Unicorn meets Chimera: Integrating External
Events into Case Management

Jonas Beyer, Patrick Kuhn, Marcin Hewelt, Sankalita Mandal, Mathias Weske

Hasso Plattner Institute, University of Potsdam, Germany
{Marcin.Hewelt,Sankalita.Mandal,Mathias.Weske}@hpi.de

Abstract. Case management allows knowledge workers to model and
enact flexible, knowledge-intensive business processes. Such processes oc-
cur in many domains, e.g. logistics or healthcare, and the exact course of
a case can not be pre-specified, because it heavily depends on case data,
user decisions, and external events, which take place during runtime.
This work extends our case management engine Chimera with the capa-
bility to incorporate external events. To this end we integrate Chimera
with the event processing platform Unicorn, with the result that external
events can now trigger new cases, provide case data, or abort activities.
This demo is aimed at practitioners and academics in the field of flexible
business processes and case management.

Keywords: Case Management, Business Process Management, Com-
plex Event Processing, Case Execution, flexible Business Processes.

1 Overview

Case Management is an approach suitable for the modeling and execution of
knowledge-intensive business processes that center around a case. When execut-
ing a case, competent knowledge workers try to achieve the specific case goal,
by aligning their activities with the emergent requirements of the case. However,
the sequence of activities executed towards the goal, depends on the specific
circumstances of the case, which only become apparent during case execution,
and hence can not be pre-specified.

When dealing with highly flexible processes, integrating external events is
necessary to enable case workers to react efficiently and adapt their work to
the current situation. Complex event processing is an already proven mean to
provide high level events relevant to the course of the process [1], eventually
cases. While process modeling languages like BPMN 2 [5] allow to model several
kinds of events, process engines like Camunda or Activiti' are limited to their
engine-internal events.

! see http://camunda.de resp. http://activiti.org

Copyright © 2016 for this paper by its authors. Copying permitted for pri-
vate and academic purposes.

68 Beyer et al.

This work builds on the case management engine Chimera? that was pre-
sented at last year’s BPM demo under the name JEngine [2]. Here we ex-
tend Chimera with capabilities to deal with external events by registering event
queries with the event processing platform Unicorn?, and reacting on received
event notifications. Furthermore, we present the case modeling tool Gryphon. It
allows knowledge workers to model event types as part of the domain model of a
case model, as well as process fragments that are annotated with event queries.

2 Fragment-based Case Management

In our project, we consider the fragment-based case management approach (fCM)
by [3,4], where a business scenario is represented by a case model consisting of
a set of fragments, a domain model, and a set of life cycles. Each fragment is a
process model that contains control flow necessary to describe how to handle a
subsection of the case. Upon execution, the fragment instances are dynamically
combined based on their data dependencies. The data classes and their associa-
tions, as well as their domain specific attributes are defined in the domain model.
Each data class has a corresponding object life cycle that specifies possible state
transitions a data object of that class can undergo during case execution. The
Chimera approach uses BPMN for the fragments, UML for the domain model,
and state transition graphs for the life cycles. The semantics of fragment-based
case management has been formally defined in [3].

3 Event Integration into fCM

We explain the concept of integrating events with the usecase of asparagus har-
vest. External factors like temperature and weather prediction influence the har-
vesting process. One important aspect of the usecase is depicted in Fig. 1 that
shows one of several process fragments contained in the case model of our use-
case. In order to balance supply and demand for asparagus the harvest date
needs to be coordinated with other asparagus farmers in the region.

The fragment in Fig. 1 is enabled once the Harvest Plan has been [created].
The farmer then starts preparing resources and equipment for the harvest. But
as depicted by the event-based-gateway, if the Market price dropped event oc-
curs before the harvest date, the Market Situation data object is updated and
the harvest has to be postponed.

In the remaining part of the section, the work flow for implementing the use
case in our execution environment is discussed. Figure 2 provides an overview of
all components and their interactions.

2 see https://bpt.hpi.uni-potsdam.de/Public/ChimeraDoc
3 see http://bpt.hpi.uni-potsdam.de/UNICORN

Unicorn meets Chimera: Integrating External Events into Case Management 69

1 : Market
: Situation[updated]

M)

Harvest Plan &
[created]

Postpone
Harvesting

Market price
dropped
Prepare

Harvesting) m——

Execute
Harvesting

Harvest date
oS o —————
: :
H

o O

Harvest Plan Harvest Plan
[prepared] [executed]

Fig.1: A process fragment from the case model

REST /Q\ <R Client

Sensor) REST) Web

Gateway —O— Unicorn Chimera —Q— Browser .
\Q/ HTTP

REST

) USB/WIFI <> REST

>

M)

<R Client
XDK- Model (> Web
Sensor GGPOSHOW Gryphon =t Browser ‘

Fig. 2: Architecture

Case model creation. In order to include external events in the execution of a
case, they first have to be modelled. It is possible to define event types that
describe the domain and the attributes of events. Specific events triggering ac-
tions in the case can be modelled using event queries. Event queries are similar
to database queries, the difference being that they operate on event streams
instead of persistent data. If an event from the stream matches the query, the
event is then sent to the execution engine. We chose the Event Processing Lan-
guage (EPL) provided by Esper?, as language to express those event queries.
We decided to reuse the catching message event to model enabled events as
notifications can be considered as receiving messages.

To model the case, we used Gryphon, a web-based tool built around bpmn.io
based on a node.js®-stack. Gryphon allows to model process fragments, domain
model, life cycles, and termination conditions. The completed case model can
then be deployed to a running Chimera instance.

5

4 see http://www.espertech.com/products/esper.php
5 An open-source BPMN modeler implemented in Javascript http://bpmn.io
5 see http://node. js

70 Beyer et al.

D # Detals Details
[Dataclass I
Market Situation : Message

Market
Situation[updated] .
State H Market

: updated Situationfupdate: pessage Name
Postpone H
Harvestint JSON Path for currentPrice . (Market price dropped
Market price $.currentData[price’] o @ Dpo

Ha Event-Query for UNICORN
JSON Path for predictedDate

Market pric~ A SELECT * FROM MarketUpdate

dropped /‘ [}

$.prediction'datc’]

(a) Modeling of data attribute bindings (b) Modeling of event queries

Fig. 3: Modeling extensions in Gryphon

Model deployment. Chimera is an engine for executing case models, consisting
of a web-based frontend and a backend communicating via a RESTful APIL
Chimera parses the received case model and registers event types and case start
queries with Unicorn. The case can then be executed through the web UI, where
the user is presented with an overview of all case models.

Chimera also supports incorporating events as case data. Events are received
in the form of JSON objects, where each attribute field has a specific value. Thus,
we can parse the JSON and set data object attributes according to the event
attribute values. This is implemented by evaluating JsonPath” expressions. The
user can specify one JsonPath expression per attribute of the data object that
is used to persist the values, as seen in figure 3a.

Event and query registration. Whenever an event is reached during execution
in Chimera, an event query is registered with Unicorn. Unicorn is an event
processing platform built around the Esper Event Processing Engine that allows
to manage event types, event queries, and notifications both via a web-based
UI and a REST API. Events are sent to Unicorn either via a REST API or by
means of adapters, that periodically call webservices.

A general overview of the event registration process is shown in Fig. 4. The
registered event queries can be divided into two groups. Case start queries have
to be registered when a new case model is deployed to Chimera and remain
registered until the case is deleted. All other event queries are registered as soon
as the respective event control node is reached. The annotation to register event
queries has been shown in Fig. 3b. Each query is registered with a specific id,
which is used to correlate the event control node to the event query after it was
triggered. The queries are unregistered from Unicorn when the event is triggered
or skipped.

FEvent generation. In our use case, events were produced by a sensor unit. Be-
cause we did not have access to real “production fields”, the sensor unit used
was the Bosch XDK developer kit®, a package with multiple integrated sensors
for prototyping of IoT applications. The unit sends measurement values over

" see http://goessner.net/articles/JsonPath/
8 see http://xdk.bosch-connectivity.com

Unicorn meets Chimera: Integrating External Events into Case Management 71

| Editor ‘ | Chimera ‘ Unicorn Event
} Source

T
}L 1: Case Model 1

loop

Il
|
:\ 1.6: start !
|
|

2: Event

77777777 240U
L]

44¥#444444¥#44444,
N
o
m
<
@
S
=3
>
<]
=
=h
I}
o
=
o
p=]

Fig. 4: Event integration sequence

wireless network to a gateway that parses the proprietary format of the received
data and forwards it to Unicorn using the REST API.

Reactions to events. If the event is linked to a case start query, the case is
initiated. The specified data objects are created using the information given by
the start query — this includes the initial data object state and its attribute
values. Otherwise, the event control node associated to the query id is retrieved
and executed. If the control node has outgoing data objects that define data
bindings, the event data is evaluated with the help of the JsonPath expressions,
and the attribute values are saved.

4 Conclusion

In this paper, we presented our prototypical adaption of a case management exe-
cution engine to handle real life events sent by a sensor. To this end, we adapted
the modeling component Gryphon to allow event modeling and integrated the
event processing platform Unicorn and a Sensor Gateway into the architecture.
The case engine itself had to be adapted to parse and register event types and
event queries, as well as to react to received event notifications.

This contribution is part of an ongoing project to develop a highly usable
environment for knowledge workers to model and enact fragment-based case
models. Source code, documentation, and screencast of the Chimera case engine
are available at https://bpt-lab.org/fcm.

References

1. O. Etzion and P. Niblett. Event Processing in Action. Manning Publications, 2010.

72 Beyer et al.

2. S. Haarmann, N. Podlesny, M. Hewelt, A. Meyer, and M. Weske. Production case
management: A prototypical process engine to execute flexible business processes.
In Proceedings of the BPM Demo Session, pages 110-114, 2015.

3. M. Hewelt and M. Weske. A Hybrid Approach for Flexible Case Modeling and
Execution. In BPM Forum, LNBIP. Springer, 2016. (accepted for publication).

4. A. Meyer, N. Herzberg, F. Puhlmann, and M. Weske. Implementation framework
for production case management: Modeling and execution. In Enterprise Distributed
Object Computing (EDOC). IEEE, 2014.

5. Object Management Group. Business Process Model and Notation (BPMN), Ver-
sion 2.0.2, 2013.

