft, Baltimore, Maryland that 
are between 1964 and 2013 are copied into the new in 
memory tree model. 

After the original ontology has been parsed and 
the in memory tree model has been implemented, we 
are now able to build the rest of our decision tree. 
Records (files) are initially classified based on user 
preferences using the in memory tree model provided 
in figure 2. For example, all records that are classified 
must include records that have the attributes 
Baltimore, Maryland, aggravated theft, or between the 
years 1964-2013 (meeting Bob's specified user 
preferences). Now that only instances remain that 
match the user specified constraints above, (i.e., the 
records are all containing values for the attributes 
Baltimore, Maryland, aggravated theft, or in the range 
1964-2013) we must build out the remaining part of a 
tree based on the number of user specified splits or 
criteria to enable the system to return search results 
with increasing levels of precision by dividing the 
records into further subsets as specified by the user 
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with each additional split. For example, if the user has 
specified that he or she wishes to have the ontology 
be 5 hops deep and the ontology is only 3 hops deep, 
additional splits must be completed (if there are 
enough records left to split against in order to meet 
the user's specified preferences). Referring to figure 2, 
additional splits are made using the lowest level 
collection of leaves for the individuality and location 
branches of the ontology (additional splits were not 
made to the time branch of the ontology because the 
user chose not to do so since year was the most 
granular measure of time specified in the data). 
Because the user has selected the decision tree to be 4 
hops deep, additional splits are made using the lowest 
collection of leaves for each branch of the ontology. 
In the location ontology, the lowest collection of 
leaves in that branch of the ontology are Baltimore, 
Potomac, Los Angeles, Sacramento, Albany, and New 
York City. Because Potomac has the lowest impurity 
(see Semantically Driven Gini Algorithm) computed 
from the lowest collection of leaves, it is selected as 
the first candidate split using the Semantically Driven 
Gini-Index Algorithm. No more splits are performed 
on the location branch of the ontology because it is 
now 4 hops deep. On the individuality branch of the 
ontology, a single split is made using The 
Semantically Driven Gini-Index Algorithm, with 
vehicle theft being selected because it had the lowest 
impurity (see Semantically Drive Gini Algorithm) of 
the lowest leaves. No more splits are made for the 
individuality branch of the ontology because it is now 
4 hops deep as well. Our special in memory tree 
model/user driven ontology looks (logically) like 
Figure 2. 

Any documents that match any of the user 
preferences or Semantically Driven Gini-Index 
Algorithm are then tagged using a custom document 
summarization algorithm. The tagged files are then 
copied to The Hadoop Distributed File System 
(HDFS). Separate mapper calls are then kicked off 
using search conditions that meet the user specified 
preferences. A single reducer job is kicked off 
consolidating a set of files that meet a final set of 
preferences as specified by the user in the in-memory 
tree model. A final set of key value pairs of files using 
the key as the name of the matching file and a value 
of 1 that matches all of the user specified preferences 
are emitted signifying that the algorithm is complete. 
For example, only the names of files that meet all the 
user preferences Baltimore, aggravated theft, and 
between the time range of 1964-2013 are emitted.  

In Memory Tree Building Algorithm:  To utilize 
only paths of the ontology that the user has selected as 
his or her search preferences, a smaller graph of the 

in-memory tree model is created copying each of the 
paths that a user has selected. First, the user specifies 
the number of hops deep (or total depth) he or she 
wishes for the size of the decision tree to be. Second, 
the user picks from a list of selected labels that have 
already been mapped via our ontology via a tree like 
drop down list or via a search box. (The mappings are 
a graphical representation of the ontology, where the 
user can select any one of the nodes of the ontology as 
a user preference). After our search is complete we 
populate a list of labels from our ontology and copy 
the names of the nodes (and their parents) that the 
user has selected. The same set of user preferences 
will be copied from all five categories of the ontology 
below (with each branch of the ontology being stored 
as a separate but parallel part of our in memory tree 
model). The in memory tree model persists in 
memory as a service. Files are matched against the 
user preferences that have been stored in the in-
memory tree model.  
  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 2. A logical representation of an in memory tree model 
(including splits from the Semantically Driven Gini-Index 
Algorithm): 

Root 
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Location 
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      Theft 
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We implement our depth first search algorithm 
using the following representation: C for Category 
Contextual Model Data, O for Ontology,  for each 
branch of the ontology (each primary branch of the 
ontology connected to the root), where  
represents a current node,  represents a child 
node, a indicates the current level (depth) of the 
ontology, b where a holds a 1 or 0 (1 if for each node 
selected by user or 0 if not selected by the user holds 
a pointer to the child node, and c is a list of all other 
user specified preferences, and d is a list of pointers to 
all child nodes of the current (parent) nodes. 
In memory tree algorithm pseudocode: 
 
Input: Ontology O 
Output: in-memory tree model 
 
 LOOP: Repeat the following steps (for a + 1 of the 
current node until a = the lowest leaf in the tree), for 

 - , until all of O or the entire ontology is finished 
 
1)   For each category of context from Root we 

represent our Ontology as follows: O = 
{ . For each branch of the tree 

=  and C is the starting node for each 
tree (i.e., the starting node after root is 
Location, Time, Individuality, Activity, and 
Relations for each of the 5 categories of 
context). 

 
2) For a of  of  add to c of 

where  is a current node, is 
the child node of , a is the current depth 
of , b holds a 1 or 0 (1 if a user has chosen 
a user preference or 0 if the node has not been 
selected as a user preference), c holds a list of 
all other user specified preferences and d is a 
list of pointers from  to children 
nodes  

 
3) If no children exist for d, d = NULL. 

END LOOP; 

 

Semantically Driven Gini-Index Algorithm: Once 
the in-memory tree model building algorithm is 
complete, our custom Semantically Driven Gini-Index 
Algorithm is kicked off. First, we define our 
Semantically Driven Gini-Index Algorithm which 
calculates the impurity of each node as follows: 

 

¦� 
j

tjptGINI 2)]|([1)(
  

Input: Lowest collection of leaves for each branch of 
the in-memory model 
 
Output: Additional children nodes for each branch of 
the in-memory model 
 
Where t is the node, j is the class, and p is probability 
of class j given a node t. The algorithm works as 
follows: 
 

1) Initial splits are made based on classes 
specified in the in memory tree model. For 
example, aggravated theft is a candidate for a 
decision tree split since aggravated theft is a 
class in the tree (originally specified within 
the ontology). 

 
2)   Additional splits at the next level of the tree 

are implemented using the same collection of 
leaves (i.e., the lowest collection of leaves 
for a given branch of the ontology stored in 
the memory tree model) with the next split 
being the node with next lowest impurity 
using the calculation defined in (1). 

 
3)  Additional splits are induced using the same 

lowest collection of leaves (for each branch 
of the tree) until the max number of splits 
has been reached either by the following: 

 
x A program driven default - This condition 

happens when a program driven default 
number of splits is reached for a given 
branch of the ontology. For example, if the 
program default is set to 5 splits, then the 
decision tree will not split beyond 5 hops 
deep for that given branch. This is true 
regardless of whether the split was based 
on a modeling part of the ontology or a 
part of The Semantically Driven Gini-
Index Algorithm used to calculate a split. 

 
x A user specified limit is reached - This 

condition happens when the user specifies 
a max number of splits he or she sets for a 
given branch of a decision tree. For 
example, if the max number of splits that 
is specified is 7 for a particular branch of 
the decision tree then the decision tree will 
stop inducing additional splits in that 
branch of the decision tree beyond that 
number regardless of whether or not the 
nodes being split come from the ontology 

(1) 
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or additional splits are determined by The 
Semantically Driven Gini-Index 
Algorithm.      

 
x The max number of possible splits has 

been reached - This condition occurs when 
all possible splits from within an ontology 
as well as all of the lowest level of leaves 
have been utilized in a split resulting in a 
max number of splits that can be used to 
build a given decision tree. For example, if 
the ontology is 4 hops deep and the lowest 
level of leaves totals 4 leaves as well, this 
makes the max number of splits possible 
for the decision tree to be 8 split.   

III. EXPERIMENTS 
To validate our approach, we took roughly 

100,000 files from the UCR Data Repository and 
processed them against 60 user specified preferences 
stored within the in memory tree model. The 
semantically mapped features were saved as tags in a 
modified version of each file, making matching for 
each set of user preferences a matter of matching the 
tags that have been specified by the user saved in the 
in memory tree model. Finally, the resulting 
MapReduce Jobs generated a file name with a value 
of 1 for each set of semantically mapped preferences 
that were matched. We used the following sample 
Scenario 1: Bob is looking for all crimes that occurred 
within the state of Maryland, between 1998 and 2002, 
he is searching for crime totals for larceny theft in 
which the files are saved as .xls files. Scenarios 2 
through 10 are variants of scenario 1, where 
semantically mapped preferences were matched 
against the same files from the UCR Data Repository 
Values for scenarios 2-10 were chosen at random.  
 
We have run three sets of experiments: 
1) No Context and No Ontologies - Experiments 

with user preferences as exact search terms on 
MapReduce Jobs. 

 
2) Ontologies but No Context - Experiments with 

files that were tagged using ontologies in 
RDF/OWL Files saved in the in memory model, 
but without any user preferences saved within 
them (copying the entire ontology for each 
category of context). The tagged files were then 
processed in a MapReduce Job producing the 
results. 

 
3) Ontologies and Context - These experiments 

were executed using the files that were tagged 
using both the ontologies modeled in RDF/OWL 
Files, but also with the saved user preferences 
that were parsed from the RDF/OWL Files as 
well. The tagged files were then processed using 
MapReduce producing the results. 

IV. VALIDATION 
We use two well-known metrics to validate our 

approach: Precision and Recall. Recall is defined as 
the fraction of the records retrieved that are relevant 
to the query. In other words, recall reveals the 
percentage of the retrieved and relevant records that 
are relevant (whether in the answer set or outside the 
answer set). Precision is defined as the fraction of the 
retrieved records that are relevant to the search. In 
other words, precision reveals the percentage of 
retrieved and relevant records in the answer set. 
Recall and precision are calculated as follows: 
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Fig. 3.    Experiment results using recall
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  Fig. 4.  Experiment results using precision

 
 

In the above scenarios or sets of test conditions that 
simulated using sets of user specified preferences (like in 
Scenario 1 discussed above), the recall was computed for no 
ontologies and no context by dividing matching exacting 
search terms from a user’s search against the content of the 
files that are being parsed. The recall was extremely low for 
no ontologies and no context because the exact key words 
used in MapReduce Jobs matched a very small percentage of 
the files that were relevant to a user's search. The mean 
average of all 10 scenarios was 28%. The recall for ontologies 
and no context was computed by taking the matching terms in 
the in memory tree model that were parsed from the ontology 
and matching them against properties and content in the files 
being parsed. The searches for ontologies and no context 
yielded a higher recall because all the files that were tagged 
using the in memory tree model matched 1 or more of the 
classes specified in the ontology with a total of 47% recall, 
resulting in almost a 20% increase from no ontologies and no 
context. The recall for ontologies and context was computed 
by taking the matching preferences stored in the in memory 
tree model and matching them against properties and content 
of the files being parsed. Searches involving ontologies and 
context had a very high recall because all results retrieved 
matched both the semantically driven preferences that were 
saved in the in memory tree model as well as with the 
semantically specified constraints from the ontology resulting 
in 63% recall, a 16% increase from ontologies and no context 
and a roughly 35% increase improvement in recall vs. no 
ontologies and no context.  
 

Precision was computed for no ontologies and no context 
by dividing matching exacting search terms from a user’s 
search against the content of the files that are being parsed. 
The precision for no ontologies and no context was extremely 
low because the overwhelming majority of the search results 
that were returned did not match the intended user search 
preferences because exact key words were used for each 
search resulting in a 17% precision.  The precision for 
ontologies and no context was computed by taking any of the 

matching terms in the in memory tree that were parsed from 
ontology and stored in the in memory tree model without any 
user specified preferences and matching them against the 
properties and content of the files that are being parsed. 
Ontologies and no context resulted in a low precision as well 
because the entire ontology was stored in each in memory tree 
model resulting in tagged files that only partially or did not 
match a user's intended search terms at 26% precision. The 
precision for ontologies and context was computed by taking 
any of the matching preferences stored in the in memory tree 
model that parsed from the ontology and selected by the user 
from the ontology and matching them against properties and 
content and of the files being parsed. Ontologies and context 
resulted in a very high precision versus no ontologies and no 
context and ontologies and no context, because documents 
that returned key value pairs in our MapReduce Jobs matched 
the semantically mapped user preferences as well the semantic 
constraints specified in the ontology resulting in an 80% 
precision; a 54% increase in ontologies and no context and a 
63% increase in accuracy vs. no ontologies and no context. 
 

In summary we learned that enabling a user to pick 
semantically enriched preferences from an ontology of terms 
that reflect an existing domain from a corpus can lead to a 
much higher precision and recall than using exact search terms 
or just using semantically enriched search terms parsed from 
an ontology. By building an in memory tree model we are able 
to both represent the knowledge representative of a domain 
and we also enable personalization by a user of that 
knowledge as well. In order to enable robust personalization, 
semantics must first be reflected in a model before a user can 
pick them. This is depicted in our results by showing that the 
precision and recall is higher than with just choosing exact 
search terms and the precision and recall further improves 
when allowing a user to pick attributes he or she wishes to use 
in a search with terms picked from the ontology.  
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V. RELATED WORK 
Zhang et al. [2] formulated an approach that calculated 

the information gain for finding the best split for a node 
between two or more separate taxonomies. This approach does 
not incorporate any kind of semantic inference or contextually 
driven attributes for building a decision tree, neither does it 
address any issues with trying to make a decision tree 
parallelizable. Gajderowicz et al. formulated an approach for 
enriching manually created ontologies using decision trees [3]. 
They also developed a system for using decision trees for 
ontology matching [4]. Johnson et al., formulated an approach 
for enriching ontologies off of custom built decision trees [5]. 
Bouza et al. described an approach by using an ontology to 
build user profiles to make various recommendations on user 
behavior [6]. Our approach not only allows a user to specify 
preferences, but also ensures that they are semantically similar 
to any search results; it is parallelizable too. Fanizzi et al. 
developed a novel framework for learning custom description 
logic learning languages using decision trees. While this 
approach is novel for learning description logic concept 
definitions, it does not incorporate user preferences [7].   
 

Nenkova et al. developed a technique for summarizing 
documents based on frequency [8].  Arun and Gunavathi 
developed a technique for summarizing documents using 
context sensitive weights for indexing [9]. This work did not 
utilize the contextual properties of parts of a document nor 
were user preferences utilized when creating the summaries. 
Witte et al. developed a fuzzy graph technique for multi-
document summarization [10]. Barzilay et al. developed a 
technique for summarizing documents using the contextual 
attributes found in text across a series of documents [11]. 
Yang et al. developed a summarizing framework using the 
social contextual information, but they did not utilize user 
specified preferences beyond social ones such as a time or 
location that a document was created [12].  
 

VI. CONCLUSIONS 
We described and validated an approach to specify 

semantically driven user preferences in a parallelizable way. 
We also encountered a few limitations. First, we found that 
extensive exploration and sampling of data files was needed to 
be able to properly model preferences in our ontology to 
confirm a consistent structure of a file format when creating 
our in memory tree model. Second, we found that the user 
preferences that were specified in the in memory model 
needed to closely mirror the user preferences that were 
specified in the ontology or this would lead to searches 
returning incorrect results or errors resulting in our program 
because the structure of RDF/OWL Model was incorrect. For 
our future work we plan on testing much larger datasets. Also 
planned are further attempts to model more expressive 
attributes for user specified preferences. Finally, we plan on 
utilizing Apache Spark [13] and new versions of Hadoop to 
allow for both a more novel design and implementations of 
our approach. 
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