
Scalable Semantically Driven Decision Trees for
Crime Data

Shawn Johnson, George Karabatis
Department of Information Systems

University of Maryland, Baltimore County (UMBC),
1000 Hilltop Circle, Baltimore, MD 21250, USA

{yv74924, GeorgeK}@umbc.edu

Abstract. When dealing with large volumes of data in
organizations, there is always a need to associate data
with its appropriate meaning, since the same data object
may have different meaning to different users. This
creates a problem of delivering search results that is
different from a requester’s intended purpose. To solve
this problem, we propose a parallelizable framework
capable of capturing user specified constraints that are
both semantically relevant to a search/domain in
question as well as contextually relevant to a user and/or
organization.

I. INTRODUCTION
When attempting to find data that is relevant to a

user and/or organization based on a query, it is very
common to retrieve exact matches in response to a
search. While using the exact matching of strings as
user search keywords can retrieve exact results, a user
may be looking for data with a specific meaning
based on his or her intended search preferences but
the data that is provided by a system or organization
may have a completely different meaning. This
problem is further compounded by having to ensure
that data that has recently been ingested into a system
is consistent with data that currently resides on the
same system. This can create an intractable problem
for a user such as having to constantly poll and
classify new data or accept new data that may be
inappropriately classified to ensure the semantic
meaning of the data is consistent. In addition, the
problem of new data being added to a system on a
massive scale necessitates a scalable solution. We
propose an approach which allows users to
personalize search terms according to the same set of
concepts where search results can be universally
understood by the same community of users
according to personalizable search profiles. Our
approach also enhances the accuracy of search results
by returning semantically similar results from a
specific domain. The impact of our approach
dramatically enhances the ability of users to
personalize a search thus retrieve more accurate
results. With the introduction of our framework, we
make a few key contributions:

1) We allow user specified search preferences to be
expressed with robust semantics resulting in
higher precision and recall that closely match the
user's intended search terms.

2) We have developed a method for user specified
semantics to be expressed probabilistically in the
search. Search results that have a semantic
similarity to a set of user specified preferences
are also returned enabling us to handle
uncertainty in our approach as well.

3) We have developed a way for multiple sets of

user specified preferences to be expressed using
the same ontology.

4) Our methodology allows for robust semantics to

be expressed in a parallelizable way.

5) We have implemented a prototype and evaluated

our methodology by conducting experiments
using precision and recall as metrics.

Motivating Example: Many municipalities often

have a need to capture semantically relevant data for
an intended purpose. For example, Bob, a detective
with the city of Baltimore, needs to get the current
statistics of all aggravated theft incidents between
1964 and 2013, in Baltimore, Maryland, USA. Bob
wants to compare this data with the same data on a
national scale over the same time period.
Furthermore, there are different types of data on thefts
that Bob wants to compare against. To further
compound the issue, different vendors provide
different labels for the same type. The impact of
capturing more semantically relevant data and getting
more accurate results enables law enforcement
officials to make better informed decisions because
the information they are looking for is more precise
and relevant to a specific situation for which the
officials need to make a decision about.

We describe our approach in section II, and then
we continue on with a discussion of our experiments

STIDS 2016 Proceedings Page 2

in section III, a validation of our approach in IV, and
then a discussion of relevant work in section V. We
then finish up our work with concluding thoughts and
proposed future work in section VI.

II. APPROACH
To begin our learning, we make use of a single

ontology that represents our categories of context,
with each category of context represented via separate
branches of the ontology.

Continuing our motivating example, we show a
sample representation of our ontology using figure 1
to show the taxonomical tree of terms that a user can
select as user preferences and how they organized.
Utilizing the Operational of Context [1] we model our
ontology using 5 separate categories of context.

Fig. 1 Sample representation of an ontology:

Operational Definition of Context [1], we model our
ontology using 5 separate categories of context. They
are:

1. Individuality Context - The individuality context
are attributes that describe an entity’s type such
as specifying the type of theft

2. Time Context - The time context is anything that
describes any kind of temporal attributes related
to an entity such as a year

3. Location Context - The location context describes

any kind of location attribute related to an entity
such as a city or state

4. Activity Context - The activity context describes

a goal related to entity such as how much of
something a law enforcement official may be
looking for such as a total amount of violent
crime

5. Relations Context - The relations context are

attributes of an entity that describe an entity’s
relation to another entity or its parts

User preferences in our ontology are saved with

literals that are added to each node a user has selected.
We chose not to add countries in our ontology
because we are assuming that our domain is within all
50 states within the USA. Bob the detective stores his
preferences in a user profile that matches parts of the
ontology (in figure 1) such as all aggravated thefts
that have occurred in Baltimore, Maryland, between
1964 and 2013. A special depth first search algorithm
then searches the ontology and matches saved user
specified literals for each node within each branch of
the ontology and creates a special in memory tree
model. This in memory tree model is a sub-tree of the
ontology that matches all of the user selected
preferences that were found in the original ontology.
Referring again to figure 1, only parts of the ontology
that match aggravated theft, Baltimore, Maryland that
are between 1964 and 2013 are copied into the new in
memory tree model.

After the original ontology has been parsed and
the in memory tree model has been implemented, we
are now able to build the rest of our decision tree.
Records (files) are initially classified based on user
preferences using the in memory tree model provided
in figure 2. For example, all records that are classified
must include records that have the attributes
Baltimore, Maryland, aggravated theft, or between the
years 1964-2013 (meeting Bob's specified user
preferences). Now that only instances remain that
match the user specified constraints above, (i.e., the
records are all containing values for the attributes
Baltimore, Maryland, aggravated theft, or in the range
1964-2013) we must build out the remaining part of a
tree based on the number of user specified splits or
criteria to enable the system to return search results
with increasing levels of precision by dividing the
records into further subsets as specified by the user

STIDS 2016 Proceedings Page 3

with each additional split. For example, if the user has
specified that he or she wishes to have the ontology
be 5 hops deep and the ontology is only 3 hops deep,
additional splits must be completed (if there are
enough records left to split against in order to meet
the user's specified preferences). Referring to figure 2,
additional splits are made using the lowest level
collection of leaves for the individuality and location
branches of the ontology (additional splits were not
made to the time branch of the ontology because the
user chose not to do so since year was the most
granular measure of time specified in the data).
Because the user has selected the decision tree to be 4
hops deep, additional splits are made using the lowest
collection of leaves for each branch of the ontology.
In the location ontology, the lowest collection of
leaves in that branch of the ontology are Baltimore,
Potomac, Los Angeles, Sacramento, Albany, and New
York City. Because Potomac has the lowest impurity
(see Semantically Driven Gini Algorithm) computed
from the lowest collection of leaves, it is selected as
the first candidate split using the Semantically Driven
Gini-Index Algorithm. No more splits are performed
on the location branch of the ontology because it is
now 4 hops deep. On the individuality branch of the
ontology, a single split is made using The
Semantically Driven Gini-Index Algorithm, with
vehicle theft being selected because it had the lowest
impurity (see Semantically Drive Gini Algorithm) of
the lowest leaves. No more splits are made for the
individuality branch of the ontology because it is now
4 hops deep as well. Our special in memory tree
model/user driven ontology looks (logically) like
Figure 2.

Any documents that match any of the user
preferences or Semantically Driven Gini-Index
Algorithm are then tagged using a custom document
summarization algorithm. The tagged files are then
copied to The Hadoop Distributed File System
(HDFS). Separate mapper calls are then kicked off
using search conditions that meet the user specified
preferences. A single reducer job is kicked off
consolidating a set of files that meet a final set of
preferences as specified by the user in the in-memory
tree model. A final set of key value pairs of files using
the key as the name of the matching file and a value
of 1 that matches all of the user specified preferences
are emitted signifying that the algorithm is complete.
For example, only the names of files that meet all the
user preferences Baltimore, aggravated theft, and
between the time range of 1964-2013 are emitted.

In Memory Tree Building Algorithm: To utilize
only paths of the ontology that the user has selected as
his or her search preferences, a smaller graph of the

in-memory tree model is created copying each of the
paths that a user has selected. First, the user specifies
the number of hops deep (or total depth) he or she
wishes for the size of the decision tree to be. Second,
the user picks from a list of selected labels that have
already been mapped via our ontology via a tree like
drop down list or via a search box. (The mappings are
a graphical representation of the ontology, where the
user can select any one of the nodes of the ontology as
a user preference). After our search is complete we
populate a list of labels from our ontology and copy
the names of the nodes (and their parents) that the
user has selected. The same set of user preferences
will be copied from all five categories of the ontology
below (with each branch of the ontology being stored
as a separate but parallel part of our in memory tree
model). The in memory tree model persists in
memory as a service. Files are matched against the
user preferences that have been stored in the in-
memory tree model.

Fig. 2. A logical representation of an in memory tree model
(including splits from the Semantically Driven Gini-Index
Algorithm):

Root

 Vehicle Theft

Aggravated Theft

Location

Maryland

Baltimore

Potomac

Time

1964-2013

Individuality

Semantically Driven Gini-Split

 Theft

STIDS 2016 Proceedings Page 4

We implement our depth first search algorithm
using the following representation: C for Category
Contextual Model Data, O for Ontology, for each
branch of the ontology (each primary branch of the
ontology connected to the root), where
represents a current node, represents a child
node, a indicates the current level (depth) of the
ontology, b where a holds a 1 or 0 (1 if for each node
selected by user or 0 if not selected by the user holds
a pointer to the child node, and c is a list of all other
user specified preferences, and d is a list of pointers to
all child nodes of the current (parent) nodes.
In memory tree algorithm pseudocode:

Input: Ontology O
Output: in-memory tree model

 LOOP: Repeat the following steps (for a + 1 of the
current node until a = the lowest leaf in the tree), for

 - , until all of O or the entire ontology is finished

1) For each category of context from Root we

represent our Ontology as follows: O =
{ . For each branch of the tree

= and C is the starting node for each
tree (i.e., the starting node after root is
Location, Time, Individuality, Activity, and
Relations for each of the 5 categories of
context).

2) For a of of add to c of

where is a current node, is
the child node of , a is the current depth
of , b holds a 1 or 0 (1 if a user has chosen
a user preference or 0 if the node has not been
selected as a user preference), c holds a list of
all other user specified preferences and d is a
list of pointers from to children
nodes

3) If no children exist for d, d = NULL.

END LOOP;

Semantically Driven Gini-Index Algorithm: Once
the in-memory tree model building algorithm is
complete, our custom Semantically Driven Gini-Index
Algorithm is kicked off. First, we define our
Semantically Driven Gini-Index Algorithm which
calculates the impurity of each node as follows:

¦�
j

tjptGINI 2)]|([1)(

Input: Lowest collection of leaves for each branch of
the in-memory model

Output: Additional children nodes for each branch of
the in-memory model

Where t is the node, j is the class, and p is probability
of class j given a node t. The algorithm works as
follows:

1) Initial splits are made based on classes
specified in the in memory tree model. For
example, aggravated theft is a candidate for a
decision tree split since aggravated theft is a
class in the tree (originally specified within
the ontology).

2) Additional splits at the next level of the tree

are implemented using the same collection of
leaves (i.e., the lowest collection of leaves
for a given branch of the ontology stored in
the memory tree model) with the next split
being the node with next lowest impurity
using the calculation defined in (1).

3) Additional splits are induced using the same

lowest collection of leaves (for each branch
of the tree) until the max number of splits
has been reached either by the following:

x A program driven default - This condition

happens when a program driven default
number of splits is reached for a given
branch of the ontology. For example, if the
program default is set to 5 splits, then the
decision tree will not split beyond 5 hops
deep for that given branch. This is true
regardless of whether the split was based
on a modeling part of the ontology or a
part of The Semantically Driven Gini-
Index Algorithm used to calculate a split.

x A user specified limit is reached - This

condition happens when the user specifies
a max number of splits he or she sets for a
given branch of a decision tree. For
example, if the max number of splits that
is specified is 7 for a particular branch of
the decision tree then the decision tree will
stop inducing additional splits in that
branch of the decision tree beyond that
number regardless of whether or not the
nodes being split come from the ontology

(1)

STIDS 2016 Proceedings Page 5

or additional splits are determined by The
Semantically Driven Gini-Index
Algorithm.

x The max number of possible splits has

been reached - This condition occurs when
all possible splits from within an ontology
as well as all of the lowest level of leaves
have been utilized in a split resulting in a
max number of splits that can be used to
build a given decision tree. For example, if
the ontology is 4 hops deep and the lowest
level of leaves totals 4 leaves as well, this
makes the max number of splits possible
for the decision tree to be 8 split.

III. EXPERIMENTS
To validate our approach, we took roughly

100,000 files from the UCR Data Repository and
processed them against 60 user specified preferences
stored within the in memory tree model. The
semantically mapped features were saved as tags in a
modified version of each file, making matching for
each set of user preferences a matter of matching the
tags that have been specified by the user saved in the
in memory tree model. Finally, the resulting
MapReduce Jobs generated a file name with a value
of 1 for each set of semantically mapped preferences
that were matched. We used the following sample
Scenario 1: Bob is looking for all crimes that occurred
within the state of Maryland, between 1998 and 2002,
he is searching for crime totals for larceny theft in
which the files are saved as .xls files. Scenarios 2
through 10 are variants of scenario 1, where
semantically mapped preferences were matched
against the same files from the UCR Data Repository
Values for scenarios 2-10 were chosen at random.

We have run three sets of experiments:
1) No Context and No Ontologies - Experiments

with user preferences as exact search terms on
MapReduce Jobs.

2) Ontologies but No Context - Experiments with

files that were tagged using ontologies in
RDF/OWL Files saved in the in memory model,
but without any user preferences saved within
them (copying the entire ontology for each
category of context). The tagged files were then
processed in a MapReduce Job producing the
results.

3) Ontologies and Context - These experiments

were executed using the files that were tagged
using both the ontologies modeled in RDF/OWL
Files, but also with the saved user preferences
that were parsed from the RDF/OWL Files as
well. The tagged files were then processed using
MapReduce producing the results.

IV. VALIDATION
We use two well-known metrics to validate our

approach: Precision and Recall. Recall is defined as
the fraction of the records retrieved that are relevant
to the query. In other words, recall reveals the
percentage of the retrieved and relevant records that
are relevant (whether in the answer set or outside the
answer set). Precision is defined as the fraction of the
retrieved records that are relevant to the search. In
other words, precision reveals the percentage of
retrieved and relevant records in the answer set.
Recall and precision are calculated as follows:

0
0.2
0.4
0.6
0.8

1

No Ontologies and No Context

Ontologies and No Context

Ontologies and Context

Fig. 3. Experiment results using recall

(2)

(3)

STIDS 2016 Proceedings Page 6

0
0.2
0.4
0.6
0.8

1

No Ontologies or Context

Ontologies and No Context

Ontologies and Context

 Fig. 4. Experiment results using precision

In the above scenarios or sets of test conditions that
simulated using sets of user specified preferences (like in
Scenario 1 discussed above), the recall was computed for no
ontologies and no context by dividing matching exacting
search terms from a user’s search against the content of the
files that are being parsed. The recall was extremely low for
no ontologies and no context because the exact key words
used in MapReduce Jobs matched a very small percentage of
the files that were relevant to a user's search. The mean
average of all 10 scenarios was 28%. The recall for ontologies
and no context was computed by taking the matching terms in
the in memory tree model that were parsed from the ontology
and matching them against properties and content in the files
being parsed. The searches for ontologies and no context
yielded a higher recall because all the files that were tagged
using the in memory tree model matched 1 or more of the
classes specified in the ontology with a total of 47% recall,
resulting in almost a 20% increase from no ontologies and no
context. The recall for ontologies and context was computed
by taking the matching preferences stored in the in memory
tree model and matching them against properties and content
of the files being parsed. Searches involving ontologies and
context had a very high recall because all results retrieved
matched both the semantically driven preferences that were
saved in the in memory tree model as well as with the
semantically specified constraints from the ontology resulting
in 63% recall, a 16% increase from ontologies and no context
and a roughly 35% increase improvement in recall vs. no
ontologies and no context.

Precision was computed for no ontologies and no context
by dividing matching exacting search terms from a user’s
search against the content of the files that are being parsed.
The precision for no ontologies and no context was extremely
low because the overwhelming majority of the search results
that were returned did not match the intended user search
preferences because exact key words were used for each
search resulting in a 17% precision. The precision for
ontologies and no context was computed by taking any of the

matching terms in the in memory tree that were parsed from
ontology and stored in the in memory tree model without any
user specified preferences and matching them against the
properties and content of the files that are being parsed.
Ontologies and no context resulted in a low precision as well
because the entire ontology was stored in each in memory tree
model resulting in tagged files that only partially or did not
match a user's intended search terms at 26% precision. The
precision for ontologies and context was computed by taking
any of the matching preferences stored in the in memory tree
model that parsed from the ontology and selected by the user
from the ontology and matching them against properties and
content and of the files being parsed. Ontologies and context
resulted in a very high precision versus no ontologies and no
context and ontologies and no context, because documents
that returned key value pairs in our MapReduce Jobs matched
the semantically mapped user preferences as well the semantic
constraints specified in the ontology resulting in an 80%
precision; a 54% increase in ontologies and no context and a
63% increase in accuracy vs. no ontologies and no context.

In summary we learned that enabling a user to pick
semantically enriched preferences from an ontology of terms
that reflect an existing domain from a corpus can lead to a
much higher precision and recall than using exact search terms
or just using semantically enriched search terms parsed from
an ontology. By building an in memory tree model we are able
to both represent the knowledge representative of a domain
and we also enable personalization by a user of that
knowledge as well. In order to enable robust personalization,
semantics must first be reflected in a model before a user can
pick them. This is depicted in our results by showing that the
precision and recall is higher than with just choosing exact
search terms and the precision and recall further improves
when allowing a user to pick attributes he or she wishes to use
in a search with terms picked from the ontology.

STIDS 2016 Proceedings Page 7

V. RELATED WORK
Zhang et al. [2] formulated an approach that calculated

the information gain for finding the best split for a node
between two or more separate taxonomies. This approach does
not incorporate any kind of semantic inference or contextually
driven attributes for building a decision tree, neither does it
address any issues with trying to make a decision tree
parallelizable. Gajderowicz et al. formulated an approach for
enriching manually created ontologies using decision trees [3].
They also developed a system for using decision trees for
ontology matching [4]. Johnson et al., formulated an approach
for enriching ontologies off of custom built decision trees [5].
Bouza et al. described an approach by using an ontology to
build user profiles to make various recommendations on user
behavior [6]. Our approach not only allows a user to specify
preferences, but also ensures that they are semantically similar
to any search results; it is parallelizable too. Fanizzi et al.
developed a novel framework for learning custom description
logic learning languages using decision trees. While this
approach is novel for learning description logic concept
definitions, it does not incorporate user preferences [7].

Nenkova et al. developed a technique for summarizing
documents based on frequency [8]. Arun and Gunavathi
developed a technique for summarizing documents using
context sensitive weights for indexing [9]. This work did not
utilize the contextual properties of parts of a document nor
were user preferences utilized when creating the summaries.
Witte et al. developed a fuzzy graph technique for multi-
document summarization [10]. Barzilay et al. developed a
technique for summarizing documents using the contextual
attributes found in text across a series of documents [11].
Yang et al. developed a summarizing framework using the
social contextual information, but they did not utilize user
specified preferences beyond social ones such as a time or
location that a document was created [12].

VI. CONCLUSIONS
We described and validated an approach to specify

semantically driven user preferences in a parallelizable way.
We also encountered a few limitations. First, we found that
extensive exploration and sampling of data files was needed to
be able to properly model preferences in our ontology to
confirm a consistent structure of a file format when creating
our in memory tree model. Second, we found that the user
preferences that were specified in the in memory model
needed to closely mirror the user preferences that were
specified in the ontology or this would lead to searches
returning incorrect results or errors resulting in our program
because the structure of RDF/OWL Model was incorrect. For
our future work we plan on testing much larger datasets. Also
planned are further attempts to model more expressive
attributes for user specified preferences. Finally, we plan on
utilizing Apache Spark [13] and new versions of Hadoop to
allow for both a more novel design and implementations of
our approach.

References
[1] A. Zimmermann, A. Lorenz and R. Oppermann, "An Operational

Definition of Context," 2007.

[2] J. ZhJ Zhang, A. Silvescu and V. Honava, "Ontology-Driven Induction of
Decision Trees at Multiple Levels of Abstraction," Berlin Heidelberg, 2002.

[3] B. Gajderowicz, M. Soutchanski and A. Sadeghian, "Trees, Ontology
Enhancement through Inductive Decision Trees," in Uncertainty
Reasoning for the Semantic Web II, Springer Berlin Heidelberg, 2013.

[4] B. Gajderowicz, "Using Decision Trees for Inductively Driven Semantic
Integration and Decision Matching," Ryerson University, Toronto, 2011.

[5] I. Johnson, J. Abécassis, B. Charnomordic, S. Destercke and R.
Thomopoulos, "Making Ontology-Based Knowledge and Decision Trees
Interact: An Approach to Enrich Knowledge and Increase Expert
Confidence in Data-Driven Models," in Knowledge Science, Engineering
and Management, Springer Berlin Heidelberg, 2010.

[6] A. Bouza, G. Reif, A. Bernstein and H. Gall, "SemTree: Ontology-Based
Decision Tree Algorithm for Recommender Systems," Karlshruhe, 2008.

[7] N. Fanizzi, C. d’Amato and F. Esposito, "Induction of Concepts in Web
Ontologies through Terminological Decision Trees," Barcelona, 2010.

[8] A. Nenkova, L. Vanderwende and K. R. McKeown, "A Compositional
Context Sensitive Multi-document Summarizer: Exploring the Factors
That Influence Summarization," Seattle, Washington, 2006.

[9] J. M.E and C. Gunavathi, "Document Summarization and Classification
sing Concept and Context Similarity Analysis," 2014.

[10] R. Witter, R. Krestel and S. Bergler, "Context-based Multi-Document
Summarization Using Fuzzy Coreference Cluster Graphs".

[11] R. Barzilay, K. R. McKeown and M. Elhadad, "Information Fusion in
the Context of Multi-Document Summarization".

[12] Z. Yang, C. Keke, J. Tang, Z. Li, S. Zhong, L. Jaunzi and Y. Zi, "Social
Context Summarization," Beijing, China, 2011.

[13] Apache Spark, "Apache Spark," [Online]. Available:
http://spark.apache.org. [Accessed 10 06 2016].

[14] T. Boujari, "Instance-Based Ontology Alignment Using Decision Trees,"
Institutionen för Datavetenskap, 2012.

[15] H. F. Witschel, "Using Decision Trees and Text Mining Techniques for
Extending Taxonomies," in In Proceedings of Learning and Extending
Lexical Ontologies by Using Machine Learning Methods, 2005.

[16] W. J. Wei Dai, "A MapReduce Implementation of C4.5 Decision Tree
Algorithm," International Journal of Database Theory and Application,
pp. 49-60, 2014.

[17] R. Mirambicka, A. R. Sulthana and G. Vadivu, Decision Tree Applied to
Learning Relations Between Ontologies.

[18] D. Jeon and W. Kim, "Development of Semantic Decision Tree," in Data
Mining and Intelligent Information Technology Applications (ICMiA),
2011 3rd International Conference on, 2011.

STIDS 2016 Proceedings Page 8

[19] M. Patil, S. Khomane, V. Saykar and K. Moholkar, "Web People Search
Using Ontology Based Decision Trees," International Journal of Data
Mining & Knowledge Management Process, 2012.

[20] B. Panda, J. S. Herbach, S. Basu and R. J. Bayardo, "PLANET:
Massively Parallel Learning of Tree Ensembles," Google, 2009.

[21] J. Han, Y. Liu and X. Sun, "A Scalable Random Forest Algorithm Based
on MapReduce," in Software Engineering and Service Science (ICSESS),
2013 4th IEEE International Conference on, Bejing, China, 2013.

[22] W. Yin, V. Simmhan and V. K. Prasanna, "Scalable Regression Tree
Learning on Hadoop Using OpenPlanet," in MapReduce '12 Proceedings
of third international workshop on MapReduce and its Applications,
New York, New York, 2012.

[23] S. d. Río, V. López, J. M. Benítez and F. Herrera, "On The Use of
MapReduce For Imbalanced Big Data Using Random Forest,"
Information Sciences, pp. 112-137, 2014.

[24] S. Tyree, K. Q. Weinberger and K. Agrawal, "Parallel Boosted
Regression Trees for Web Search Ranking," in WWW 2011 – Session:
Ranking, NY, NY, 2011.

[25] X. Zhanga, C. Liua, S. Nepalb, C. Yanga, W. Dou and J. Chen, "A
Hybrid Approach For Scalable Sub-Tree Anonymization Over Big Data
Using MapReduce On Cloud," Journal of Computer and System
Sciences, pp. 1080-1020, 2014.

[26] J. Ye, J.-H. Chow, J. Chen and Z. Zheng, "Stochastic Gradient Boosted
Distributed Decision Trees," in CIKM '09 Proceedings of the 18th ACM
Conference on Information and Knowledge Management, New York,
New York, 2009.

[27] A. Ghoting, P. Kambadur, E. Pednault and R. Kannan, "NIMBLE: a
Toolkit For The Implementation of Parallel Data Mining and Machine,"
in KDD '11 Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, New
York, 2011.

[28] G.-Q. Wu, H.-G. Li, X.-G. Hu, Y.-J. Bi, J. Zhang and W. Xindong,
"MReC4.5: C4.5 Ensemble Classification with MapReduce," in 2009
Fourth ChinaGrid Annual Conference, Yantai, Shandong, 2009.

STIDS 2016 Proceedings Page 9

