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1 Introduction

Algorithms for causal discovery emerged in the early
1990s and have since proliferated [4, 10]. After di-
rected acyclic graphical representations of causal struc-
tures (causal graphs) were connected to conditional inde-
pendence relations (the Causal Markov Condition1 and d-
separation2), graphical characterizations of Markov equiv-
alence classes of causal graphs (patterns) soon followed,
along with pointwise consistent algorithms to search for
patterns. Researchers in Philosophy, Statistics, and Com-
puter Science have produced constraint-based algorithms,
score-based algorithms, information-theoretic algorithms,
algorithms for linear models with non-Gaussian errors, al-
gorithms for systems that involve causal feedback, algo-
rithms for equivalence classes that contain unmeasured
common causes, algorithms for time-series, algorithms for
handling both experimental and non-experimental data, al-
gorithms for dealing with datasets that overlap on a proper
subset of their variables, and algorithms for discovering the
measurement model structure for psychometric models in-
volving dozens of “indicators”. In many cases we have
proofs of the asymptotic reliability of these algorithms, and
in almost all cases we have simulation studies that give
us some sense of the finite-sample accuracy of these al-
gorithms. The FGES algorithm (Fast Greedy Equivalence
Search, [6]), which we feature here, is highly accurate in
a wide variety of circumstances and is computationally
tractable on a million variables for sparse graphs. Many
algorithms have been applied to serious scientific problems
like distinguishing between Autistic and neurotypical sub-
jects from fMRI data [2], and interest in the field seems to
be exploding.

Amazingly, work to assess the finite-sample reliability of
causal discovery algorithms has proceeded under the as-
sumption that the variables given are measured without er-
ror. In almost any empirical context, however, some of the
variance of any measured variable comes from instrument

1Spirtes et al. [10]
2Pearl [4]

noise or recording errors or worse. Historically, the de-
velopment of statistics as a discipline was partly spurred
by the need to handle measurement error in astronomy. In
many cases measurement error can be substantial. For ex-
ample, in epidemiology, cumulative exposure to environ-
mental pollutants or toxic chemicals is often measured by
proxies only loosely correlated with exposure, like “dis-
tance from an industrial pollutant emitter” – or an air qual-
ity monitor within a few miles of the subject.

In its simplest form, measurement error is random noise:
Xmeasure = X + ε, where ε is as an aggregate represent-
ing many small but independent sources of error and thus
by the central limit theorem at least approximately Gaus-
sian. In other cases measurement error is systematic, for
example it is well known that people under-report socially
undesirable activities like cheating, and since the more they
engage in the activity the more they under-report, this type
of error is not random. In this paper we will concern our-
selves only with random noise error. Here we explore the
impact of random noise measurement error on the overall
accuracy of causal discovery algorithms.

2 Parameterizing Measurement Error

We consider linear structural equation models (SEMs) in
which each variable V is a linear combination of its direct
causes and an “error” term εV that represents an aggregate
of all other causes of V . In Figure 1, we show a simple
model involving a causal chain from X to Z to Y . Each
variable has a structural equation, and the model can be
parameterized by assigning real values to β1 and β2, and a
joint normal distribution to {εX , εZ , εY } ∼ N(0,Σ2), with
Σ2 diagonal to reflect the independence among the “error
terms” εX , εZ and εY .

For any values of its free parameters, the model in Fig. 1
entails the vanishing partial correlation ρXY.Z = 0, which
in the Gaussian case is also the conditional independence:
X ⊥⊥ Y | Z. In Fig. 2 we show the same model, but with
Z “measured” by Zm, with “measurement error” εZm

.



X :=εX

Equations: Z :=β1X + εZ

Y :=β2Z + εY

Figure 1: Causal Model for X,Z, Y .

X :=εX

Equations: Z :=β1X + εZ

Y :=β2Z + εY

Zm :=Z + εZm

Figure 2: Measurement Error on Z.

The variance of Zm is just the sum of the variances of Z
and the measurement error εZm , i.e., var(Zm) = var(Z)+
var(εZm), so we can parameterize the “amount” of mea-
surement error by the fraction of var(Zm) that comes
from var(εZm

). If var(εZm
) = 0.5var(Zm), then half

of the variation in the measure is from measurement noise.
For simplicity, and without loss of generality, consider
the re-parameterization of Fig. 2 in which all variables
{X,Z,Zm, Y } are standardized to have mean 0 and vari-
ance 1. In that case Zm = λZ + εZm

, where ρZ,Zm
= λ2

and var(εZm
) = 1− λ2.3

3 The Problem for Causal Discovery

Measurement error presents at least two sorts of problems
for causal discovery. First, for two variables X and Y that
are measured with error by Xm and Ym, if X and Y have
correlation ρXY , then this correlation will attenuate in the
measures Xm and Ym. That is, |ρXY | > |ρXmYm

|.

Thus it might be the case that a sample correlation ρXY

would lead us to believe that X and Y are correlated in

3var(Zm) = λ2var(Z)+var(εZm) = λ2+var(εZm) = 1,
so var(εZm) = 1− λ2.

the population, i.e., |ρXY | > 0, but the sample correlation
ρXm,Ym would mislead us into rejecting independence and
accepting ρXmYm

= 0. Thus an algorithm that would make
X and Y adjacent because a statistical inference concludes
that |ρXY | > 0, the same procedure might conclude that
Xm and Ym are not adjacent because a statistical inference
concludes that ρXmYm = 0. Worse, this decision will in
many cases affect other decisions that will in turn affect the
output of the procedure.

Second, if a variable Z “separates” two other variables X
and Y , that is X and Y are d-separated by Z and thus
X ⊥⊥ Y | Z, then a measure of Z with error Zm does
not separate X and Y , i.e., X 6⊥⊥ Y | Zm. In Fig. 2, for
example, the model implies that X ⊥⊥ Y | Z, but it does
not imply that X ⊥⊥ Y | Zm. If the measurement error
is small, we still might be able to statistically infer that
X ⊥⊥ Y | Zm, but in general measurement error in a sep-
arator fails to preserve conditional independence. Again,
judgments regarding X ⊥⊥ | Zm, will affect decisions in-
volving relationships between X,Y, Zm , but it will also
have non-local consequences involving other variables in
the graph.

For example, consider a case in which we simulated data
from a model with six variables in which only two of
the six were measured with error. In Fig. 3, the gener-
ating model on the left is a standardized SEM (all vari-
ables mean 0 and variance 1), with L1 and L2 measured
with 1% error as L1m and L2m. Running FGES on a
sample of size 1, 000 drawn from the measured variables
{L1m,L2m,X1, X2, X3, X4}, we obtained the pattern
output on the right, which is optimal even if we had
the population distribution for {L1, L2, X1, X2, X3, X4}.
Measuring L1 and L2 with 20% error produced a pattern
nothing like the true one (Fig. 4), and the errors in the out-
put are not restricted to errors involving relations involving
L1m and L2m as potential separators.

For example, FGES found, in error, thatX1 andX4 are ad-
jacent because L2m did not separate them where L2 would
have. Similarly, X1 and X2 were made adjacent because
L1m failed to separate them where L1 would have. X2
and X4 were found to be separated, but not by X1, thus
the algorithm oriented the false adjacencies X2 — X1 and
X4 — X1 as X2 → X1 and X4 → X1, which in turn
caused it to orient the X1 — L1m adjacency incorrectly
as X1 → L1. Thus errors made as a result of measure-
ment error are not contained to local decisions. Because
of this non-locality, judging the overall problem for causal
discovery algorithms posed by measurement error is almost
impossible to handle purely theoretically.

4 Causal Discovery Accuracy

Causal researchers in several fields recognize that mea-
surement error is a serious problem, and strategies have



Figure 3: FGES Output with 1% Measurement Error.

Figure 4: FGES Output with 20% Measurement Error.

emerged for dealing with the problem theoretically. In mul-
tivariate regression, it is known that a) measurement error
in the response variable Y inflates the standard errors of
the coefficient estimates relating independent variables to
Y but does not change their expectation, b) measurement
error in an independent variable X attenuates the coeffi-
cient estimate for X toward 0, and c) measurement error
in a “covariate” Z produces partial omitted variable bias in
any estimate on a variableX for whichZ is also included in
the regression. In cases b) and c), there is a literature, pri-
marily in economics, known as “errors-in-variables”, for
handling measurement error in the independent variables
and covariates [1]. If the precise amount of measurement
error is known, then parameter estimates can be adjusted
accordingly. If the amount is unknown, then one can still
use sensitivity analysis or a Bayesian approach [7]. In gen-
eral, in cases in which researchers are confident in the spec-
ification of a model, the effect of measurement error on pa-
rameter estimation has been well studied.4

In causal discovery algorithms, however, the input is typ-
ically assumed to be an i.i.d. sample for a set of mea-
sured variables V drawn from a population with variables
V∪L that satisfies some general assumptions (e.g., Causal
Markov and/or Faithfulness Axiom) and/or some paramet-
ric assumption (e.g., linearity). The output is often an
equivalence class of causal structures – any representative
of which might be an identified statistical model whose pa-

4For example, see Pearl [5], and Kuroki and Pearl [3].

rameters can be estimated from these same data. In dis-
cussing the reliability of the causal discovery algorithm, we
care about how the equivalence class output by the algo-
rithm compares to the equivalence class of which the true
causal graph is a member.

For example, if the causal graph in the upper left of Fig. 5
is the true model, then the pattern on the upper right rep-
resents the Markov equivalence class of which the true
graph is a member. It represents all that can be discovered
about the causal structure under the assumption that the ev-
idence is non-experimental, confined to independence re-
lations, and the connection between the graph and data is
the Causal Markov and Faithfulness assumptions. On the
bottom of Fig. 5 we show the patterns output by the FGES
algorithm on a sample of 50 (bottom left), and on a sam-
ple of 1,000 (bottom right). The pattern on the bottom right
matches the pattern for the true graph, so this output is max-
imally accurate, even though it did not “orient” the edge
between X2 and X4.

Patterns output by search procedures can be scored on ac-
curacy with respect to adjacencies and accuracy with re-
spect to arrowhead orientation. The true pattern has three
adjacencies: {X1 — X3, X2 — X3, X2 — X4}, and
two arrowhead orientations: {X1 → X3, X2 → X3}.
The pattern on the bottom left contains two of the three
adjacencies, but it missed the adjacency between X2 and
X3. The adjacency precision (AP) reflects the proportion,
among those guessed to be adjacencies, of correct adja-



Figure 5: Graphs, Patterns, and Search Accuracy

cencies. In this case the search algorithm guessed three
adjacencies, two of which were correct, so the adjacency
precision is 2/3 = .67. The adjacency recall (AR) is the
proportion of true adjacencies found by the algorithm. In
this case the search output two of three, so AR = .67.

We can also compute the “arrowhead precision” (AHP )
and “arrowhead recall” (AHR). In the bottom left of Fig.3
the algorithm output two arrowheads, but we only count
the one which also corresponds to a true adjacency, so its
AHP is 1/1 = 1.0. As there were two arrowheads in the
true pattern that it could have found, one of which it missed,
its AHP = 1/2 = .5.

5 The Simulation Study

As predicting the global effects of measurement error on
search accuracy is hopelessly complicated by the non-
locality of the problem, we instead performed a somewhat
systematic simulation study. We generated causal graphs
randomly, parameterized them randomly, drew pseudo-
random samples of varying size, added varying degrees of
measurement error, and then ran the FGES causal discov-
ery algorithm and computed the four measures of accuracy
we discussed above: AP , AR, AHP , and AHR.

We generated random causal graphs, each with 20 vari-
ables. In half of our simulations the “average degree” of
the graph (the average number of adjacencies for a vari-
able) was 2 and in half it was 6. In a graph with 20
variables with an average degree of 2, the graph is fairly
sparse. With an average degree of 6 the graph is fairly
dense. We randomly chose edge coefficients, and for each
SEM we generated 10 samples of size 100, 500, 1,000,
and 5,000. For each sample we standardized the vari-

ables to have mean 0 and variance 1, and we then ap-
plied varying degrees of measurement error to all of the
measured variables. For each variable X , we replaced X
with Xm = X + εx, where εx ∼ N(0, σ2), for values of
σ2 ∈ {0, .01, .1, .2, .3, .4, .5, 1, 2, 3, 4, 5}. Since the vari-
ance of all the original variables is 1.0, when σ2 = .1 ap-
proximately 10% of the variance ofXm was from measure-
ment error. When σ2 = 1, 50% of the variance of Xm was
from measurement error, and when σ2 = 5, over 83% of
the variance of Xm was measurement error.

6 Results

First consider the effect of sample size on FGES accuracy
when there is no measurement error at all. In Fig. 6 we
show the performance for sparse graphs (average degree =
2) and for fairly dense graphs (average degree = 6). For
sparse graphs, accuracy is high even for samples of only
100, and by N = 1, 000 is almost maximal.

For denser graphs, which are much harder to discover, per-
formance is still not ideal even at sample size 5,000. Fig. 7
shows the effects of measurement error on accuracy for
both sparse and dense graphs at sample size 100, 500, and
5,000.

For sparse graphs, at sample size 100 the of accuracy of
FGES decays severely for measurement errors of less than
17% (ME = .2), especially for orientation accuracy. The
results are quite poor at 50% (ME = 1) and reaches near 0
when two thirds of the variance of each variable is noise.
Surprisingly, the decay in performance of FGES from mea-
surement error is much slower at larger sample sizes. For
N = 500, the algorithm is still reasonably accurate at 50%
measurement error, and adjacency precision remains rea-



Figure 6: Baseline: Zero Measurement Error

Figure 7: Accuracy and Measurement Error



sonably high even when 2/3 of the variance of all variables
is just noise. If FGES outputs an adjacency at sample size
500, it is still over 70% likely to actually be an adjacency in
the true pattern, even with 67% measurement error. On the
other hand, the same can’t be said about non-adjacencies
(AR) in 67% measurement error case. If FGES outputs a
pattern in which X and Y are not adjacent, then there is a
lower than 40% chance that X and Y are not adjacent in
the true pattern – even in patterns with average degree of 2.

Does sample size help FGES’s performance in the presence
of measurement error? Roughly yes. For dense graphs
the performance of FGES improves somewhat with sam-
ple size at almost all levels of measurement error. Notably,
even for cases in which 5/6 of the variance in the measured
variables was due to measurement error (ME = 5), most
measures of FGES accuracy improved dramatically when
sample size was increased from N = 500 to N = 5, 000.

7 Discussion, Conclusions and Future
Research

We explored the effect of the simplest form of Gaussian
measurement error on FGES, a simple causal discovery al-
gorithm, in a simple causal context: no latent confounders,
all relations are linear, and the variables are distributed nor-
mally. In this context, even small amounts of measurement
error seriously diminish the algorithm’s accuracy on small
samples, especially its accuracy with respect to orientation.
Surprisingly, at large sample sizes (N = 5, 000) FGES is
still somewhat accurate even when over 80% of the vari-
ance in each variable is random noise.

One way to conceive of the situation we describe is as
latent variable model discovery, and use discovery algo-
rithms built to search for PAGs (partial ancestral graphs that
represent models that include latent confounding) instead
of patterns. As the variables being measured with error are
in some sense latent variables, this is technically appropri-
ate. The kind of latent confounding for which PAGs are
meant, however, is not the kind typically produced by mea-
surement error on individual variables. If the true graph, for
example, is X ← Y → Z, and we measure X,Y , and Z
with error, then we still want the output of a PAG search to
be: Xm o–o Ym o–oZm, which we would interpret to mean
that any connection between Xm and Zm goes through Ym
(and by proxie Y ). If measurement error caused a problem,
however, then the output would likely be a PAG with ev-
ery pair of variables connected by the “o–o” adjacency, a
result that is technically accurate but which carries almost
no information.

There are two strategies that might work and that we will
try on this problem in future research. First, prior knowl-
edge about the degree of measurement error on each vari-
able might be used in a Bayesian approach in which we

compute a posterior over each independence decision. This
would involve serious computational challenges, and we do
not know many variables would be feasible with this ap-
proach. It is reasonable in principle, and a variant of it was
tried on the effect of Lead on IQ among children [8].

Second, if each variable studied is measured with at least
two “measurement” variables with independent measure-
ment error, then the independence relations among the “la-
tent” variables in a linear system can be directly tested by
estimating a structural equation model and performing a
hypothesis test on a particular parameter, which is 0 in the
population if and only if the independence holds in the pop-
ulation.5 This strategy depends on the measurement error
in each of the measures being independent, an assumption
that is often false. Techniques to find measurement vari-
ables that do have independent error have been developed,
however [9], and these techniques can be used to help iden-
tify measures with independent error in situations where
measurement is a serious worry.

A different measurement problem that is likely to produce
results similar to Gaussian measurement noise is discretiza-
tion. We know that, if, for continuous variables X,Y , and
Z, X ⊥⊥ Y | Z, then for discrete projections of X,Y , and
Z: Xd, Yd, and Zd, in almost every case the independence
fails. That is, it is often the case that X ⊥⊥ Y | Z but
Xd 6⊥⊥ Yd | Zd. This means that using discrete measures
of variables that are more plausibly continuous likely leads
to the same problems for causal discovery as measuring
continuous variables with error. As far as we are aware,
no one has any clear idea of the severity of the problem,
even though using discrete measures of plausibly continu-
ous variables is commonplace.

Acknowledgments

This research was supported by NIH grant #U54HG008540
(the Center for Causal Discovery), and by NSF grant
#1317428.

References
[1] Wayne A. Fuller. Measurement Error Models. John Wiley

& Sons, 1987.
[2] C. Hanson, S. J. Hanson, J. Ramsey, and C. Glymour. Atypi-

cal effective connectivity of social brain networks in individ-
uals with autism. Brain Connectivity, 3(6):578–589, 2013.

[3] M. Kuroki and J. Pearl. Measurement bias and effect
restoration in causal inference. Biometrika, 101(2):423–
437, 2014.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1988.

[5] J. Pearl. Measurement bias in causal inference. Proceedings
of 26th Conference in Uncertainty in Artificial Intelligence,
pages 425–432, 2010.

[6] J. Ramsey. Scaling up greedy causal search for continu-

5See chapter 12, section 12.5 in Spirtes et al. [11].



Figure 8: Sample Size vs. Accuracy in the presence of measurement error.

ous variables. Technical report, Center for Causal Discover,
2015. arXiv:1507.07749.

[7] P. Rosenbaum. Observational Studies. Springer-Verlag,
1995.

[8] R. Scheines. Estimating latent causal influences: Tetrad III
variable selection and Bayesian parameter estimation: the
effect of lead on IQ. In Handbook of Data Mining. Oxford
University Press, 2000.

[9] R. Silva, C. Glymour, R. Scheines, and P. Spirtes. Learning
the structure of latent linear structure models. Journal of
Machine Learning Research, 7:191–246, 2006.

[10] P. Spirtes, C. Glymour, and R. Scheines. Causation, predic-
tion, and search. Lecture Notes in Statistics, 81. Springer-
Verlag, 1993.

[11] P. Spirtes, C. Glymour, and R. Scheines. Causation, predic-
tion, and search. MIT Press, 2000.


	Introduction
	Parameterizing Measurement Error
	The Problem for Causal Discovery
	Causal Discovery Accuracy
	The Simulation Study
	Results
	Discussion, Conclusions and Future Research

