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Abstract— Ontologies have been commonly associated with 
representing a domain using deterministic information. 
Probabilistic Ontologies extend this capability by incorporating 
formal probabilistic semantics. PR-OWL is a language that 
extends OWL with semantics based on Multi-Entity Bayesian 
Networks (MEBN), a Bayesian probabilistic logic. Developing 
probabilistic ontologies can be greatly facilitated by the use of a 
modeling framework such as the Uncertainty Modeling Process 
for Semantic Technology (UMP-ST). An example of using UMP-
ST was the development of a probabilistic ontology to support 
PROGNOS (PRobabilistic OntoloGies for Net-Centric 
Operational Systems), a system that supports Maritime Domain 
Awareness (MDA). The PROGNOS probabilistic ontology 
provides semantically aware uncertainty management to support 
fusion of heterogeneous input and probabilistic assessment of 
situations to improve MDA. However, manually developing and 
maintaining a probabilistic ontology is a labor-intensive and 
insufficiently agile process. Greater automation through a 
combination of reference models and machine learning methods 
may enhance agility in probabilistic situation awareness (PSAW) 
systems. For this reason, a process for Human-aided MEBN 
Learning in PSAW (HMLP) was suggested. In previous work, we 
used UMP-ST to develop the PROGNOS probabilistic ontology. 
This paper presents an extended PROGNOS probabilistic 
ontology developed using HMLP. The contribution of this 
research is to introduce the extended PROGNOS probabilistic 
ontology and present a comparison between two processes (UMP-
ST and HMLP).  

Keywords—Probabilistic Ontology; Maritime Domain 
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I. INTRODUCTION  
In information science, integration of heterogeneous, 

distributed, and unstructured information is a difficult and 
complex challenge. A major issue is ensuring information 
compatibility, for which ontologies have become a standard 
solution [18]. Traditional ontologies are limited to 
deterministic knowledge. Probabilistic Ontologies (POs) move 
beyond this limitation by incorporating formal probabilistic 
semantics. Probabilistic OWL (PR-OWL) [19] is a 
probabilistic ontology language that extends OWL with 

semantics based on Multi-Entity Bayesian Networks (MEBN), 
a Bayesian probabilistic logic [1]. PR-OWL has been extended 
to PR-OWL 2 [14], which provides a tighter link between the 
deterministic and probabilistic aspects of the Ontologies. 
MEBN is flexible enough to represent a variety of complex and 
uncertain situations. MEBN has been applied to systems 
[2][3][4][5][6][7] for Predictive Situation Awareness (PSAW), 
providing the ability to estimate and predict aspects of a 
temporally evolving situation.  

Developing probabilistic ontologies can be greatly 
facilitated by the use of a modeling framework such as the 
UMP-ST, a modeling process for constructing a probabilistic 
ontology [13]. The UMP-ST consists of four main disciplines: 
(1) Requirement, (2) Analysis & Design, (3) Implementation, 
and (4) Test. UMP-ST was used to develop a probabilistic 
ontology to support PROGNOS (PRobabilistic OntoloGies for 
Net-Centric Operational Systems), a system to support 
Maritime Domain Awareness (MDA). The existing system for 
MDA (e.g., US Navy's Net-Centric infrastructure, FORCENet) 
is used to fuse lower-level multi-sensor data, analyze the fused 
data by human analysts, and support decision-making for naval 
operations. However, the era of big data requires greater 
automation. The PROGNOS probabilistic ontology [7] 
supports ingestion of lower-level data, fusion of heterogeneous 
input, and probabilistic assessment of situations to improve 
MDA. PROGNOS is a prototype system that aims especially to 
identify threatening targets (e.g., terrorists and terrorist-ships).   

Manually developing and maintaining a probabilistic 
ontology is a labor-intensive and insufficiently agile process. 
Furthermore, it is important to make use of data when available. 
Therefore, greater automation through a combination of 
reference models and machine learning methods has the 
potential to enhance agility and effectiveness in modeling a 
probabilistic ontology for PSAW. For this reason, a process for 
Human-aided MEBN Learning in PSAW (HMLP) has been 
suggested [20]. HMLP contains three supporting 
methodologies, MEBN-RM [10], a reference MEBN model for 
PSAW [8], and MEBN learning algorithms [9][10]. These 
component methodologies enable efficient and effective 
modeling. MEBN-RM and the reference model are introduced 
in Section 2 below.   
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In previous work, we used UMP-ST to develop the 
PROGNOS PO. This paper presents an extended PROGNOS 
PO developed using HMLP. In the following sections, the 
paper (1) provides background information, (2) introduces the 
original PROGNOS PO derived from UMP-ST, (3) presents 
the extended PROGNOS PO derived from HMLP, and (4) 
compares two processes. 

II. BACKGROUND 
This section introduces (1) MEBN, (2) MEBN-RM 

Mapping Model, (3) A Reference MEBN Model for PSAW, (4) 
Uncertainty Modeling Process for Semantic Technology 
(UMP-ST), and (5) Human-aided MEBN learning in PSAW 
(HMLP). HMLP assumes input data based on the relational 
model (RM) as its data schema. We choose RM because it is 
the most popular database model and has the necessary 
expressive power to represent entities and their relationships. It 
is necessary to define how to convert elements of RM to 
elements of MEBN, so a mapping rule between MEBN and 
RM, called MEBN-RM, was developed. Also, we introduce a 
reference MEBN model for PSAW which provides a set of 
basic templates to support the design of a MEBN model for 
PSAW. HMLP is a modification of UMP-ST, so UMP-ST is 
introduced in this section. Some of the following background 
summaries are taken from [20]. 

A. MULTI-ENTITY BAYESIAN NETWORKS 
MEBN is a compact model combining Bayesian networks 

(BN) with First-order logic (FOL) to represent repeated 
structures in a joint distribution representing domain 
knowledge. MEBN is a highly expressive model for treating 
uncertainty and complex forms of data and information. A 
MEBN model, called an MTheory, is composed of fragments, 
called MFrags. An MFrag consists of a set of resident nodes, a 
set of context nodes, a set of input nodes, an acyclic directed 
graph for the nodes, and a set of class local distributions (CLD) 
for the nodes. A resident node is a random variable which is 
associated with a function or predicate of FOL and whose class 
local distribution is resident in an MFrag. A context node is 
derived from a resident node and determines conditions under 
which the class local distribution defined in the MFrag is valid. 
An input node has its distribution defined elsewhere and 
conditions the class local distribution defined in the MFrag. 
Nodes for an acyclic directed graph are associated with 
resident and input nodes. An FOL function or predicate of a 
resident node contains ordinary variables, which can be 
replaced with entity identifiers to generate multiple instances of 
the RVs. MFrags in an MTheory are used to generate instances 
of fragments of BN. The fragments of BN are combined to 
form a Bayesian network, called a situation-specific Bayesian 
Network (SSBN). An MTheory can be used to generate an 
unbounded number of different SSBNs. Further information 
about MEBN can be found in [1].   

B. MEBN-RM Mapping Model 
MEBN-RM [10] is a mapping model which provides a 

specification for how to convert relational databases [11][12] 
to MTheories [1]. The relational model (RM) is the most 
popular database model. MEBN-RM provides an entity 
mapping between a relation in RM and an entity in MEBN, a 
resident node mapping between an attribute in RM and a 

resident node in MEBN, an MFrag mapping between a relation 
in RM and an MFrag in MEBN, and an MTheory mapping 
between an RM and an MTheory. An MTheory can be 
constructed automatically from a relational database by using 
mapping rules in MEBN-RM. Therefore, MEBN-RM can 
support a MEBN learning algorithm, which develops an 
MTheory from a dataset, or an MTheory developer, who aims 
to develop an MTheory using domain knowledge and MEBN 
knowledge. HMLP exploits MEBN-RM for efficient 
development of an MTheory. 

C. A Reference MEBN Model for PSAW 
A reference model is an abstract framework to which a 

developer refers in order to develop a specific model. A 
reference MEBN model for PSAW is a reference model for a 
PSAW-MTheory which specifies references for MFrags, RVs, 
relationships of RVs, and entities. The reference MEBN model 
for PSAW can support the design of a PSAW-MTheory and 
improve the quality of the PSAW-MTheory. The references for 
entity are classified into five categories (Time entity T, 
Observer entity OR, Sensor entity SR, Target entity TR, and 
Reported target entity RT). Entities derived from these 
categories describe a situation in which an observer OR 
observes a target TR and interprets it as a reported target RT 
using a sensor SR at a certain time T [20]. The reference 
MEBN model for PSAW provides some referring random 
variables (RV), called PSAW-RVs. PSAW-RVs are classified 
into five categories (Observing condition RV, Reported object 
RV, Target object RV, Situation RV, and Context RV). These 
PSAW-RVs are defined in five types of MFrags (Observing 
condition MFrag, Report MFrag, Target MFrag, Situation 
MFrag, and Context MFrag). An observing condition RV 
defined in an observing condition MFrag represents 
probabilistic knowledge about conditions of a sensor (e.g., 
maintenance conditions for a sensor). A reported object RV 
defined in a report MFrag represents probabilistic knowledge 
about a relation or an attribute of observed targets (e.g., a 
reported target size). A target object RV defined in a target 
MFrag represents probabilistic knowledge about a relation or 
an attribute for actual targets (e.g., an actual target size). A 
situation RV defined in a situation MFrag represents 
probabilistic knowledge about situations of targets (e.g., a 
collaborating situation for targets). A context RV defined in a 
context MFrag represents probabilistic knowledge about 
conditions under which the class local distribution defined in 
the MFrag is valid. For example, an RV Predecessor(pre_t, t) 
can be a context RV. The context RV Predecessor(pre_t, t) 
means that the time interval pre_t occurs immediately before 
the time interval t. More specific information for the reference 
MEBN model for PSAW can be found in [20].   

D. Uncertainty Modeling Process for Semantic Technology 
(UMP-ST) 
UMP-ST is a framework to support the design of a 

probabilistic ontology [13]. The PROGNOS probabilistic 
ontology was developed using UMP-ST. UMP-ST provides 
processes for constructing a probabilistic ontology through four 
disciplines: (1) Requirement, (2) Analysis & Design, (3) 
Implementation, and (4) Test.  
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In the Requirement discipline, requirement statements are 
defined. The requirement statements can contain goals, queries, 
and evidence for a probabilistic ontology. Objectives to be 
achieved by reasoning with the probabilistic ontology are 
specified by statements for goals (e.g., detect a ship of interest). 
To achieve the objectives, specific query statements are 
specified in this discipline (e.g., what is the type of a ship?). To 
support the queries, evidence associating with the queries is 
determined in this discipline (e.g., an appearance of a ship). In 
the Analysis & Design discipline, entities, attributes, 
relationships, and probabilistic rules are defined. These are 
used to support the goals, queries, and evidence. For example, 
we are developing a probabilistic ontology, which aims to 
detect a ship of interest (the goals). The goal is achieved by 
identifying the type of a ship (the queries) given information 
about the appearance of the ship (the evidence). For this 
situation, a ship entity is required. Also, type and appearance 
attributes for the ship entity are required. Suppose that the 
appearance attribute may depend on the type attribute. This is 
specified by a probabilistic rule. In the Implementation 
discipline, a probabilistic ontology is developed using results 
from the previous disciplines. A probabilistic ontology based 
on MEBN is used to reason about uncertainty. Therefore, a 
probabilistic ontology contains OWL classes based on 
elements from MEBN such as an MFrag, an MTheory, a node, 
a probability distribution, and an entity. In this step, these 
OWL classes are defined. For example, the ship entity defined 
in the previous discipline is mapped to an entity type indicating 
a ship in the probabilistic ontology. The attributes ship 
appearance and ship type are mapped to random variables ship 
appearance and ship type, respectively. The probabilistic rule 
for the attributes ship appearance and ship type is converted to 
the joint probability for the random variables ship appearance 
and ship type. The random variables ship appearance and ship 
type may belong to an MFrag representing attributes of a ship. 
The MFrag ship and other MFrags related with a maritime 
domain may integrate into an MTheory representing a 
maritime situation. The Test discipline is used to assess the 
probabilistic ontology developed in the Implementation 
discipline. More specific information for UMP-ST can be 
found in [13].   

E. Human-aided MEBN learning in PSAW (HMLP) 
HMLP is a framework which aims the development of a 

probabilistic ontology in PSAW. HMLP provides specific 
development steps and supporting methods (MEBN-RM, the 
reference MEBN model for PSAW, and MEBN learning). 
HMLP improves MEBN learning by providing expert 
knowledge which is used to limit the search space of 
parameters, variables, and structures for a probabilistic 
ontology in PSAW.  

Similar to the four disciplines of UMP-ST, HMLP contains 
four steps (Fig. 1): (1) Analyze Requirements, (2) Design 
World Model and Rules, (3) Construct Reasoning Model, and 
(4) Test Reasoning Model. (See a full discussion of HMLP in 
[20]). A summary of HMLP is presented below. 

 

 

Fig. 1. Process for Human-Aided MEBN Learning (This figure was taken 
from [20] and was modified) 

 
Stakeholders who request the development of a reasoning 

model or a probabilistic ontology provide needs and/or 
missions as inputs of HMLP. An output from the end of HMLP 
is a reasoning model (in our case, a probabilistic ontology for 
PSAW). The followings describe the four steps in HMLP. (1) 
In the Analyze Requirements step, requirements which contain 
goals to be achieved, queries to answer, and evidence to be 
used in answering queries are defined. Also, the requirements 
include performance criteria, which are used in the Test 
Reasoning Model step, to evaluate the probabilistic ontology. 
(2) In the Design World Model and Rules step, a world model 
and rules are developed using the requirements in the previous 
step. This step contains two sub-steps (Design World Model 
step and Design Rules step). The Design World Model step 
defines the world model which may include entities, attributes, 
and relations (e.g., RM) using the requirements, domain 
knowledge and/or existing data schemas. The world model is 
used to identify rules. In the Design Rules step, the rules or 
influencing relationships between attributes in the world model 
are defined. (3) In the Construct Reasoning Model step, a 
probabilistic ontology is constructed using a training dataset, 
the world model, and the rules. This step includes two sub-
steps (Map to Reasoning Model step and Learn Reasoning 
Model step). The Map to Reasoning step maps the world model 
and rules to a candidate probabilistic ontology. The Learn 
Reasoning Model uses a MEBN learning method to learn the 
probabilistic ontology from a training dataset. (4) The Test 
Reasoning Model step evaluates the learned probabilistic 
ontology in the previous step to determine whether to accept it. 
The accepted probabilistic ontology is a final result from 
HMLP.   

III.  PROGNOS PO VIA UMP-ST   
To develop the PROGNOS PO, three iterations of the four 

steps in UMP-ST (Requirement, Analysis & Design, 
Implementation, and Test) were performed [14]. The following 
sub-sections summarize the four steps in UMP-ST to develop 
the PROGNOS PO.   

A. Requirements 
The Requirement step identifies requirements containing 

goals, queries, and evidence for a probabilistic ontology. The 
requirements for the PROGNOS PO were developed gradually 
over the three iterations. In the first iteration, a simple 
requirement regarding a ship of interest was identified [7]. In 
the second iteration, requirements for two types of terrorist-
ships were defined. In the third iteration, requirements for crew 
members in a ship of interest were specified. The following list 
shows part of the resulting requirements [14].  
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1. Identify if a ship is of interest, 
1.1 Is the ship being used to exchange illicit cargo? 
1.1.1 Was the ship hijacked? 
1.1.2 Does the ship have a terrorist crew member? 
1.1.2.1 Is the crew member associated with any terrorist 
organization?  
... 
1.2 Is the ship being used as a suicide ship to bomb a port? 
...  

The main goal was to identify a ship of interest (i.e., a 
terrorist-ship). In this requirement, we assumed the ship of 
interest may exchange illicit cargo and/or be used as a suicide 
ship to bomb a port. To support this goal, we needed to identify 
the type of a crew member of a ship. If the type of a crew 
member is a terrorist, the ship is highly likely to be a terrorist-
ship. To identify whether a crew member is a terrorist, we can 
check whether the crew member is associated with any terrorist 
organization.    

B. Analysis & Design 
This step defines the types of entities, their properties and 

relationships, and the rules that apply to them, i.e., the 
semantics of the domain model. The Unified Modeling 
Language (UML) diagrams can provide a convenient and 
understandable visualization of the classes and relationships for 
the model semantics. The requirements defined in the previous 
step are used to develop the model semantics. Thus, entities, 
attributes for the entities, and relationships between the entities 
were identified. For example, from Requirement 1, an entity 
was derived (i.e., a ship) and an attribute of the entity was 
derived (i.e., the type of a ship). From Requirement 1.1.2, a 
new entity was derived (i.e., a (terrorist) person) and a 
relationship between the entities was derived (i.e., a ship has a 
crew (terrorist) member). In the second iteration, Carvalho [14] 
developed the model represented by UML as shown in Fig. 2. 

Fig. 2. Entities, their attributes, and relations for the MDA model after the 
second iteration (This figure provided by permission of Carvalho [14]) 

 
The classes and relationships form six natural groups (i.e., 

Electronics, Behavior, Ship, Position, Plan, and Social 
Network). The ship types are NavyShip, FishingShip, and 
MerchantShip. Ship routes are UnusualRoute and UsualRoute. 
Two ships can meet each other at a position. A ship can use 

electronic devices such as Radio, Radar, and AIS (Automatic 
Identification System). A ship can show behavior such as 
Aggressive, Erratic, Evasive, and Normal. A ship can have a 
(terrorist) crewmember who may belong to a (terrorist) 
organization. A ship can have a terrorist plan such as 
BombPort and ExchangeIllicitCargo.  

After developing the model semantics, conditional rules 
were identified. There were three iterations of this process. The 
following list shows a few of the conditional rules from [14].  

1.(a) If a crew member is a member of a terrorist 
organization, then it is more likely that he is a terrorist. 
1.(b) If an organization has a terrorist member, it is more 
likely that it is a terrorist organization. 
... 
4.(a) Research shows that if a crew member has a relationship 
with terrorists, there is a 68% chance that he has a friend who 
is a terrorist. 
... 

These conditional rules were derived from extensive 
research about terrorism [16] and from the knowledge provided 
by a domain expert. These rules were used to develop the 
PROGNOS PO.  

C. Implementation 
In the Implementation step, the PROGNOS PO was 

designed. The PROGNOS PO can be found in [14][15]. Fig. 3 
shows the PROGNOS PO containing five groups of MFrags. 

Fig. 3. Original PROGNOS probabilistic ontology 

 
The first set of MFrags is for a ship of interest. It includes 

nine MFrags Aggressive Behavior, Terrorist Plan, Evasive 
Behavior, Erratic Behavior, Unusual Route, Bomb Port Plan, 
Ship Of Interest, Electronics Status, and Exchange Illicit Cargo 
Plan. These MFrags are used to reason about properties of a 
ship (e.g., unusual behavior and an illegal plan). The second set 
of MFrags is for a person of interest. It includes four MFrags 
Person Communications, Person Background Influences, 
Person Cluster Associations, and Person Relations. These 
MFrags are used to identify a person who may communicate 
with a terrorist, has a suspicious background and history, and 
has a relationship with a terrorist. The third set of MFrags is for 
information of relationships between two ships. It includes two 
MFrags, Radar and Meeting. These MFrags are used to 
identify whether one ship is within radar range of another ship 
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and whether two ships are meeting. The fourth set of MFrags is 
for information about the relationship between a person and an 
organization. It includes one MFrag Terrorist Person in which 
a person who belongs to an organization is identified. The last 
set of MFrags is for information about a relationship between a 
person and a ship. It includes two MFrags Has Terrorist Crew 
and Ship Characteristics. These MFrags are used to link a 
person and a ship, and to identify whether a ship has a terrorist 
crew member.  

The following list shows part of a partial PROGNOS PO 
containing information about MFrags (F), context nodes (C), 
resident nodes (R), resident parent nodes (RP), and input parent 
nodes (IP). Note that a partial probabilistic ontology doesn't 
contain a class local distribution and domain information for a 
random variable.  
PO 1: Original PROGNOS probabilistic ontology  
1 [F: ErraticBehavior_MFrag 
2  [C: isA(ship,Ship)] 
3  [R: hasErraticBehavior(ship) [IP: hasExchangeIllicitCargoPartition(ship)]] 
4  [R: hasEquipmentFailure(ship)] 
5  [R: isCrewVisible(ship)[RP: hasErraticBehavior(ship)][RP: hasEquipmentFailure(ship)]] 
6 ] 
7 [F: TerroristPerson_MFrag 
8  [C: isA(person,Person), isA(org,Organization)] 
9  [R: isTerroristOrganization(org)[RP: isTerroristPerson(person), isMemberOfOrganization(person, org)]] 
10  [R: isTerroristPerson(person)][R: isMemberOfOrganization(person, org)] 
11 ] 
12 [F: ShipCharacteristics_MFrag 
13  [C: isA(ship,Ship), isA(person,Person)] 
14  [R: hasCrewMember(ship, person)] [R: hasTypeOfShip(ship)][R: isHijacked(ship)] 
15 ] 
16 [F: EvasiveBehavior_MFrag 
17  [C: isA(ship,Ship)] 
18  [R: hasEvasiveBehavior(ship)[IP: hasExchangeIllicitCargoPartition(ship)]] 
19 ] 
20 [F: PersonCommunications_MFrag 
21  [C: isA(person,Person)] 
22  [R: communicatesWithTerrorist(person)[IP: isTerroristPerson(person)] ] 
23  [R: usesChatroom(person) [RP: communicatesWithTerrorist(person)]] 
24  [R: usesEmail(person) [RP: communicatesWithTerrorist(person)]] 
25  [R: usesCellular(person) [RP: communicatesWithTerrorist(person)]] 
26  [R: usesWeblog(person) [RP: communicatesWithTerrorist(person)]] 
27 ] 
28 [F: PersonBackgroundInfluences_MFrag 
29  [C: isA(person,Person)] 
30  [R: hasInfluencePartition(person) [IP: isTerroristPerson(person)]] 
31  [R: knowsPersonImprisionedInOIForOEF(person) RP: hasOIForOEFInfluence(person)]] 
32  [R: hasFamilyStatus(person) [RP: hasInfluencePartition(person)]] 
33  [R: hasOIForOEFInfluence(person) [RP: hasInfluencePartition(person)]] 
34  [R: knowsPersonKilledInOIForOEF(person) [RP: hasOIForOEFInfluence(person)]] 
35 ] 
36 [F: AggressiveBehavior_MFrag 
37  [C: isA(ship,Ship)] 
38  [R: hasAggressiveBehavior(ship) [IP: hasBombPortPlan(ship), hasExchangeIllicitCargoPartition(ship)]] 
39  [R: hasWeaponVisible(ship) [RP: hasAggressiveBehavior(ship)]] 
40  [R: isJettisoningCargo(ship) [RP: hasAggressiveBehavior(ship)]] 
41  [R: speedChange(ship) [RP: hasAggressiveBehavior(ship)]] 
42  [R: turnRate(ship) [RP: hasAggressiveBehavior(ship)]] 
43  [R: propellerTurnCount(ship) [RP: speedChange(ship)]] 
44  [R: cavitation(ship) [RP: speedChange(ship)][RP: turnRate(ship)]] 
45  [R: shipRCSchange(ship)  [RP: turnRate(ship)]] 
46 ] 
47 [F: ShipOfInterest_MFrag 
48  [C: isA(ship,Ship)] [R: isShipOfInterest(ship) [IP: hasTerroristPlan(ship)]] 
49 ] 
50 [F: ExchangeIllicitCargoPlan_MFrag 
51  [C: isA(ship,Ship)] 
52  [R: hasExchangeIllicitCargoPlan(ship) [IP: hasTerroristPlan(ship)]] 
53  [R: hasExchangeIllicitCargoPartition(ship)  
54   [IP: hasTypeOfShip(ship)][RP: hasExchangeIllicitCargoPlan(ship)]] 
55 ] 
56 [F: PersonRelations_MFrag 
57  [C: isA(person,Person)] 
58  [R: hasKinshipToTerrorist(person) [RP: hasTerroristBeliefs(person)]] 
59  [R: hasFriendshipWithTerrorist(person) [RP: hasTerroristBeliefs(person)]] 
60  [R: hasTerroristBeliefs(person) [IP: isTerroristPerson(person)]] 
61 ] 
62 [F: Meeting_MFrag 
63  [C: isA(ship1,Ship), isA(ship2,Ship)] 
64  [C: ( ¬ ( ship1 = ship2 ) )] 
65  [R: areMeeting(ship1, ship2) [IP: hasExchangeIllicitCargoPartition(ship1)]] 
66  [R: areMeetingReport(ship1, ship2) [RP: areMeeting(ship1, ship2)]] 
67 ] 
68 [F: BombPortPlan_MFrag 
69  [C: isA(ship,Ship)] [R: hasBombPortPlan(ship) [IP: hasTerroristPlan(ship)]] 
70 ] 
71 [F: HasTerroristCrew_MFrag 
72  [C: isA(ship,Ship), isA(person,Person)] 
73  [C: hasCrewMember(ship,person)] 
74  [R: hasTerroristCrew(ship) [IP: isTerroristPerson(person)]] 
75 ] 
76 [F: UnusualRoute_MFrag 
77  [C: isA(ship2,Ship), isA(ship1,Ship)] 
78  [C: ( ¬ ( ship1 = ship2 ) )] 
79  [R: hasUnusualRoute(ship1)  
80   [RP: hasNormalChangeInDestination(ship1)] 
81   [IP: hasBombPortPlan(ship1)][IP: areMeeting(ship1,ship2)]] 
82  [R: hasUnusualRouteReport(ship1) [RP: hasUnusualRoute(ship1)]] 
83  [R: hasNormalChangeInDestination(ship1) [IP: hasTypeOfShip(ship1)] ] 

84 ] 
85 [F: TerroristPlan_MFrag 
86  [C: isA(ship,Ship)] 
87  [R: hasTerroristPlan(ship) [IP: hasTerroristCrew(ship)][IP: isHijacked(ship)]] 
88 ] 
89 [F: ElectronicsStatus_MFrag 
90  [C: isA(ship,Ship)] 
91  [R: isElectronicsWorking(ship)] 
92  [R: hasResponsiveRadio(ship) 
93   [IP: hasEvasiveBehavior(ship)][RP: isElectronicsWorking(ship)]] 
94  [R: hasResponsiveAIS(ship) 
95   [IP: hasEvasiveBehavior(ship)][RP: isElectronicsWorking(ship)]] 
96 ] 
97 [F: Radar_MFrag 
98  [C: isA(ship1,Ship), isA(ship2,Ship)] [C: ( ¬ ( ship1 = ship2 ) )] 
99  [R: isWithinRadarRange(ship1, ship2)] 
100 ] 
101 [F: PersonClusterAssociations_MFrag 
102  [C: isA(person,Person)] 
103  [R: hasOccupation(person) [RP: hasClusterPartition(person)]] 
104  [R: hasEducationLevel(person) [RP: hasClusterPartition(person)]] 
105  [R: hasClusterPartition(person) [IP: isTerroristPerson(person)]] 
106  [R: hasEconomicStanding(person) [RP: hasClusterPartition(person)]] 
107  [R: hasNationality(person) [RP: hasClusterPartition(person)]] 
108 ] 
 

PO 1 shows the context nodes and the resident nodes in the 
MFrags, and the relationship between the resident nodes. For 
example, the MFrag ErraticBehavior_MFrag (Line 1~6) 
contains an isA context node and three resident nodes 
hasErraticBehavior, hasEquipmentFailure, and isCrewVisible. 
The resident node hasErraticBehavior is influenced by an 
input node hasExchangeIllicitCargoPartition. The resident 
node isCrewVisible is influenced by the resident nodes 
hasErraticBehavior and hasEquipmentFailure. This 
PROGNOS PO was tested in the next step. 

D. Test  
In this step, the PROGNOS PO was evaluated to determine 

whether to accept it. To do this, the case-based evaluation, in 
which various scenarios were defined and used to examine the 
reasoning implications of the probabilistic ontology, was used. 
For example, given a scenario which was developed by a 
subject matter expert (SME), some information (e.g., history of 
a target) from the scenario for a target was used as evidence for 
inference of the PROGNOS PO to identify some properties 
(e.g., whether the target is a terrorist) of the target. If the result 
of inference coincided exactly with the scenario from SME, we 
could think that the probabilistic ontology was reasonable. For 
this test, three qualitatively different scenarios were used [14].  

After three iterations for UMP-ST, an overall test for the 
PROGNOS PO was performed using a simulation. In the real 
world situation, it is very difficult to acquire a real dataset to 
develop such a probabilistic ontology which contains rare 
events. For this reason, the simulation was used to produce a 
test dataset given different scenarios generated randomly.   
Carvalho [14] and Costa et al [15] introduced some results for 
this test. In such a test, it is important that knowledge used to 
develop a probabilistic ontology and knowledge used to 
develop a simulation for testing the probabilistic ontology 
should not be same. If they are same, the test is meaningless, 
because the probabilistic ontology and the simulation are same 
models, but just in different forms. 

IV. PROGNOS PO VIA HMLP 
In this section, we introduce an extended PROGNOS PO 

derived from the HMLP process. The following shows how the 
development operates.  

A. Analyze Requirements 
This step is not much different from the requirement step in 

UMP-ST. Therefore, we can reuse requirements developed 
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from the PROGNOS project. The full requirements can be 
found in [14]. However, the reference MEBN model for 
PSAW can provide more items by which a PSAW modeler can 
consider predefined entities, RVs, and MFrags for PSAW. 
Recall the four MFrag groups from the reference model: 
Reported Object, Observing Conditions, Target Object, and 
Situation. The last of these, Situation, is of special note. In 
PSAW, understanding a situation in which targets operate for 
their own purposes is one of the important issues. Identifying 
just the type of a target is an insufficient task for PSAW. The 
meaning of awareness is not to perceive and estimate actual 
properties of a target but is to understand, interpret, and explain 
the relationships between targets. Kokar et al [17] stated: “The 
main part of being aware is to be able to answer the question 
of �³�Z�K�D�W�¶�V���J�R�L�Q�J���R�Q�"�´”. Awareness of a situation is subjective 
according to an observer, who is aware of the situation. The 
modeler, who is developing a probabilistic ontology to support 
PSAW, should define what situation will be considered and 
explained through all observation from the world. For the 
awareness of the PROGNOS situation, we add the following 
new requirement.  

New Goal 1: Recognize emergency situation at sea  

  Query 1.1: How high is the potential terrorist 
       threat? 

   Evidence 1.1.1: Ship(s) of interest  

   Evidence 1.1.2: Crew member(s) of 
                interest 

The new goal aims to alert a response team when the threat 
reaches a certain level. This will be accomplished by 
estimating potential terrorist attacks in the field given 
estimation of terrorist ships and terrorist crew members.  

In HMLP, a requirement can contain a performance 
criterion specifying a measure of accuracy (e.g., the mean 
squared error or the Brier score [26]). For example, we might 
require that the mean squared error between ground truth and 
estimated results from the probabilistic ontology shall be less 
than a given threshold (e.g., a mean squared error < 0.1).  

B. Design World Model and Rules 
This step performs two sub-steps (Design World Model and 

Design Rules). The Design World Model step is to define a 
world model for PROGNOS from the requirements defined in 
the previous step.  

In this step, the reference MEBN model for PSAW can be 
used to identify possible entities, random variables, and 
relationships between the random variables. Fig. 4 shows a 
PROGNOS world model represented in an EER (enhanced 
entity–relationship) model. We develop the PROGNOS world 
model using the requirements and the reference model. 

The reference model suggests four groups: (1) Reported 
Object, (2) Observing Condition, (3) Target Object, and (4) 
Situation. A world model for the original PROGNOS PO 
included the seven relations (e.g., Target, Ship, Person, 
Organization, Person_Org, Ship_Person, and Ship_Ship). The 
original PROGNOS PO treated only the target object group. In 
other words, it did not emphasize sensing. We would expect 

evidence (e.g., reported objects) to be reported to estimate 
actual targets (e.g., target objects), so relations (i.e., 
Ship_Report, Person_Report, Organization_Report, 
Ship_Ship_Report, Person_Org_Report, Ship_Person_Report, 
and ReportedTarget) for the reported object group are added in 
the world model for the extended PROGNOS PO. 
Observations may contain observation errors influenced by 
observing conditions (e.g., weather). The observing condition 
group contains two relations Sensor and SensorProperty. In the 
previous step, a requirement for the awareness for a situation 
was added. Therefore, we added a relation Field for the 
situation group in Fig. 4. Relations (i.e., Location, SensorOf, 
and ActualTarget) which are not classified in these groups are 
supporting relations used to join the relations in the four groups.  

Fig. 4. Part of EER Model for a PROGNOS world model 

 
The reference model provides some rules or relationships 

between these groups as shown in the arrows (Fig. 4). The 
observing conditions group and the target object group can 
influence the reported object group. For example, the attribute 
sensorPerformance in the relation SensorProperty influenced 
the report attributes in the report relations Ship_Report, 
Person_Report, Organization_Report, Ship_Ship_Report, 
Person_Org_Report, and Ship_Person_Report. The arrows in 
Fig. 4 indicate these relationships. The following shows a few 
of these rules. 

Rule 1: causal ({hasErraticBehavior, sensorPerformance}, 
hasErraticBehaviorRPT)  

Rule 2: causal ({isShipOfInterest, isTerroristPerson}, 
PotentialTerroristAttacks)  

... 

Rule 1 means that two attributes hasErraticBehavior and 
sensorPerformance cause the attribute hasErraticBehaviorRPT. 
Rule 2 means that two attributes isShipOfInterest and 
isTerroristPerson cause the attribute PotentialTerroristAttacks.  
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C. Construct Reasoning Model 
This step performs two sub-steps (Map to Reasoning Model 

and Learn Reasoning Model) to construct the PROGNOS PO. 
MEBN-RM provides a converting rule from RM to a 
probabilistic ontology. Entity relations which contain only one 
attribute for the primary key of the relation (e.g., ship and 
person) can be defined as entity types in the probabilistic 
ontology. Each of the attributes in the relations could be 
mapped to a resident node in the probabilistic ontology using 
MEBN-RM. For example, the attribute hasErraticBehavior of 
the relation Ship became the resident node 
hasErraticBehavior(ship).  

Rules which are defined in the previous step are used to 
develop relationships between resident nodes in the 
probabilistic ontology. For example, from Rule 1, we had a 
conditional dependence P(hasErraticBehaviorRPT(ship_report) 
| hasErraticBehavior(ship), sensorPerformance(shipSensor, 
ship)). From Rule 2, we had a conditional dependence 
P(PotentialTerroristAttacks(field) | isShipOfInterest(ship), 
isTerroristPerson(person)). 

We could model the extended PROGNOS PO as shown in 
Fig. 5 using the resident nodes, the relationships between the 
resident nodes, and the MFrag groups. 

Fig. 5. Extended PROGNOS probabilistic ontology 

 
Fig. 5 shows a set of MFrags in the extended PROGNOS 

PO. The list on the left indicates the four MFrag groups. Each 
group is decomposed into sub-groups. For example, the target 
object group contains five sets of MFrags (Person MFrags, 
Ship MFrags, MFrags for the relationship between two ships, 
MFrags for the relationship between a person and a ship, and 
MFrags for the relationship between a person and an 
organization). The following list (PO 2) shows part of new 
MFrags added into the extended PROGNOS PO. 
PO 2: Part of New MFrags added into the original PROGNOS probabilistic ontology  
1 [F: Orgainzation_Report_MFrag 
2  [C: isA(sr,SENSOR), isA(tr ,ORGANIZATION), isA(rt,REPORTEDTARGET)] 
3  [C: SensorOf(sr, tr), tr = ReportedTarget(rt)]  
4  [R: isTerroristOrganizationRPT(rt) 
5   [IP: isTerroristOrganization(tr)] 
6   [IP: performance(sr, tr)] 
7  ] 
8 ] 
9 [F: Situation_MFrag 
10  [C: isA(ship,SHIP), isA(person,PERSON), isA(field,FIELD)] 
11  [C: field = Location(ship)] 
12  [C: hasCrewMember(ship, person)] 
13  [R: PotentialTerroristAttacks(field) [IP: isShipOfInterest(ship), isTerroristPerson(person)]] 
14 ] 
15 ... 
 

 

In PO 2, we added the ship report MFrag which can be used 
to reason about Rule 1. Also, we added the situation MFrag 
which can be used to reason about Rule 2.  

In the Learn Reasoning Model step, the extended 
PROGNOS PO can be refined using a MEBN learning 
algorithm. The goal of MEBN learning is to learn an MTheory 
from a training dataset. A basic MEBN learning method for 
relational datasets was suggested [9][10]. This approach 
assumes that the training dataset is stored in a relational 
database based on RM. MEBN learning searches parameters, 
variables, and structures to find an MTheory that provides a 
good fit to the training dataset. In our case, the structures are 
given by the above steps as suggested in the PSAW reference 
model. Therefore, only parameter learning is required. The 
goal of parameter learning is to estimate the parameters    of a 
class local distribution L given a training dataset D and the type 
of distribution being learned, which fit well the training dataset 
D. 

For a discrete random variable case, Dirichlet distribution is 
commonly used because it is conjugate to the multinomial 
distribution. With a Dirichlet prior distribution, the posterior 
predictive distribution has a simple form [21][22]. For 
continuous random variables, multiple regression can be used. 
Park et al [9] introduced a basic MEBN parameter learning and 
structure learning for a conditional Gaussian hybrid model in 
which no discrete random variable may have a continuous 
parent random variable. 

For example, parameters for a conditional Gaussian 
distribution can be estimated using multiple regression. The 
following class local distribution (CLD) is an illustrative 
example of a conditional linear Gaussian CLD for the node 
Speed_RPT(rt, tr), which means a speed report rt for a target tr. 
The CLD of the node is a continuous CLD with hybrid parents 
(Sensor_Condition and Speed). In this case, we assume that the 
discrete parent node Sensor_Condition(sr, tr), which means a 
condition of a sensor sr for a target tr, has two states (Good and 
Bad) and the node Speed (tr), which means an actual speed of a 
target tr, is continuous.  

CLD 1 [Conditional Linear Gaussian]: Speed_RPT(rt, tr) 
1 if some sr.tr have (Sensor_Condition = Good) [     
2  �Í 1.0 + �Í 1.1*Speed + NormalDist(0, �Í 1.2)       
3 ] else [  
4  �Í 2.0 + �Í 2.1*Speed + NormalDist(0, �Í 2.2)       
5 ]  
 

Parameter learning for this CLD estimates the parameters 
(�Í 1.0, �Í 1.1, and �Í 1.2) in Line 2 and the parameters (�Í 2.0, �Í 2.1, 
and �Í 2.2) in Line 4 using multiple regression.   

D. Test Reasoning Model 
This step performs two sub-steps (Experiment Reasoning 

Model and Evaluate Experimental Results) to evaluate the 
extended PROGNOS PO from the test dataset. In the 
Experiment Reasoning Model step, the performance of 
estimation and prediction for the extended PROGNOS PO can 
be assessed using a performance measure (e.g., the mean 
squared error or the Brier score). Each experiment consists of 
the following five steps. (1) The test dataset provides entity 
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information (e.g., ship1, person1, and field1) and ground truth 
information (e.g., isShipOfInterest_ship1 = true, 
isTerroristPerson_person1 = true) to the extended PROGNOS 
PO. (2) Given these, the extended PROGNOS PO is used to 
compute a marginal probability distribution (e.g., 
P(PotentialTerroristAttacks_field1 | isShipOfInterest_ship1 = 
true, isTerroristPerson_person1 = true) in response to a query. 
(3) The test dataset provides ground truth data (e.g., 
PotentialTerroristAttacks_field1 = High). (4) Steps 1-3 are 
repeated for all test cases. (5) Finally, for results for all cases, 
the measures are calculated. 

In the Evaluate Experimental Results step, we evaluate the 
measures using the performance criteria in the requirements 
defined in the Analyze Requirement step (e.g., a mean squared 
error < 0.1). If the evaluation is not satisfied (e.g., a mean 
squared error >= 0.1), we can return to the previous steps to 
improve the performance of the extended PROGNOS PO. We 
can investigate the extended PROGNOS PO in the Construct 
Reasoning Model step. Unsatisfactory performance can be 
caused by a training database of insufficient size. In this case, 
we may find more datasets and apply them to the learning 
process. Also, it is possible that the MEBN learning algorithm 
which we use is ineffective. In this case, the application of a 
more effective MEBN learning algorithm is required. The 
world model in the Construct Reasoning Model step can be 
incorrect. For this, we may need to conduct a further field 
investigation and research to develop a more accurate world 
model. The requirements in the Analyze Requirements step can 
be impracticable or requires a too high standard to address it. In 
this case, readjustments for the requirements can be performed 
by the stakeholders.  

V. COMPARING UMP-ST AND HMLP 
HMLP is a modification of UMP-ST that specifies some 

detailed sub-steps and uses two reference models (the reference 
MEBN model for PSAW and MEBN-RM). These reference 
models can support efficient modeling for a probabilistic 
ontology in PSAW. The first steps (Requirement) for both 
processes are same. In the case of HMLP, the reference MEBN 
model for PSAW provides some guidance on  groups of 
entities to be defined (i.e., Reported Object, Observing 
Condition, Target Object, and Situation). In the second step of 
HMLP, the reference model also supports developing a world 
model in terms of PSAW by providing candidate entities (i.e., 
T, OR, SR, TR, and RT), attributes, and relationships. In the 
third step of HMLP, MEBN-RM supports the development of 
entities, random variables, and MFrags from a relational 
schema. HMLP also makes use of MEBN learning algorithms, 
so given a training dataset, a probabilistic ontology can be 
efficiently constructed. The second and third steps are mainly 
different with UMP-ST. These steps in HMLP can accelerate 
the modeling for probabilistic ontologies in PSAW and 
produce more comprehensive models.  

Table 1 shows feature comparison between the original 
PROGNOS PO and the extended PROGNOS PO. Each 
number in the table means the number of the features (entities, 
random variables, relationships between random variables, and 
MFrags). For example, the number of entities in the original 
model is three (Ship, Person, and Organization), while the 

number of entities in the extended model is ten (Field, Ship, 
Person, Organization, ShipSensor, PersonSensor, 
OrganizationSensor, ReportedShip, ReportedPerson, and 
ReportedOrganization). Table 1 shows that the feature of the 
extended PROGNOS PO is more comprehensive than the 
feature of the original PROGNOS PO. The original 
PROGNOS PO contains 51 RVs, while the extended 
PROGNOS PO contains 115 RVs. This means that the 
extended PROGNOS PO can answer more various questions. 
For example, a reasoning about potential terrorist attacks in a 
field can be performed using the extended PROGNOS PO, but 
the original PROGNOS PO can’t. Also, the extended 
PROGNOS PO contains observing conditions for sensors, so 
this may enable us to perform more accurate reasoning.   

 
If we assume that there is a training dataset for MEBN 

learning, the development period for the PROGNOS PO can be 
reduced. Usually, to develop an RV and its parameter, we 
study literature related to the RV and find possible parameters 
for the RV. Another way for the development of such an RV is 
to use domain expert knowledge. A subject matter expert 
(SME) may provide values and parameters for the RV, and 
relationships between RVs. In the PROGNOS project, to 
develop one RV, we used the following steps: (1) an SME in 
the maritime domain explained domain knowledge to an RV 
developer, (2) the RV developer developed the RV using the 
MEBN/PR-OWL software [27], and (3) the RV in the 
MEBN/PR-OWL software was evaluated by the SME. These 
steps were implemented with at least one day per RV. If we 
assume that for each RV, one day may be required to develop it 
by one RV developer and one SME, then the original 
PROGNOS PO requires around 51 days. On the contrary, if we 
assume that all datasets are available, the development with 
MEBN learning may require around one day for setting the 
datasets and learning a PO using a MEBN learning algorithm. 

VI. CONCLUSION 
UMP-ST was applied for construction of a probabilistic 

ontology to support PROGNOS including the PROGNOS PO. 
The PROGNOS PO played an important role in the operation 
of PROGNOS. However, manually developing and 
maintaining a probabilistic ontology is a labor-intensive and 
insufficiently agile process. Therefore, HMLP containing the 
reference models and machine learning methods was 
introduced. In the previous work for PROGNOS, UMP-ST was 
applied to develop the PROGNOS PO. This paper applied 
HMLP to develop the extended PROGNOS PO which was 
more comprehensive than the original model and was 
developed more quickly.  

The following summarizes future research issues. (1) 
HMLP in this research was not fully applied with MEBN 
learning from a training dataset. Evaluation of effectiveness 
(i.e., reasoning accuracy) of reasoning models learned from 

TABLE 1. Comparison between the original PROGNOS probabilistic 
ontology and the extended PROGNOS probabilistic ontology 

!  Entities Random 
Variables Relationships MFrags 

Original  3 51 53 18 
Extended 10 116 147 36 
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MEBN learning is required. (2) A probabilistic ontology can 
contain MFrags, context nodes, resident (or inputs) nodes, 
graphs, FOL formula for nodes, and class local distributions for 
nodes. These elements can be subject to MEBN learning. 
Especially, FOL formula learning in a probabilistic ontology is 
a difficult topic relative to the others. In our approach, a dataset 
for learning is given from a relational database. Because we 
rely on MEBN-RM, we do not need to perform the 
complicated task of FOL formula learning from text data. FOL 
formula learning in a probabilistic ontology can be supported 
by Inductive Logic Programming [23][24] and Statistical 
Natural Language Processing [25]. (3) Also, future steps for 
the extended PROGNOS PO are to apply it to a realistic 
reasoning system for Maritime Domain Awareness. 
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