
MuDePS: Multi-perspective Declarative
Process Simulation

Lars Ackermann and Stefan Schönig

University of Bayreuth,
Universitätsstraße 30, 95447 Bayreuth, Germany

{lars.ackermann,stefan.schoenig}@uni-bayreuth.de

Abstract. Business process simulation supports the improvement and
analysis of business process models. Especially log generation features
gain more and more attractivity, for instance, because of their applica-
tions in the evaluation of process mining techniques. Additionally, cog-
nitive science has shown that examples promote the comprehension of
abstract models. This is important especially for declarative modeling
languages, which are able to cope with highly flexible processes while
mostly being less intelligible than imperative counterparts. Since most
of the available process simulation tools are tailored to imperative lan-
guages they are not suitable in declarative contexts. The tool presented
in this paper is able to simulate declarative, multi-perspective process
models. It builds on DPIL, a declarative process modeling language.
DPIL models can be created and compiled to a simulation model using
the DPIL Modeler. MuDePS, a second component, is able to generate
event logs that conform to the original DPIL model. Each generated log
is able to describe an exhaustive, distinct set of valid process execution
traces of a desired length.

Keywords: process simulation, log generation, declarative modeling

1 Background and Significance to BPM

Business processes differ regarding their strictness and level of governance. Thus,
two paradigms for business process modeling emerged: Imperative models de-
scribe allowed process instances using step-by-step flow descriptions, whereas
declarative, i.e. rule-based models consist of constraints that each instance has
to satisfy [1]. Declarative process modeling languages (DPMLs) are based on the
foundational principle that all execution paths are allowed as long as they are
not explicitly forbidden. Rules are used to form a forbidden region for process
executions. Hence, more flexible processes require less rules, i.e., the resulting
model is comparably small and, thus, rule-based approaches are well-suited for
the representation of flexible processes [1, 2].

Copyright c© 2016 for this paper by its authors. Copying permitted for private and
academic purposes.



MuDePS: Multi-perspective Declarative Process Simulation 13

use group Administration

process BusinessTrip {
task Apply for Trip
task Approve application
task Book accommodation

document Application

ensure produces(Apply for Trip, Application)
ensure consumes(Approve application, Application)
ensure sequence(Approve application, Book accommodation)
ensure role(Approve Application, Administration)
ensure binding(Book accommodation, Apply for Trip)

milestone "Done": event(of Book accommodation)
}

Fig. 1: Process for trip management modeled with DPIL

Orthogonal to the two modeling paradigms a process involves multiple per-
spectives. Activities in the process, for instance, follow a certain order (functional
and behavioral), are performed by certain organizational resources (organiza-
tional) and require an appropriate handling of data (data-oriented) [2, 3]. Many
DPMLs are limited to the functional and the behavioral perspectives. Even the
more expressive Dynamic Condition Response Graph [4] language still lacks the
involvement of organizational resources. In contrast, the Declarative Process In-
termediate Language (DPIL) [3] has been designed for modeling process rules
for multiple perspectives. Thus, using DPIL it is possible to model dependen-
cies between activities as well as between resources and activities and all other
combinations of elements from different or the same perspectives. DPIL and its
expressiveness have been motivated and evaluated in both, industry applications
like the KpPQ project2 and in academical contexts [3] based on the well-known
set of Workflow Patterns. One result of the academical investigation was that
DPIL provides support for around 50% more of the requirements than BPMN
does. However, though we decided to use DPIL as example language the principle
can be applied to other DPMLs, too [5].

DPIL is a textual modeling language and allows for defining reusable rule
templates (macros) in order to keep the resulting model as concise as possible.
For instance, the produces macro (produces(t,d)) states that an activity t can-
not be complete until a data object d has been produced. Consequently, the
consumes macro (consumes(u,d)) stipulates that a second activity, u, cannot be
started until this data object d is available. This results in a temporal order-
ing of the two activities t and u driven by a data dependency. Sometimes the
temporal ordering of activities might depend on information which are not part
of the process. Such constraints can be formulated using the sequence macro
(sequence(t,u)), whereby u must be preceded by at least one execution of t. Re-
sources can be assigned to an activity using the role macro (role(t,r)), which
restricts an actor of t to be in role r. Such assignments do not need to be static,
as the binding macro (binding(t,u)) shows. This macro says that the actor in the

2 For more information we would like to refer to: http://kppq.de/



14 Ackermann and Schönig

activities t and u has to be the same. The DPIL model in Fig. 1 is a simplified
sketch of a business trip application process. It says that an application can be
approved by the administration as soon as the application document is available.
The accommodation has to be booked by the applicant and, at the earliest, as
soon as the application has been approved. This step concludes the process.

Process model analysis and improvement phases can be supported by busi-
ness process simulation techniques [6]. Simulation tools can produce log files
which can be further analyzed enabling the user to predict the performance of a
process in an operative context. As a second application, simulated logs can be
used to gain a deeper understanding of the meaning and properties of a process.
Cognitive research has shown that examples help to improve the comprehension
of rules and abstractions [7]. A third advantage of simulation tools that pro-
duce logs is the opportunity to evaluate process mining techniques, as it has
been shown in [8]. However, though there are many simulation techniques for
imperative languages there is currently a lack of simulation tools for declarative
languages. The approach in [8] is able to simulate declarative process models but
the underlying DPML is limited to the functional and behavioral perspectives of
processes. The transformation from multi-perspective declarative process mod-
els to an imperative representation is still vague. Consequently, it is vague, too,
whether imperative simulation tools can be applied. We therefore complement
the DPIL framework [9] with a multi-perspective declarative process simulation
tool called MuDePS which is presented in the remaining part of the paper.

2 MuDePS: Overview and Demo Guidelines

In the demo we make use of two components of the DPIL framework, namely
DPIL Modeler and MuDePS itself in order to demonstrate the simulation of
the example process above as well as an extended version. The modeler ships
with a textual editor based on the Eclipse IDE in combination with Xtext.
Thus, the user is supported through general IDE features like auto-completion as
well as through language features like syntax checking and reference resolution.
MuDePS operates on models formulated using a logic language called Alloy [10].
The gap between a model specified in DPIL and its Alloy representation is closed
using an automated model-to-text generator based on Acceleo.3

The MuDePS simulation tool works as follows. First, a DPIL model is trans-
lated into an Alloy-conform specification. Alloy ships with an analyzer which is
able to identify unique examples for a given model and target size exhaustively.
This means that each possible process execution path occurs exactly once in
the resulting log which is serialized according to the eXtensible Event Stream
(XES) standard format4. This standard is based on the idea of Discrete-Event
Simulation which means that the log of a particular process execution is a chain
of events whereby each encapsulates all relevant information about the executed
activity and the executing resource and tools.

3 Xtext: www.eclipse.org/Xtext/, Acceleo: www.eclipse.org/acceleo
4 http://www.xes-standard.org/



MuDePS: Multi-perspective Declarative Process Simulation 15

Fig. 2: MuDePS: User-interface of the simulation tool

A simulation model in MuDePS consists of two main parts: (i) A static part
that describes the general structure and constraints for an intrinsically valid
process event trace and (ii) a dynamic part consisting of constraints that have
been generated from the source DPIL model. The static part ensures that each
event occurs at a particular point in time (behavioral perspective) and that
each event is able to encapsulate the activity name (functional perspective), the
performer (organizational perspective) and data access information. An actor
is usually part of an organizational structure. Thus, we also provide an Alloy
implementation of the well known organizational meta-model discussed in [11].

The dynamic part contains the Alloy representation of the particular process
model like the example in Fig. 1. The group, task and document elements are
transformed to so called signatures which are comparable to classes in object-
oriented programming languages. Thus, signatures can be abstract, too, and a
signature that represents a process model element is an extension of one signature
from the static part. A process rule is transformed to a so called fact. A fact is
an invariant, i.e. a constraint that always must be fulfilled and that can be used
to represent non-structural restrictions. In order to run the simulation we make
use of Alloy’s run command for which we have to provide a maximum target size
of the solutions, i.e. the maximum process trace length. Running the command,
the Alloy analyzer translates the Alloy model into a system of equations and
applies a solver. MuDePS iterates over the resulting solutions considering the
provided maximum trace length which, in turn, makes the solution space finite.

Based on its characteristics MuDePS can be used to produce an exhaustive
set or a set of a desired size of example traces for a given DPIL model and
maximum trace length. The traces are provided in the XES log format and can
be post-processed by any desired application that operates on XES files.

3 Maturity and Future Work

As already shown in [9], the DPIL Framework is a well-evaluated prototype
that is used for demonstration purposes in academic and industrial contexts.



16 Ackermann and Schönig

The new part of the framework, MuDePS, shown in Fig. 2, has been evaluated
regarding correctness and performance in [12] based on a real-life DPIL model.
MuDePS itself, installation instructions as well as an example process and an ex-
emplary generated event log are available at http://mps.kppq.de. Additionally
we provide a screencast showing the basic workflow for simulating a DPIL model
with MuDePS at: https://youtu.be/JhqSiAxChKQ. Currently the transforma-
tion from DPIL to Alloy is done using the signature of the macros. However,
this means a restriction regarding DPIL’s flexibility to create new process rule
templates. That is why we are currently working on a more flexible transfor-
mation based on the actual rule structure. Additionally, the computation time
for larger process event logs (> 80 events) is rather low (around 45 minutes for
1000 instances). However, this is caused by the multi-perspectivity but can be
optimized, e.g. through partially inverting constraints in order to early minimize
the solution space. Future versions of the tool will also consider activity life
cycles (event start/completion) and modalities, i.e. soft and hard constraints.
Additionally it will be fully integrated into the DPIL Modeler.

References

1. D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zu-
gal, “Declarative versus imperative process modeling languages: The issue of un-
derstandability,” in BPMDS, pp. 353–366, 2009.

2. R. Vacuĺın, R. Hull, T. Heath, C. Cochran, A. Nigam, and P. Sukaviriya, “Declara-
tive business artifact centric modeling of decision and knowledge intensive business
processes,” in EDOC, pp. 151–160, 2011.

3. M. Zeising, S. Schönig, and S. Jablonski, “Towards a Common Platform for the
Support of Routine and Agile Business Processes,” in CollaborateCom, 2014.

4. T. T. Hildebrandt and R. R. Mukkamala, “Declarative event-based workflow as
distributed dynamic condition response graphs,” PLACES 2010 (Journal v.), 2011.

5. L. Ackermann, S. Schönig, and S. Jablonski, “Simulation of multi-perspective
declarative process models,” in Int. Conf. on BPM, Springer, 2016.

6. W. M. P. van der Aalst, “Business Process Simulation Revisited,” Enterprise and
Organizational Modeling and Simulation, vol. 63, pp. 1–14, 2010.

7. A. L. Brown and M. J. Kane, “Preschool children can learn to transfer: Learning
to learn and learning from example,” Cogn. Psychology, vol. 20, pp. 493–523, 1988.

8. C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating event
logs through the simulation of declare models,” in EOMAS, pp. 20–36, 2015.

9. S. Schönig and M. Zeising, “The DPIL framework: Tool support for agile and
resource-aware business processes,” in BPM Demo Session, pp. 125–129, 2015.

10. D. Jackson, Software Abstractions: logic, language, and analysis. MIT press, 2012.
11. C. Bussler, “Analysis of the organization modeling capability of workflow-

management-systems,” in PRIISM, pp. 438–455, 1996.
12. L. Ackermann, S. Schönig, and S. Jablonski, “Simulation of Multi-

Perspective Declarative Process Models,” preprint: https://epub.uni-
bayreuth.de/id/eprint/2881, 2016.


