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Abstract—Cyber defenders face the problem of selecting and

configuring the most appropriate defenses to protect a given

network of systems supporting a certain set of missions against

cyber attacks. Cyber defenders have very little visibility into

security/cost tradeoffs between individual defenses and a poor

understanding of how multiple defenses interact, which, in

turn, leads to systems that are insecure or too overloaded with

security processing to provide necessary mission functionality.

We have been developing a reasoning framework, called Attack

Surface Reasoning (ASR), which enables cyber defenders to

explore quantitative tradeoffs between security and cost of

various compositions of cyber defense models. ASR automatically

quantifies and compares cost and security metrics across multiple

attack surfaces, covering both mission and system dimensions.

In addition, ASR automatically identifies opportunities for mini-

mizing attack surfaces, e.g., by removing interactions that are

not required for successful mission execution. In this paper,

we present the ontologies used for attack surface reasoning.

In particular, this includes threat models describing important

aspects of the target networked systems together with abstract

definitions of adversarial activities. We also describe modeling of

cyber defenses with a particular focus on Moving Target Defenses

(MTDs), missions, and metrics. We demonstrate the usefulness

and applicability of the ontologies by presenting instance models

from a fictitious deployment, and show how the models support

the overall functionality of attack surface reasoning.

I. INTRODUCTION

Cyber security remains one of the most serious challenges to
national security and the economy that we face today. Systems
employing well known but static defenses are increasingly
vulnerable to penetration from determined, diverse, and well
resourced adversaries launching targeted attacks such as Ad-
vanced Persistent Threats (APTs).

Due to the heavy focus on cyber security technologies in
both commercial and government environments over the last
decade, an overwhelming array of cyber defense technologies
have become available for cyber defenders to use. As the num-
ber and complexity of these defenses increase, cyber defenders
face the problem of selecting, composing, and configuring
them, a process which to date is performed manually and
without a clear understanding of integration points and risks
associated with each defense or combination of defenses.

As shown in Figure 1, the current state-of-the-art approach
for selecting and configuring cyber defenses is manual in
nature and is often done without a clear understanding of secu-
rity metrics associated with attack surfaces. Due to the talent
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Fig. 1. The proposed approach computes attack surface metrics, provides
structured support for deployment of (and experimentation with) wrapped
defenses, and automates the defense selection and configuration process

shortage in cyber security Subject Matter Experts (SMEs) [9],
this introduces significant delays and cost.

The reasoning framework presented in this paper aims to
significantly improve the level of rigor and automation associ-
ated with selection and configuration of cyber defenses. Using
an ontologically grounded definition of an attack surface, the
framework contains algorithms to find all applicable attack
vectors and compute metrics for the security and cost impact
of adding cyber defenses to target systems. Using models
of key mission processes and their interactions, the analysis
extends observations about system-level components to the
resulting impact on execution of mission critical workflows.
Finally, the framework combines measurement, modeling, and
analysis with testing of software artifacts through the use of
a virtualized test infrastructure [1]. Experimental validation of
analysis results on real systems with real defense implemen-
tations establishes the usefulness and validity of the approach.

Figure 2 illustrates how the Attack Surface Reasoning
(ASR) framework captures models of underlying systems,
cyber defenses, and missions in the form of unified models.
These models are augmented by other models that describe
adversary constraints, potential attack steps, and definitions
of security and cost metrics. ASR provides two categories
of algorithms: attack surface characterization and minimiza-
tion. The characterization algorithm constructs attack vectors
and calculates security and cost metrics. The minimization
algorithm uses system and mission information to identify
opportunities for pruning unnecessary access paths to reduce
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Fig. 2. The Attack Surface Reasoning (ASR) framework

the attack surface. Using the models, algorithms, and metrics,
cyber defenders can compare various deployments of proactive
cyber defenses in a quantitative manner and contrast tradeoffs
between security benefits and performance overhead. As such,
ASR provides a foundational capability in support of an
envisioned cyber planning tool that automatically suggests and
configures defenses given mission executions over systems.

This paper describes the ontologies used to model systems,
cyber defenses, adversarial capabilities, and mission con-
straints. Validation of the approach focuses on a specific class
of proactive cyber defenses, Moving Target Defenses (MTDs)
[7], [11]. MTDs claim to make entry points into networks
and systems harder to detect, thereby reducing vulnerabilities
and making the exposure to those vulnerabilities that remain
more transient. This introduced dynamism ought to render
attacks against MTD-protected systems less effective, but few
quantitative results are available to date, which makes MTDs
a prime choice for quantification.

The rest of the paper is organized as follows. Section II
describes related work in threat modeling and analysis. Section
III describes the set of ontologies we developed to support
attack surface reasoning. Section IV reports on the validation
results of applying the ontologies to cyber defense operations
of a small enterprise network. Section V concludes the paper.

II. RELATED WORK

The ontologies presented in this paper relate to several ap-
proaches for modeling cyber security systems and observables.

A. Security Standards
A number of different taxonomies exist for describing cyber

security related information. For threat information, this set of
standard includes the Common Vulnerabilities Enumeration
(CVE), Common Weakness Enumeration (CWE), Common
Vulnerability Scoring System (CVSS), Malware Attribute Enu-
meration and Characterization (MAEC), Structured Threat
Information eXpression (STIX), and Common Attack Pattern
Enumeration and Configuration (CAPAC). Taxonomies in use

for system modeling include the Cyber Observable eXpression
(CybOX) and the Common Information Model (CIM). These
standards focus on capturing detailed information about sys-
tem observables, cyber security events, indicators of compro-
mise, and vulnerabilities for the purposes of sharing specific
threat information (to yield enhanced intrusion detection) and
eliminating existing vulnerabilities (through continuous patch-
ing). In contrast, the ASR ontologies are expressed at a higher
level of abstraction and focus on design-level assessments of
attack surfaces. Another difference is that the ASR ontolo-
gies are expressed in OWL, while the community standards
mentioned above are prescribed in XML. Finally, the above-
mentioned standards focus on system and adversary modeling,
but provide no structured means for representing cyber defense
capabilities. In contrast, ASR contains a specific defense
ontology describing the protection provided by defenses and
the cost associated with various defense configurations.

B. Security Ontologies

A number of different ontologies exist for expressing
security-related properties, including [6] and [4], as summa-
rized in [13]. [5] applies semantic threat and defense modeling
to identify proper firewall configurations. [14] develops an
ontology for the HTTP protocol as well as attacks against
web applications (using HTTP), and then uses a separate
ontology for finding attack vectors. [10] focuses on a review of
existing cyber security taxonomies and ontologies and points
out several existing models. However, the review does not list
any ontologies for cyber defenses. [15] describes an extensive
ontology supporting forensic activities across disparate data
sources. Finally, work on modeling cyber defense decision
processes [3], [12] provides ontology support for learning and
extracting cyber defense workflows and decision procedures.

The ASR ontologies are in large inspired by the STRIDE
threat-modeling approach [16] used by Microsoft. One key
difference to existing ontologies is the focus on abstract
architectural concepts and high-level adversarial objectives.

III. ONTOLOGIES

The attack surface reasoning algorithms operate over a set
of models that together describe the system under examination,
its defenses, the assumed capabilities and starting point(s) of
the adversary, and optionally a mission or set of missions
which may operate over the defined system. In addition, the
set of metrics to be computed is itself described in a model
to allow for easy extension and modification by the user.

ASR models are defined in the WorldWideWeb Consortium
(W3C) semantic Web Ontology Language (OWL). Using a se-
mantic web substrate provides a number of benefits, including:

• Scalability: the OWL language and supporting tools allow
for scaling to very large models;

• Inference: OWL ontologies encode meaning in a formal
way, which enables inferring new facts from existing data;

• Cross-domain integration: OWL ontologies can connect
disparate domains without contaminating the sources;
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• Standards and community: OWL and associated lan-
guages such as Resource Description Framework (RDF)
and SPARQL Protocol And RDF Query Language
(SPARQL) provide interoperable libraries and tooling,
and active practitioner communities; and

• Relative maturity: semantic web languages provide tested
algorithms, established terminology, and relatively ma-
ture libraries. Tooling with predictable performance both
within and beyond the laboratory setting is also available.

One of the key challenges of modeling distributed systems
is to identify the level of abstraction most appropriate for
the modelers who will create the models, the algorithms that
will operate over them, and the results that are provided to
stakeholders. Modeling at the extreme of precision allows
exact answers to be derived, but creates models that are
difficult to accurately create and to keep up to date, and leads
to analysis outcomes that are brittle as the system changes. On
the other hand, modeling at too coarse of a level of abstraction
leads to easily created models, but models that can tell little
to interested parties about questions of importance.

We took a middle road with ASR. A number of the concepts,
and the level of granularity, were modeled after the Microsoft
STRIDE [8] threat-classification framework and related mod-
eling languages described in [16]. STRIDE expresses system
concepts through abstract concepts including processes, data
flows, boundaries, external entities, and data stores. We model
the different aspects of an attack surface separately in order
to facilitate modularity and extensibility. Table I lists the six
ontological models used in ASR and summarizes their content.

TABLE I
ASR USES A COLLECTION OF MODELS TO QUANTIFY ATTACK SURFACES

Model Concepts

System System components and their relationships;
e.g., computational entities, boundaries, and
data flows

Attack Generic attack logic as individual steps, vec-
tors, and templates

Adversary Adversarial starting position and goal
Mission Mission relevant system elements and key per-

formance metrics
Defense Cyber defense capabilities in terms of protec-

tions provided plus associated costs
Metric Metrics for security, cost, and mission impact

A. System Model

System models describe the business system against which
attacks can be executed and within or around which defenses
can be deployed. These models detail the hosts in the system,
the networks that connect these hosts, and the processes that
run on them. Data flows are modeled here at three different
layers: process, network, and physical. The three layers are
interconnected in the model such that one can determine for
a given process-layer data flow that the described data is sent
out through a given endpoint at the network layer, which in
turn is bound to a particular network interface card (NIC) at

TABLE II
MAIN SYSTEM MODEL CONCEPTS

Resource Description

Entity General concept
Boundary Trust realm for unrestricted access within a

boundary
Vertical Boundary subclassOf Boundary describing realm cross

layers
Horizontal Boundary subclassOf Boundary describing realm on a

single layer
Host subclassOf Vertical Boundary representing a

computer system
WAN subclassOf Horizontal Boundary representing

a wide area network
VLAN subclassOf Horizontal Boundary representing

a wide area network
Layer Logical layering of functionality into three

main layers
NetworkLayer subclassOf Layer describing network entities

and interactions
PhysicalLayer subclassOf Layer describing physical entities
ProcessLayer subclassOf Layer describing application-level

components and interactions
DataFlow Flow of bits between two entities
DataStore Persistent store of information
External An entity that is external to the system
User subclassOf External describing human actors
NetworkEndpoint Sockets used in network connections
NIC Network Interface Card
Process Operating System process
Resource Shared resource with certain capacity

the physical layer. Table II describes the main resource types
associated with the system model ontology.

The following properties have specific meaning:
• contains: expresses membership relationship between two

Entities. For instance, a Host contains Processes and a
VLAN contains NICs.

• connectsTo: expresses a data or control flow link between
two Entities. For instance, a User connects to a Process, a
Process connects to a NetworkEndpoint, and a Network-
Endpoint connects to a NIC.

• via: expresses a link between hierarchical data flows. For
example, a process-layer flow is realized via a network-
layer flow, which itself happens via a physical-layer flow.

B. Attack Model
The attack model describes the generic activities performed

by adversaries as a collection of potential attack steps. Table
III describes the main resource types associated with the
attack model ontology. Each attack step definition comprises
a number of attributes that specify an attack type (modeled
via the six high-level types of attacks whose initials define
STRIDE), the pre-conditions necessary for the attack step to
execute, and the post-conditions that holds once the attack step
executes successfully. Figure 3 shows an example of an attack
step definition that represents network sniffing, and Table IV
shows the set of attack step definitions that are currently
modeled in ASR, using the STRIDE attack types from Table
III.
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C. Adversary Model

The adversary model contains the following information:

• Starting Position: A reference to an entity in the system
model that describes the starting privilege an adversary
has for the purpose of a specific assessment.

• Target Goal: Information about the type of attack and the
intended target of the attack.

TABLE III
MAIN ATTACK MODEL CONCEPTS

Resource Description

AttackStep A specific instance of adversarial activity. At-
tack vectors consists of a collections of linked
attack steps.

AttackStepDefinition A reusable generic description of an adver-
sarial activity. Attack steps are derived from
definitions

AttackVectorElement Ordering and context around an AttackStep to
form an AttackVector

AttackVector Ordered execution of AttackSteps
AttackTemplate A templatized version of an attack vector
Attacker Captures aspects of the expected adversary,

including the starting position
SideEffect As part of executing this attack, these specific

facts are added to the model
AttackType The type of attack being executed

Spoofing subclassOf AttackType. Illegally accessing and
then using another user’s authentication infor-
mation.

Tampering subclassOf AttackType. Malicious modifica-
tion of data

Repudiation subclassOf AttackType. Deny performing an
action without other parties having any way
to prove otherwise

InformationDisclosure subclassOf AttackType. Exposure of informa-
tion to individuals who are not supposed to
have access to it

DenialOfService subclassOf AttackType. Deny service to valid
users

ElevationOfPrivilege subclassOf AttackType. An unprivileged user
gains privileged access and thereby has suf-
ficient access to compromise or destroy the
entire system

Fig. 3. Example of an attack step that performs a network sniffing action

TABLE IV
ATTACK STEPS CURRENTLY MODELED IN ASR

Name Type Pre-Condition Post-Condition

Sniff Information
Disclosure

Access to network Knowledge
about observed
network flows

PortScan Information
Disclosure

Network
reachability

Knowledge
about listening
sockets

TCPConFlood Denial of
Service

Network
reachability &
Knowledge about
the target endpoint

Depletes file
descriptors at a
given rate

OSFingerPrint Information
Disclosure

Knowledge on lis-
tening socket on a
host

Knowledge
about host OS
specifics

GetRoot Elevation
of Privilege

Knowledge on
host OS and
listening socket

Root privilege on
host

ShutDownServer Denial of
Service

Knowledge on
host OS and
listening socket
Root privilege on
host

Server
unavailable

• Attack Vector Template: Preconceived structure of attack
vectors specifying sequences of types of attack steps that
have not been bound to specific instances.

Given these assumptions about the adversary, ASR will au-
tomatically identify all applicable attack vectors as a partially
ordered sequence of bound attack steps.

D. Mission Model

Mission models describe mission-critical flows between
actors and services at the application layer. The mission
models are a strict subset of process-layer system entities and
data flows contained in the system model. Table V shows the
main concepts in the ASR mission models.Mission metrics
evaluate the fitness of a specific mission within the context
of a collection of other models. Like system metrics, mission
metrics are evaluated along the two dimensions of cost and
security, and mission-critical flows can specify requirements
on the cost and security of information exchanges. Most
mission metrics are rated on a normal, degraded, fail scale. To
allow for quick and easy comparison of mission metrics among
multiple configurations, we provide a mission aggregate cost
index (ACI) and a mission aggregate security index (ASI),
which return the minimum score along all cost or security
concerns, respectively (i.e., if a single data flow fails a cost
or security requirement, the mission aggregate cost or security
index indicates a fail also). The individual metrics are provided
for comparison purposes so that it is easy for the user to
distinguish between a configuration that only has one or two
poorly performing components for this mission, and an overall
equally rated configuration whose every component is rated
degraded or fail for this mission. Finally, the mission security
and cost metrics are folded into an aggregate mission index
(AMI), similar to the ACI and ASI. The value of the AMI
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is fail if either the mission aggregate security or cost indices
evaluates to fail, and equals the mission aggregate cost rating
otherwise (this is because security is evaluated on a pass/fail
scale, while cost follows the user-defined three-band ranking
explained in detail below).

Mission performance is constrained through four threshold
values, p1latency, p2latency, p1throughput, p2throughput, that
describe lower and upper allowable thresholds for percentage
overhead rates on latency and throughput. Not all mission-
critical data flows must specify a lower and upper threshold,
and, if there is no requirement on a data flow, user-configurable
default threshold values will be used. These thresholds are
used to define the following three bands:

• Normal (platency < p1latency): The mission operates
within normal parameters, i.e. the greatest latency penalty
incurred is still less than the lower threshold.

• Degraded (p1latency <= platency < p2latency): The
mission can continue, though with sub-optimal outcomes,
i.e. the greatest latency penalty incurred is more than the
lower threshold but less than the maximum allowable.

• Fail (p2latency < platency): The mission cannot continue
and misses objectives, i.e. the greatest latency penalty
incurred exceeds the maximum allowed and the mission
performance will be unacceptable.

For example, the user can specify that a latency penalty of
up to 10% is acceptable if it allows for a more sophisticated
defense to be deployed with a mission, but a latency penalty
of 40% or more leads to unacceptable delays and jeopardizes
the mission. In this case, if the cumulative latency along some
mission-critical data flows does not exceed 110% of the normal
value, these data flows are rated as normal; if the latency
exceeds 110% but is below 140%, corresponding data flows
are rated as degraded; and if the latency is over 140% of
the original value, those data flows are rated as fail. The
throughput calculations are analogous, with the exception that
a penalty means a decrease, not an increase, in throughput.

Mission security requirements specify any required secu-
rity attributes, which are delineated among confidentiality,
integrity, and availability. Not all mission-critical data flows
must specify a security requirement and if no requirement
is specified, the data flow is not considered when evaluating
mission security. Security metrics are evaluated on a binary
scale where a data flow either meets its security requirement
or violates it. A data flow is considered to violate a security
requirement if an attack step can compromise that requirement.

For example, since all attack steps are categorized using
STRIDE, if an attack step contributes to a denial of service on
a data flow and that data flow has an availability requirement,
the requirement is violated. If the same data flow also has
confidentiality or integrity requirements, those are evaluated
separately with respect to other attack steps that might compro-
mise them. If at least one mission-critical data flow is found to
violate a security-related requirement, that requirement is rated
as fail for the entire mission. For example, if there are three
data flows with integrity requirements and only one of them
violates a requirement, then the mission still gets a fail score

for integrity. If any of the individual percentages of data flows
that fail for confidentiality, integrity or availability are greater
than zero, the mission aggregate security index consequently
evaluates to a fail score on security overall.

TABLE V
MAIN MISSION MODEL CONCEPTS

Resource Description
Mission Description of mission requirements over data flows
Requirement Specifies thresholds for cost and minimum security

requirements for a data flow
MetricType Type of mission metrics
Integrity ⇢ MetricType. Security constraint
Availability ⇢ MetricType. Security constraint
Confidentiality ⇢ MetricType. Security constraint
Latency ⇢ MetricType. Cost constraint via performance impact
Throughput ⇢ MetricType. Cost constraint via performance impact

E. Defense Model
The defense models describe which static and dynamic

defenses are in place, what elements of the system they protect,
what types of coverage they provide, and what cost is incurred.
A single defense model can incorporate multiple defenses.
Table VI shows the main concepts associated with models of
cyber defenses. Different defenses operate over different types
of nodes and thus the coverage relationship from a defense
has a range of type Entity, which in the ASR ontologies
inheritance hierarchy is the parent of all system-level nodes
(processes, hosts, NICs, etc.). In this way, MTDs from Address
Space Layout Randomization (ASLR) to IP Hopping can all
integrate with the system model in a uniform manner, despite
the fact that they protect very different elements. Defenses
can be modeled both abstractly, such as a generic definition
for a firewall, and at the specific implementation level (e.g.,
IPTables).

Thanks to the ability of OWL to incorporate inheritance,
we can reap the benefits of reuse. We can define a generic
IP hopping MTD that describes the capabilities and require-
ments common to all IP hopping defenses, and extend this
definition to minimize the effort needed to model any specific
implementations of an IP hopping defense. We can even

TABLE VI
MAIN DEFENSE MODEL CONCEPTS

Resource Description
Defense Description of cyber defense mechanism
DefenseType Categorization into different types of defenses
Cost Characterization of the overhead defense incurred
Degradation ⇢ Cost. Reduction in metric.
Requirement Prerequisite requirements for installing the defense
Setup Description of the defense’s configurable items
Protection Security guarantees provided by the defense
Reconfiguration-
Detail

Description of dynamic behavior associated with
MTDs

ProtectionDetail Description of target entities being covered by defense
Randomization-
Detail

Description of the randomization space

STIDS 2016 Proceedings Page 14



analyze this generic instance without reference to a specific
implementation to provide insight into how the entire class of
defenses operates. In order to support the dynamic nature of
MTDs, the defense model provides support for the proactive
elements of a defense to be described. An IP hopping MTD
may be configured to change IP addresses of the included
NICs every 5 minutes, for example.

Our current approach divides MTDs into three main kinds,
and Table VII shows the set of proactive defenses currently
modeled in ASR that cover two of the three categories:

1) Time-bound observable information on targets. In this
category, MTDs place limits on the useful life of in-
formation obtained in an execution step for use in a
later execution step. IP Hopping in the context of TCP
Connection flooding is an example of this.

2) Masquerade targets. MTDs in this category make a target
look like another kind of target, causing an adversary to
spend extra cycles. OS masquerading is an example of
this effect.

3) Time-bound footholds. MTDs in this category reset the
escalated privileges that an attacker has built up along
the middle of an attack path. An example of this is the
use of virtualization and watchdogs to proactively and
continuously restart VMs to clear out corruption.

TABLE VII
DEFENSES CURRENTLY MODELED IN ASR

Name Kind Requires Side Effect

IPHopping Time-bound
observable

Network
Endpoints

IP changes at
fixed intervals

OS Masquerading Masquerade Host OS image Host OS image
fake

OS Hopping Time-bound
observable

Multiple OSs
compatible with
applications

Host changes at
fixed intervals

F. Metrics Model
The metrics model enumerates all ASR metrics and defines

each metric’s name, the domain over which it is executed,
and the SPARQL query used to compute it. ASR computes a
diverse set of both system- and mission-based metrics over a
configuration. Most metrics are computed by querying other
models (e.g., to count the total number of listening endpoints
or of attack vectors found). Some metrics are post-processed to
compute statistical attributes such as mean (e.g. to compute the
average estimated duration of an attack vector) or maximum
or minimum values (e.g., to find the shortest attack vector).

These metrics are meant to give the user an overview
of how well a system is protected against a set of attacks
executed by a modeled adversary, as well as what costs (in
terms of latency and throughput) are incurred by the modeled
defenses. To facilitate this cost-benefit analysis, ASR provides
users with some index metrics that can be used to judge
a configuration’s fitness at a glance, and compare fitness
between alternative solutions. Figure 4 illustrates how the

Fig. 4. High-level ASR metrics

metrics are separated into security- and cost-related concerns
along one axis, and along system- and mission-wide metrics
along the other axis. Security and cost are frequently at
odds, with higher security necessitating a more expensive
defense. A single value may therefore be misleading to a
user because it could either represent the ideal case of high
security and low cost, or the clearly undesirable outcome of
low security and high cost. For these reasons, ASR provides
the user with a separate single-value index reflecting the cost
of any deployed defenses (the Aggregate Cost Index, ACI)
and another single-value index reflecting the security score
of the current configuration (the Aggregate Security Index,
ASI). If a mission model is specified, a third index reflecting
the fitness of the configuration with respect to mission goals
is also computed (the Aggregate Mission Index, AMI). The
index metrics are composed of several lower-level metrics,
as shown in Figure 5. The desired metrics are specified in
an OWL ontology, which is user-extensible and customizable.
The metric computation is done through SPARQL queries for
both simple and aggregate metrics, and the Jena API is used
to invoke the metric computation from the ASR server and
store the results.
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Fig. 5. The ASR index metrics take into account many submetrics

IV. EXEMPLAR APPLICATION OF THE ONTOLOGIES

To evaluate the modeling and reasoning performed by
ASR, we developed an enterprise information sharing scenario
involving several servers and both mobile and wired networks.
Figure 6 shows the main actors participating in the scenario
together with their interactions. An InformationProducer (e.g.,
a web camera) is sending videos and still images to a Website,
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Fig. 6. Example information sharing scenario used to validate the approach

which in turn disseminates both video and images to two
clients: an Information Consumer over a 4G mobile network
and an Information Monitor over a Local Area Network. The
Website is connected to an Image Database for persistence of
images received. Finally, an Administrator can change settings
on the Website through an administrative client.

A. Instance Models
Transcription of the components mentioned in the scenario

involves creating instance models that are consistent with the
ASR ontologies. To do this, we first define prefix shortcuts for
name spaces as follows, using TURTLE:
@prefix demo1: <http://www.bbn.com/asr/demo1#> .
@prefix def: <http://www.bbn.com/asr/def#> .
@prefix sm: <http://www.bbn.com/asr/sm#> .
@prefix IPHop: <http://www.bbn.com/asr/iphop#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

The “Acme Website” host and its components can be
expressed as:
% Acme Website from Figure 6
demo1:AcmeServer1
rdf:type sm:Host ;
rdf:type owl:Thing ;
sm:contains demo1:Endpoint2 ;
sm:contains demo1:ACME1 ;
sm:hasImage demo1:OperatingSystem_1 .

% Process running on the Acme Website Server
demo1:ACME1
rdf:type sm:Process ;
rdf:type owl:Thing ;
sm:connectsTo demo1:Endpoint2 .

% NetworkEndpoint that ACME1 process connectsTo
demo1:Endpoint2
rdf:type sm:ListeningEndpoint ;
rdf:type sm:NetworkEndpoint ;
rdf:type owl:Thing ;
sm:connectsTo demo1:MNE2 ;
sm:hasResource sm:FileDescriptorPool_1 .

% Acme Website’s MNE on the 4G Mobile Network
demo1:MNE2
rdf:type sm:MNE ;
rdf:type owl:Thing .

The MNE is plugged into a Mobile Network and there is a
network flow coming in over that network that is expressed at
three distinct layers that are linked through the “via” property.
% 4G Mobile Network from Figure 6
demo1:MobileNetwork1
rdf:type sm:WAN ;
rdf:type owl:Thing ;
sm:contains demo1:MNE1 ; % Information Producer’s MNE
sm:contains demo1:MNE2 . % Acme Website’s MNE

% Process-layer data flow from IP1 to ACME1
demo1:pDataFlow1
rdf:type sm:DataFlow ;
rdf:type owl:Thing ;

% Process on Acme Website defined above
sm:destination demo1:ACME1 ;

% Process on Information Publisher from Figure 6
sm:source demo1:IP1 ;
sm:via demo1:nDataFlow1 .

% Underlying network-layer data flow
demo1:nDataFlow1
rdf:type sm:DataFlow ;
rdf:type owl:Thing ;
sm:destination demo1:Endpoint2 ;
sm:source demo1:Endpoint1 ;
sm:via demo1:gDataFlow1 .

% Underlying physical-layer data flow
demo1:gDataFlow1
rdf:type sm:DataFlow ;
rdf:type owl:Thing ;
sm:destination demo1:MNE2 ;
sm:source demo1:MNE1 .

An Internet Protocol Address randomization (IP Hopping)
defense is installed to cover the data flow between Endpoint 1
(the Information Producer) and Endpoint2, the Acme Website.
The defense adds an additional data flow and processes for
key synchronization. It also specifies necessary setup and
configuration details and the incurred costs.
def:IPHopping1
rdf:type def:Defense ;
def:adds IPHop:DataFlow_pKeySharing ;
def:adds IPHop:IPHoppingProcess_ACME ;
def:adds IPHop:IPHoppingProcess_InfoProducer ;
def:atCost IPHop:Cost_1 ;
def:provides IPHop:Protection_1 ;
def:requires IPHop:Setup_1 .

IPHop:Protection_1
rdf:type def:Protection ;
def:for demo1:Endpoint1 ;
def:for demo1:Endpoint2 ;
def:inSupportOf def:Confidentiality ;
def:inSupportOf def:Discoverability ;
def:through def:Randomization ;
def:withSpecific IPHop:RandomizationDetail_1 .

IPHop:RandomizationDetail_1
rdf:type def:RandomizationDetail ;
def:disruptionLatency "5"ˆˆxsd:float ;
def:interval "10000"ˆˆxsd:float ;
def:space 6 .

IPHop:Setup_1
rdf:type def:Setup ;
def:includes demo1:Endpoint1 ;
def:includes demo1:Endpoint2 .

IPHop:Cost_1
rdf:type def:Cost ;
def:impactOn IPHop:Latency_1 .

IPHop:Latency_1
rdf:type def:MetricType ;
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def:forProperty def:Latency ;
def:increase "0.3"ˆˆxsd:float ;
def:on demo1:nDataFlow1 .

Further details and content for the remaining models, in-
cluding attack steps, adversary, metrics, and mission, are
included in the appendix to this paper and available at https:
//ds.bbn.com/projects/asr.html .

B. Quantification Results
To first step in quantifying an attack surface is creating a

configuration containing the five model types and the metrics:
C = (system, defense, attack, adversary,mission,metrics)

The purpose of this evaluation was to study the impact of
varying the hopping interval of one particular IP Hopping
defense between slow and fast. To achieve this, we created
three separate configurations where the only variable was the
defense, as follows:

1) Cbase = (sm1,?, as1, ap1,mi1,me1)

2) Cdef1 = (sm1, IPHopSlow, as1, ap1,mi1,me1)

3) Cdef2 = (sm1, IPHopFast, as1, ap1,mi1,me1)

Analyzing these three configurations using the ASR reason-
ing algorithms [2] yields the results shown in Table VIII. As a
reminder, these index metrics are computed as weighted sums
of several terms, as shown in Figure 5. Note that IPHopSlow
in Cdef1 and IPHopFast in Cdef2 both add considerable
cost compared to the base configuration, which contains no
defense. This makes sense intuitively, since the latency penalty
incurred by a defense with a shorter randomization interval
(in this case, an IP Hopping defense that hops faster) is
higher than the latency incurred by a defense with a longer
randomization interval. The base configuration has no defenses
deployed, so there is no latency penalty incurred and its ACI
is therefore 0.

TABLE VIII
RESULTS OF ANALYSIS PERFORMED ON CONFIGURATIONS

Config ASI ACI AMI
Cbase 49.55 0 FAIL
Cdef1 51.03 15.0 FAIL
Cdef2 121.4 21.25 FAIL
Cmin MAX 21.25 DEGRADED

Also note that as IPHopSlow in Cdef1 does not offer a
significant security gain over the base configuration whereas
IPHopFast in Cdef2 doubles the ASI with respect to the
base model. This is because in addition to submetrics that
are computed over the base ontological models and do not
change between the two configurations (such as the number
of entry and exit points), the ASI also takes into account the
probabilistic vector impact, which consists of vector dura-
tion distributions and their estimated probability of success.
Intuitively, it makes sense that an IP Hopping defense that
hops more frequently would provide better protection against
a comparable adversary, since the adversary would have less
time to complete a successful attack and would therefore be
less likely to succeed. Figure 7 gives a primer on how the

probability of success of attack steps and vectors is computed
using the underlying ontologies.

For this example, suppose an attack step requires from 1 to
4 seconds to be successful (the duration distribution is part of
the attack model) and we have a defense that hops every 1 to
3 seconds (this information is in the defense ontology). If the
defense hops before the attack finishes, then the defense wins,
else the attacker wins. Let us assume (for ease of computation)
that both the attack step duration and the defense hopping
interval are uniform random variables, which means that any
number in the stated time range is equally likely and this will
be captured in the sample data points. We also assume that
these random variables are independent; intuitively this means
that the attacker cannot detect when a hop has occurred and
launch the attack immediately after the hop (which would
give the attacker an unfair advantage). For this example, the
probability density function for attack time needed will be

• pattackDuration(x) =
1
3 8x | 1  x  4, and

• pattackDuration(x) = 0 8x | x > 4 or x < 1.
Similarly for defense we approximate
• pdefenseHoptime(y) =

1
2 8y | 1  y  3, and

• pdefenseHoptime(y) = 0 8y | y > 3 or y < 1.
Lastly, the probability that the defense wins is computed as:P
(pattackDuration(x) ⇥ pdefenseHoptime(y)), 8x, y | x > y,

which equals %66.7. Graphically, this is the normalized area
to the right of the line y = x in Figure 7, which represents the
probability that the defense hops faster than attacker is able
to successfully complete his attack.

Fig. 7. A graphical representation of probability reasoning in ASR. The x axis
represents the randomization interval of the defense. The y axis represents the
duration distribution of an attack step that the defense is protecting against.

In addition to computing metrics, the ontologies are pivotal
for another important innovation of ASR, its ability to semi-
automatically minimize attack surfaces [2]. Minimization is
supported through inspection and inference over all ontologies
in a configuration. Two different modalities of attack surface
minimization are supported:

• System minimization can find either entities that are not
used within a system model (for instance an extraneous
listening endpoint that no other endpoint connects to).

• Mission minimization, if a mission model is specified for
a configuration, can find entities that are not defined to
be mission-critical (e.g., an administrative interface that
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is only used for the initial configuration of the system
and never used during a mission).

Using the ontological models comprising a configuration
and these two minimization modalities, ASR identifies all
entities that can be safely removed and presents them to the
user for selection. The user can select any or all of these
entities to remove, and can save the minimized configuration
for further inspection and analysis. Because removed entities
may connect to other entities within the ontologies (e.g., an
unused endpoint that is removed may result in an unnecessary
process and its containing host, if they are not used for
any other purposes), a second round of minimization may
be necessary to remove all extraneous entities. The fourth
configuration, Cmin, in Table VIII is the fully minimized (i.e.
with all extraneous and non-mission-critical entities removed)
version of Cdef2. Since the minimized configuration no longer
contains all the entities that are not necessary (for instance,
the Administrator host and associated processes, endpoints,
and data flows), it has fewer entry points for an adversary to
exploit and results in a higher security metric.

In all but the Cmin configuration, the Aggregate Mission
Index, AMI, is “FAIL.” This is because none of them com-
pletely eliminate the attack vectors that threaten mission-
critical resources. Only after minimization are all vectors are
eliminated (thus the ASI score of “MAX”). The AMI is a
single rating of mission health with respect to both security
and cost and a single failing score on any requirement results
in a failing score for the AMI. After minimization, the AMI
improves from the initial “FAIL” score (initially the mission
fails because of violated security requirements on mission-
critical flows) to a “DEGRADED” score (the mission now
passes all security requirements, but is “DEGRADED” on
cost requirements). Intuitively, we have removed the security
vulnerabilities that threatened the mission through deploying
a faster defense and minimizing the attack surface. However,
the improvement is only partial (the mission’s rating is still
“DEGRADED,” not “PASS”) due to the increased latency
penalties incurred on mission-critical flows by an IP Hopping
defense that hops more frequently.

We evaluated the runtime of the analysis algorithm with
randomly generated models where the complexity of the
models (i.e. number of hosts and other system entities and
the number of available attack steps) vary in a controlled way.
The points on the graph are averages of 5 runs for the same
complexity configurations. The analysis time was measured on
a MacBook Pro 2.8 GHz Intel Core i7 with 16 GB of RAM.
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Fig. 8. ASR analysis runtime over system models of varying complexity

V. CONCLUSION

While it is common understanding that systems have attack
surfaces and that those surfaces need to be minimized, the cy-
ber security community has until now lacked a structured and
generalizable approach for modeling attack surfaces and ex-
pressing associated security, cost, and mission impacts through
concrete metrics. This paper presents ontologies including
semantic models of attacks, systems, defenses, missions, and
metrics, and supporting algorithms that quantify and minimize
attack surfaces. An application of the ontologies on a concrete
information-sharing demonstration scenario is also presented.

Next steps include extending coverage of the defense mod-
els beyond MTDs to include more traditional defenses, e.g.,
firewalls, VPNs, and host- and network-intrusion prevention
systems. Furthermore, we plan to generate system models of
realistic size systems, such as a model of the BBN network,
which comprises hundreds of machines. Finally, we plan to
improve the ontologies by including feedback provided by the
cyber security research community.
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