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Abstract

Learning a latent variable model (LVM) ex-
ploits values of the measured variables as man-
ifested in the data to causal discovery. Because
the challenge in learning an LVM is similar
to that faced in unsupervised learning, where
the number of clusters and the classes that are
represented by these clusters are unknown, we
link causal discovery and clustering. We pro-
pose the concept of pairwise cluster compar-
ison (PCC), by which clusters of data points
are compared pairwise to associate changes in
the observed variables with changes in their
ancestor latent variables and thereby to reveal
these latent variables and their causal paths of
influence, and the learning PCC (LPCC) al-
gorithm that identifies PCCs and uses them to
learn an LVM. LPCC is not limited to linear or
latent-tree models. It returns a pattern of the
true graph or the true graph itself if the graph
has serial connections or not, respectively. The
complete theoretical foundation to PCC, the
LPCC algorithm, and its experimental evalua-
tion are given in [Asbeh and Lerner, 2016a,b],
whereas, here, we only introduce and promote
them. The LPCC code and evaluation results
are available online.

1 LVM LEARNING

Latent variables cannot usually be observed directly from
data but only inferred from observed variables (indica-
tors) [Spirtes, 2013]. Concepts such as “life quality,”
“mental states,” and “psychological stress” play a key
role in scientific models, and yet are latent [Klee, 1997].

Latent variable models (LVMs) represent latent variables
and causal relations among them that are manifested in

the observed variables. These models are vital in, e.g.,
economics, social sciences, natural language process-
ing, and machine learning and have become the focus
of many studies. By aggregating observed variables into
a few latent variables, each of which represents a “con-
cept” explaining some aspects of the domain, LVMs re-
duce dimensionality and facilitate interpretation.

Learning an LVM exploits values of the measured vari-
ables to infer about causal relationships among latent
variables and to predict these variables’ values. Although
statistical methods, such as factor analysis, effectively re-
duce dimensionality and may fit the data reasonably well,
the resulting models might not have any correspondence
to real causal mechanisms [Silva et al., 2006]. Learn-
ing Bayesian networks (BNs) focuses on causal rela-
tions among observed variables, but the detection of la-
tent variables and their interrelations among themselves
and with the observed variables has received little atten-
tion. Learning an LVM using Inductive Causation* (IC*)
[Pearl, 2000, Pearl and Verma, 1991] and Fast Causal In-
ference (FCI) [Spirtes et al., 2000] returns partial ances-
tral graphs, which indicate for each link whether it is a
(potential) manifestation of a hidden common cause for
the two linked variables. The FindHidden algorithm [El-
idan et al., 2000] detects substructures that suggest the
presence of latents in the form of dense subnetworks,
but it cannot always find a pure measurement sub-model
[Silva et al., 2006]. Also, the recovery of latent trees of
binary and Gaussian variables has been suggested [Pearl,
2000]. Hierarchical latent class (HLC) models, which
are rooted trees where the leaf nodes are observed while
all other nodes are latent, have been proposed [Zhang,
2004]. Two greedy algorithms are suggested [Harmel-
ing and Williams, 2011] to expedite learning of both the
structure of a binary HLC and the cardinalities of the la-
tents. Latent-tree models are also used to speed approx-
imate inference in BNs, trading the approximation accu-
racy with inferential complexity [Wang et al., 2008].

Models in which multiple latents may have multiple in-
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dicators (observed children), i.e. multiple indicator mod-
els (MIMs) [Bartholomew et al., 2002], are an impor-
tant subclass of structural equation models (SEM), which
are widely used in applied and social sciences to analyze
causal relations [Pearl, 2000, Shimizu et al., 2011]. For
these models, and others that are not tree-constrained,
most of the mentioned algorithms may lead to unsatis-
factory results. An algorithm that fills the gap between
learning latent-tree models and learning MIMs is Build-
PureClusters [BPC; Silva et al., 2006]. It searches for the
set of MIMs (an equivalence class) that best matches the
set of vanishing tetrad differences [Scheines et al., 1995],
but it is limited to linear models [Spirtes, 2013].

We target the goal of Silva et al. [2006], but concen-
trate on the discrete case. Interestingly, the same dif-
ficulty in learning MIMs is also faced in unsupervised
learning that confronts questions such as: (1) How many
clusters are there in the observed data? and (2) Which
classes do the clusters really represent? Due to this sim-
ilarity, we link learning an LVM and clustering and pro-
pose a concept and an algorithm that combine the two
disciplines. According to the pairwise cluster compari-
son (PCC) concept, we compare pairwise clusters of data
points representing instantiations of the observed vari-
ables to identify those pairs of clusters that exhibit major
changes in the observed variables due to changes in their
ancestor latent variables. Changes in a latent variable
that are manifested in changes in the observed variables
reveal this latent variable and its causal paths of influ-
ence. The learning PCC (LPCC) algorithm uses PCCs
to learn an LVM by identifying latent variables – exoge-
nous and endogenous (the latter may be either colliders
or non-colliders) – and their causal interrelationships as
well as their children (latent and observed variables) and
causal paths from latent variables to observed variables.

The complete theoretical foundation to PCC is given in
Asbeh and Lerner [2016a], and the description of the
LPCC algorithm and its experimental evaluation are pro-
vided in Asbeh and Lerner [2016b], whereas, here, we
only briefly introduce, motivate, and promote them. Fol-
lowing, we give preliminaries to LVM learning. In Sec-
tion 2, we introduce and motivate PCC, and in Section 3,
we provide an overview of the LPCC algorithm. In Sec-
tion 4, we experimentally compare LPCC to other learn-
ing algorithms using synthetic and real-world databases.
Finally, in Section 5, we summarize the contribution of
LPCC.

First, we present two assumptions that LPCC makes:
A1: The underlying model is a Bayesian network,
BN=<G,Θ>, encoding a discrete joint probability dis-
tribution P for a set of random variables V=L∪O, where
G=<V,E> is a directed acyclic graph whose nodes V

correspond to latents L and observed variables O, and
E is the set of edges between nodes in G. Θ is the set
of parameters; and A2: No observed variable in O is an
ancestor of any latent variable in L (the measurement as-
sumption [Spirtes et al., 2000]). We define [following
Silva et al., 2006]: D1: A model satisfying A1 and A2
is a latent variable model; D2: Given an LVM G with
a variable set V, the subgraph containing all variables in
V and all and only those edges directed into variables in
O is called the measurement model of G; D3: Given an
LVM G, the subgraph containing all and only G’s latent
nodes and their respective edges is called the structural
model of G; and D4: A pure measurement model is a
measurement model in which each observed variable has
only one latent parent and no observed parent. Then, we
also assume that: A3: The measurement model of G is
pure; and A4: Each latent in the true model G has at least
two observed children and may have latent parents.

As Silva et al. [2006] pointed out, factor analysis, princi-
pal component analysis, and regression analysis adapted
to learning LVMs are well understood, but have not been
proven under any general assumptions to learn the true
causal LVM, calling for better learning methods. Causal
structure discovery – learning the number of latent vari-
ables, their interconnections, and connections to the ob-
served variables, as well as the interconnections among
the observed variables – is difficult and requires mak-
ing assumptions about the problem. By assuming that
the true model manifests local influence of each latent
variable on at least a small number of observed vari-
ables, Silva et al. [2006] show that learning the complete
Markov equivalence class of MIM is feasible. Similarly,
we assume the true model is pure (A3). When it is pure,
LPCC will identify it correctly (or find its pattern that
represents the equivalence class of the true graph), and
when it is not, LPCC will learn a pure submodel of the
true model, in both cases using only two indicators per
latent (compared to three indicators per latent that are re-
quired by BPC [Silva et al., 2006]).

Note the tradeoff between the structural and paramet-
ric assumptions that an algorithm for learning an LVM
has to make; the fewer parametric assumptions it makes,
the more structural assumptions it has to make and vice
versa. While BPC needs to make a parametric assump-
tion about the linearity of the model, and the latent-
tree algorithms [Zhang, 2004, Harmeling and Williams,
2011, Wang et al., 2008] restrict the learned structure to
a tree 1, LPCC assumes that the model structure is pure,
and A5: A latent collider has no latent descendants.

1LPCC is not limited to a tree because it allows latent vari-
ables to be colliders



2 PRELIMINARIES TO PCC

Figure 1 sketches a range of pure measurement mod-
els, from basic to more complex. G1 is a basic MIM
of two unconnected latents, and G2 shows a structural
model having a latent collider. Note that such an LVM
cannot be learned by latent-tree algorithms such as in
Zhang [2004]. G3 and G4 demonstrate serial and diverg-
ing structural models, respectively, that together with G2
cover the three basic structural models. G5 and G6 man-
ifest more complex structural models comprising a latent
collider and a combination of serial and diverging con-
nections. As the structural model becomes more com-
plicated, the learning task becomes more challenging;
hence, G1–G6 present a spectrum of challenges. 2

Section 2.1 builds the infrastructure to PCC that relies
on understanding the influence of the exogenous latent
variables on the observed variables. This influence is di-
vided into major and minor effects that are introduced in
Section 2.2. Section 2.3 links this structural influence to
data clustering and introduces the pairwise cluster com-
parison concept for learning an LVM.

2.1 INFLUENCE OF EXOGENOUS LATENTS
ON OBSERVED VARIABLES

We distinguish between observed (O) and latent (L)
variables and between exogenous (EX) and endogenous
(EN) variables. EX variables have zero in-degree, and
are autonomous and unaffected by the values of the other
variables (e.g., L1 in G6 in Figure 1), whereas EN are
all non-exogenous variables in G (e.g., L2 in G2 and G6,
and X1 in all graphs in Figure 1). We identify three types
of variables: (1) Exogenous latents, EX⊂(L∩NC) [all
exogenous variables are latent non-colliders (NC)]; (2)
Endogenous latents, EL⊂(L∩EN), which are divided
into latent colliders C⊂EL (e.g., L2 in G5) and la-
tent non-colliders S⊂(EL∩NC) (e.g., L3 in G6), thus
NC= (EX∪S); and (3) Observed variables, O⊂EN,
which are always endogenous and childless, that are di-
vided into children of exogenous latents OEX⊂O (e.g.,
X9 in G2), children of latent colliders OC⊂O (e.g., X5
in G2), and children of endogenous latent non-colliders
OS⊂O (e.g., X4 in G3). We denote value configurations
of EX, EN (when we do not know whether the endoge-
nous variables are latent or observed), EL, C, NC (when
we do not know whether the non-collider variables are
exogenous or endogenous), S, O, OEX, OC, and OS by

2In Section 4, we compare LPCC with BPC and exploratory
factor analysis (EFA) using these six LVMs. Since BPC re-
quires three indicators per latent to identify a latent, we deter-
mined from the beginning three indicators per latent for all true
models to recover. Nevertheless, in Section 4, we evaluate the
learning algorithms for increasing numbers of indicators.

ex, en, el, c, nc, s, o, oex, oc, and os, respectively.

Since the underlying model is a BN, the joint probability
over V, which is represented by the BN, is factored ac-
cording to the local Markov assumption for G to a prod-
uct of products of 1) prior probabilities for the exogenous
variables (EX), 2) probabilities of endogenous (collider
and non-collider) latent variables (EL) conditioned on
their latent parents, and 3) probabilities of observed vari-
ables (O) conditioned on their latent parents.

To demonstrate the influence of exogenous (latent) vari-
ables on observed variables and its relation to learning
an LVM, we show that changes in values of the observed
variables are due to changes in values of the exogenous
variables, and thus the identification of the former indi-
cates the existence of the latter. To do that, we analyze
the propagation of influence along directed paths [Pearl,
1988] connecting both variables, first among latents, re-
membering that the paths may contain latent colliders
and latent non-colliders, and then paths ending in their
sinks (i.e., the observed variables).

We prove in Asbeh and Lerner [2016a] that a) a latent
non-collider has only a single exogenous latent ancestor,
and there is only a single directed path between them;
and b) a latent colider is connected to a set of exogenous
latent ancestors via a set of directed paths. By separating
the influence of exogenous variables to distinct paths of
influence, we can determine the joint probability over (V)
due to value assignment ex to exogenous set EX using
this assignment and the BN conditional probabilities.

2.2 MAJOR AND MINOR EFFECTS/VALUES

After analyzing the structural influences (path of hierar-
chies) of the latents on the observed variables, we com-
plement now this analysis with the parametric influences,
which we divide into major and minor effects.

We define a local effect on an endogenous variable EN as
the influence of a configuration of EN’s direct latent par-
ents on any of EN’s values. We distinguish between: 1) a
major local effect, which is the largest local effect onEN
that is identified by the maximal conditional probability
of a specific value en of EN given a configuration pa of
EN ’s latent parents; and 2) a minor local effect, which
is any non-major local effect on EN that is identified by
a conditional probability of any other value of EN given
pa that is smaller than that of the major effect. Accord-
ingly, we define: 1) a major local value as the value en
corresponding to the major effect; and 2) a minor local
value as an en corresponding to any minor local effect.
We assume the most probable explanation [Pearl, 1988],
which is that for every endogenous variable and every
configuration of its parents, there exists a certain value



Figure 1: MIMs with Structural Models of Different Complexities Challenging a Learning Algorithm Differently.

that is major, and prove in Asbeh and Lerner [2016a] that
this value is unique for every parent configuration.

Second, assuming that for every endogenous variable,
different parent values (or parent value configurations for
a latent collider) yield different major values, together
with using the Markov property and BN parameters, we
can aggregate all local influences and generalize local ef-
fects on specific endogenous variables to effect on all en-
dogenous variables in the graph. Consequently, a major
effect (MAE) is the largest effect of ex on EN and a minor
effect (MIE) is any non-MAE effect of ex on EN. Also,
a major value configuration (MAV) is the configuration
en of EN corresponding to MAE (i.e., the most probable
en due to ex), and a minor value configuration is a con-
figuration en corresponding to any MIE. In a MAV, each
variable in EN takes on the major local value and in a
MIE, at least one EN takes on a minor local value.

Third, we represent the influence on a subset of the en-
dogenous variables of the subset of exogenous variables
that impact these endogenous variables. This partial rep-
resentation of MAE enables LPCC to recover the rela-
tionships between exogenous ancestors and only the de-
scendants that are affected by them. We separately an-
alyze the effect of each exogenous variable on each ob-
served variable for which the exogenous is its ancestor
and all the latent variables along the path connecting
them. We show in Asbeh and Lerner [2016a] the exis-
tence and uniqueness of the value a latent non-collider
and its observed child get under the influence of an ex-
ogenous ancestor; one and only one value of the latent
non-collider (observed child)) changes with a change in
the value of the exogenous. We also show that a latent
collider and its observed child, both descendants of a set
of exogenous variables, change their values in any two
major configurations only if at least one of the exogenous

variables has changed its value in the corresponding two
configurations of this exogenous variable.

2.3 PCC BY DATA CLUSTERING

Practically, we use observational data that were gener-
ated from an unknown LVM and measured over the ob-
served variables. We define an observed value configura-
tion, observed major value configuration, and observed
minor value configuration due to ex as the parts in en,
MAV, and a minor value configuration, respectively, that
correspond to the observed variables. We show in As-
beh and Lerner [2016a] that there is only a single ob-
served major value configuration to each exogenous con-
figuration ex of EX, and there are different observed
major value configurations to different exogenous con-
figurations. But, due to the probabilistic nature of BNs,
each observed value configuration due to ex may be rep-
resented by several data points. Clustering these data
points may produce several clusters for each ex, and each
cluster corresponds to another observed value configura-
tion. However, one and only one of the clusters corre-
sponds to each of the observed major value configura-
tions for a specific ex, whereas the other clusters corre-
spond to observed minor value configurations.

We define the single cluster that corresponds to the ob-
served major value configuration, and thus also repre-
sents the major effect due to configuration ex of EX,
as the major cluster for ex, and all the clusters that cor-
respond to the observed minor value configurations due
to minor effects as minor clusters. However, we distin-
guish between different types of minor effects/clusters.
A k-order minor effect is a minor effect in which exactly
k endogenous variables in EN correspond to minor local
effects. An en corresponding to a k-order minor effect



is a k-order minor value configuration. In addition, mi-
nor clusters that correspond to k-order minor effects are
k-order minor clusters. The set of all major clusters (cor-
responding to all observed major value configurations)
reflects the effect of all possible exs, and thus the num-
ber of major clusters is expected to be equal to the num-
ber of EX configurations. Therefore, the identification of
all major clusters is a key to the discovery of exogenous
variables and their causal interrelations. For this purpose,
we introduce the concept of pairwise cluster comparison
(PCC). PCC measures the differences between two clus-
ters; each represents the response of LVM to another ex.

Pairwise cluster comparison is a procedure by which
pairs of clusters are compared, e.g., through a compar-
ison of their centroids. The result of PCC between a
pair of centroids of dimension |O|, where O is the set
of observed variables, is a binary vector of size |O| in
which each element is 1 or 0 depending, respectively,
on whether or not there is a difference between the cor-
responding elements in the compared centroids. When
PCC is between clusters that represent observed major
value configurations (i.e., PCC between major clusters),
an element of 1 identifies an observed variable that has
changed its value between the compared clusters due to
a change in ex. Thus, the 1s in a major–major PCC pro-
vide evidence of causal relationships between EX and
O. Practically, LPCC always identifies all observed vari-
ables that are represented by 1s together in all PCCs as
the observed descendants of the same exogenous variable
(Section 3.1). However, due to the probabilistic nature of
BN and the existence of endogenous latents (mediating
the connections from EX to O), some of the clusters are
k-order minor clusters (in different orders), representing
k-order minor configurations/effects. Minor clusters are
more difficult to identify than major clusters because the
latter reflect the major effects of EX on EN and, there-
fore, are considerably more populated by data points than
the former. Nevertheless, minor clusters are important in
causal discovery by LPCC even though a major–minor
PCC cannot tell the effect of EX on EN because an ob-
served variable in two compared (major and minor) clus-
ters should not necessarily change its value as a result
of a change in ex. Their importance is because a ma-
jor cluster cannot indicate (when compared with another
major cluster) the existence of minor values. On the
contrary, PCC between major and minor clusters shows
(through the number of 1s) the number of minor values
represented in the minor cluster, and this is exploited by
LPCC for identifying the endogenous latents and inter-
relations among them (Section 3.4). That is, PCC is the
source to identify causal relationships in the unknown
LVM; major–major PCCs are used for identifying the
exogenous variables and their descendants, and major–

minor PCCs are used for identifying the endogenous la-
tents, their interrelations, and their observed children.

3 OVERVIEW OF LPCC

LPCC is fed by samples from the observed variables. It
clusters the data using the self-organizing map (SOM) al-
gorithm (although any algorithm that does not require a
prior setting of the number of clusters is appropriate), and
selects an initial set of major clusters. Then LPCC learns
an LVM in two stages. First, it identifies (Section 3.1)
latent variables (and their observed descendants) without
distinguishing exogenous from endogenous latents, be-
fore distinguishing latent colliders from exogenous vari-
ables (Section 3.2). LPCC iteratively improves the selec-
tion of major clusters (Section 3.3), and the entire stage
is repeated until convergence. Second, LPCC identifies
endogenous latent non-colliders among the previously
identified latent variables and splits these two types of
latent variables from each other before finding the links
between them (Section 3.4).

3.1 IDENTIFICATION OF LATENT VARIABLES

We demonstrate the relations between PCC and learning
an LVM by an example. G1 in Figure 1 has two exoge-
nous variables, L1 and L2, each having three children
X1, X2, X3 and X4, X5, X6, respectively. 3 For the ex-
ample, assume all variables are binary, i.e., L1 and L2
have four possible exs (L1L2= 00, 01, 10, 11). We used
a uniform distribution over L1 and L2 and set the prob-
abilities of an observed child, Xi, i = 1, . . ., 6, given its
latent parent, Lk, k = 1, 2 (only if Lk is a direct parent
of Xi, e.g., L1 and X1), to be P (Xi = v | Lk = v) =
0.8, v = 0, 1. First, we generated a synthetic data set
of 1,000 patterns from G1. Second, using SOM [Koho-
nen, 1997], we clustered the data and found 16 clusters,
of which four were major (Section 3.3 gives details on
how to identify major clusters). This meets our expec-
tation of four major clusters corresponding to the four
possible exs. These clusters are presented in Table 1a by
their centroids, which are the most prevalent patterns in
the clusters, and their corresponding PCCs are given in
Table 1b. For example, PCC1,2, comparing clusters C1
and C2, shows that when moving from C1 to C2, only
the values corresponding to variables X1–X3 have been
changed (i.e., δX1 = δX2 = δX3 = 1 in Table 1b).
Also PCC1,4, PCC2,3, and PCC3,4 show that X1–X3 al-
ways change their values together. This may be evidence
that X1–X3 are descendants of the same exogenous la-

3We determined three indicators per latent in all true models
we learn (Figure 1) because it is required by BPC, making the
experimental evaluation in Section 4 fair.



Table 1: (a) Centroids of Major Clusters for G1 and (b) PCCs between These Major Clusters

Centroid X1 X2 X3 X4 X5 X6
C1 0 0 0 1 1 1
C2 1 1 1 1 1 1
C3 0 0 0 0 0 0
C4 1 1 1 0 0 0

PCC δX1 δX2 δX3 δX4 δX5 δX6

1-2 1 1 1 0 0 0
1-3 0 0 0 1 1 1
1-4 1 1 1 1 1 1
2-3 1 1 1 1 1 1
2-4 0 0 0 1 1 1
3-4 1 1 1 0 0 0

(a) (b)

tent, which, as we know from the true graph G1, is L1.
Note, however that PCC1,4 and PCC2,3 show that the
values corresponding to X4–X6 have changed together
too, whereas these values did not change in PCC1,2 and
PCC3,4. Because X4–X6 changed their values only in
PCC1,4 and PCC2,3 but not in PCC1,2 and PCC3,4,
they cannot be descendants of L1. This strengthens the
evidence that X1–X3 are the only descendants of L1. A
similar analysis using PCC1,3 and PCC2,4 will identify
that X4–X6 are descendants of another latent variable
(L2, as we know).

Therefore, we define a maximal set of observed (MSO)
variables as the set of variables that always changes its
values together in each major–major PCC in which at
least one of the variables changes value. For example,
X1 (Table 1b) changes its value in PCC1,2, PCC1,4,
PCC2,3, and PCC3,4 and always together with X2 and
X3 (and vice versa). Thus, {X1, X2, X3} (and similarly
{X4, X5, X6}) is an MSO. Each MSO includes descen-
dants of the same latent variable L, and once LPCC iden-
tifies this MSO, it introduces L to the learned graph as a
new latent variable, together with all the observed vari-
ables that are included in this MSO as L’s children. We
prove in Asbeh and Lerner [2016a] that every observed
variable belongs to one and only one MSO, i.e., MSOs
corresponding to the learned latents are disjoint, which
means that LPCC learns a pure measurement model. We
also prove that variables of a particular MSO are children
of a particular exogenous latent variable EX or its latent
non-collider descendant or children of a particular latent
collider C. This guarantees that each of multiple latent
variables (either an exogenous or any of its non-collider
descendants or a collider) is identified by its own MSO.

LPCC cannot yet distinguish between exogenous latents
and latent colliders because the main goal at this stage
was to identify latent variables and their relations with
the observed variables. In Section 3.2, we distinguish
these two types of variables, whereas in Section 3.4, we
use major–minor PCCs rather that major–major PCCs to
distinguish latent non-colliders from exogenous latents.

3.2 DISTINGUISHING LATENT COLLIDERS

To demonstrate distinguishing latent colliders from ex-
ogenous variables, we use graph G2 in Figure 1. It shows
two exogenous latent variables, L1 and L3, that collide in
an endogenous latent variable, L2, each having three ob-
served children X1–X3 (L1), X4–X6 (L2), and X7–X9
(L3). We assume for the example that all variables are
binary. Having two exogenous variables, we expect to
find four major clusters in the data; each will correspond
to one of the four possible exs (L1L3= 00, 01, 10, 11).
As for G1 (Section 3.1), we expect the values of X1–
X3 to change together in all PCCs following a change in
the value of L1, and the values of X7–X9 to change to-
gether in all the PCCs following a change in the value of
L3. However, the values of X4–X6 will change together
with those of X1–X3 in part of the PCCs and together
with those of X7–X9 in the remaining PCCs, but always
together in all of the PCCs. This will be evidence that
X4–X6 are descendants of the same latent collider (L2,
as we know). That is, to learn that an already learned
latent variable L is a collider for a set of other already
learned (exogenous) latent ancestor variables LA⊂EX,
LPCC requires that: (1) The values of the children of L
will change with the values of descendants of different
latent variables in LA in different parts of major–major
PCCs; and (2) The values of the children of L will not
change in any PCC unless the values of descendants of
at least one of the variables in LA change. This insures
that L does not change independently of latents in LA
that are L’s ancestors.

3.3 CHOOSING MAJOR CLUSTERS

Due to a lack of prior information regarding the distribu-
tion of latent variables, LPCC, first, assumes a uniform
distribution over a latent and selects the major clusters
based on their size, i.e., the number of patterns clustered.
Clusters that are larger than the average cluster size are
selected as majors. However, this initial selection may
generate: 1) false negative errors (i.e., deciding a major
cluster is minor), when a latent variable L has a skewed
distribution over its values, and then a rare value can be
represented only by small clusters that could not be cho-



sen as majors; and 2) false positive errors (i.e., deciding a
minor cluster is major), when due to similar probabilities
of different values of an observed child given its parent
L and a large sample size, a cluster that is supposed to be
minor becomes too large and is selected as major.

To avoid such errors, LPCC learns iteratively. Following
the selection of major clusters based on their sizes and
learning a graph, it becomes possible to find the cardi-
nalities of the latent variables and all possible exs. For
each ex, we can use the most probable cluster given the
data as the major cluster, and using an EM-style proce-
dure [Dempster et al., 1977], update the set of major clus-
ters iteratively and probabilistically to augment LPCC to
learn more accurate graphs. The final graph may not be
optimal since it depends on the initial graph, but it is an
improved version of the initial graph.

3.4 IDENTIFICATION OF LATENT
NON-COLLIDER VARIABLES

So far, the latent non-colliders that are descendants of an
exogenous variable EX were temporarily combined with
it, and all their observed children were temporarily com-
bined with the direct children of EX. To exemplify that,
check G3 in Figure 1, showing a serial connection of L1,
L2, and L3. Assume each latent has three observed chil-
dren, and all are binary. L1 is the only EX with two possi-
ble exs (L1= 0, 1), and L2 and L3 are NCs; L2 is a child
of L1 and a parent of L3. We set the probabilities of:
1) L1 uniformly; 2) an observed child Xi, i= 1,. . ., 9,
given its latent parent Lk, k= 1, 2, 3 (if this is a di-
rect parent), as P (Xi=v | Lk=v)= 0.8,v= 0, 1; and
3) an endogenous latent Lj , j= 2, 3, given its latent
parent Lk, k= 1, 2 (if this is a direct parent), as
P (Lj=v | Lk=v)= 0.8,v= 0, 1. We generated 1,000
patterns from G3 over the nine observed variables. Ta-
ble 2 presents ten of the seventeen largest clusters by
their centroids and sizes, from which C1 and C2 were
selected as major. This meets our expectation of two
major clusters corresponding to the two possible exs of
L1. However, because all the elements in PCC1,2 are
1s (compare C1 and C2 in Table 2), the nine observed
variables establish a single MSO and thus are consid-
ered descendants of the same exogenous variable. That
is, the model learned in the first stage of LPCC has only
one exogenous latent variable (i.e., L1) with direct chil-
dren that are the nine observed descendants; contrary to
G3. Since L2 and L3, which are latent non-colliders that
are descendants of L1, were combined with L1, LPCC
should now split them from L1 along with their observed
children.

Such a split is based on major–minor (rather than major–
major) PCCs. First, we define a first-order minor cluster

Table 2: Ten of the Seventeen Largest Clusters for G3
X1 X2 X3 X4 X5 X6 X7 X8 X9 size

C1 1 1 1 1 1 1 1 1 1 49
C2 0 0 0 0 0 0 0 0 0 47
C3 1 1 1 1 1 1 1 1 0 28
C4 0 0 0 0 0 0 0 1 0 24
C5 0 1 0 0 0 0 0 0 0 22
C6 1 1 1 1 1 1 0 0 0 22
C7 0 0 1 0 0 0 0 0 0 21
C8 0 0 0 1 1 1 1 1 1 19
C9 0 0 0 0 0 0 1 1 1 18
C10 1 1 1 0 0 0 0 0 0 16

(1-MC) as a cluster that corresponds to a 1-order minor
value configuration, which exists when exactly one en-
dogenous variable in EN (either latent or observed) has
a minor local value as a response to a value that EX has
obtained4. To reveal the existence of latent non-colliders
that were previously combined with EX and splits them
from EX, we analyze for each EX, PCCs between 1-MCs
and the major clusters that identified EX.

Table 3: All 2S-PCCs for G3
PCC δX1 δX2 δX3 δX4 δX5 δX6 δX7 δX8 δX9

1-6 0 0 0 0 0 0 1 1 1
2-6 1 1 1 1 1 1 0 0 0
1-8 1 1 1 0 0 0 0 0 0
2-8 0 0 0 1 1 1 1 1 1
1-9 1 1 1 1 1 1 0 0 0
2-9 0 0 0 0 0 0 1 1 1
1-10 0 0 0 1 1 1 1 1 1
2-10 1 1 1 0 0 0 0 0 0

Table 4: PCCs for C3 with C1 and C2 in Learning G3
PCC δX1 δX2 δX3 δX4 δX5 δX6 δX7 δX8 δX9

1-3 0 0 0 0 0 0 0 0 1
2-3 1 1 1 1 1 1 1 1 0

Thus, second, we define PCCs between 1-MCs and ma-
jor clusters that show two sets of two or more observed
variables having the same value, different than that of
the other set, as 2S-PCC (i.e., PCC of “two sets”) and
the corresponding 1-MC as 2S-MC. To identify a latent
non-collider that was combined to an exogenous latent
EX, we consider only 2S-PCCs; these PCCs are the result
of comparing all the 2S-MCs among the 1-MCs for EX
with the major clusters that revealed EX. For example,
Table 3 presents all 2S-PCCs for G3. While a PCC that
is not a 2S-PCC identifies a minor value of an observed
descendant of EX (e.g., PCC1,3, where C1 is major and
C3 is 1-MC, identifies a minor value of X9; see Table 4),
a 2S-PCC identifies a minor value in a latent non-collider
descendant of EX and thereby the existence of this latent.
The latter is seen, e.g., in Table 3, in PCC1,6 showing the
change between C1 (major cluster) and C6 (1-MC) in the

4Based on the identification of a 1-MC [Asbeh and Lerner,
2016a], we find, e.g., in learning G3 that C2 is the minimal
major cluster, and all other clusters (Table 2) are 1-MCs.



values of X7–X9 and in PCC2,6 showing the change be-
tween C2 (major cluster) and C6 in the values of X1–X6,
thus identifying the existence of a latent non-collider (L3
as we know). This identification yields a split of exoge-
nous L1 into two latents: one (L3) is a parent of X7-X9,
and the other is a parent of X1–X6 (which later will split
again to L1 and L2, each with its own three children).

However, relying only on part of the 2S-PCCs may be in-
adequate to conclude on all possible splits (e.g., PCC1,8
and PCC2,8 show that X1–X3 and X4–X9 are children
of different latents, but do not suggest the split of X7–X9
as PCC1,6 and PCC2,6 do). Thus, it is necessary to in-
troduce for 2S-PCCs a maximal set of observed variables
(2S-MSO) that always change their values together in all
2S-PCCs. For example, X1 in Table 3 changes its value
in PCC2,6, PCC1,8, PCC1,9, and PCC2,10 and always
together with X2 and X3 (and the other way around).
Thus, {X1, X2, X3} and similarly {X4, X5, X6} and
{X7, X8, X9} are 2S-MSOs. Each 2S-MSO includes
children of the same latent non-collider, which is a de-
scendant of EX, or EX itself. LPCC detects 2S-MSOs
for each EX and thereby identifies its possible splits.

Finally, we show in Asbeh and Lerner [2016a] how to
identify links between split latents. For a serial connec-
tion, LPCC finds the source (EX) and latent sink on the
path between them, but not who is who, and thus it can
only learn this connection as undirected. For a diverging
connection, LPCC learns all directed links among the la-
tents. That is, LPCC learns a pattern over the structural
model of G, which represents a Markov equivalence class
of models among the latents, where in the special case in
which G has no serial connection, LPCC learns the true
graph.

Based on the concepts outlined in Section 3, we formally
introduce the LPCC algorithm in Asbeh and Lerner
[2016b] and thoroughly evaluate it experimentally us-
ing synthetic and real-world data compared with other
algorithms. The complete results are given in Asbeh and
Lerner [2016b], and a snapshot of them is provided in
Section 4.

4 EXPERIMENTAL EVALUATION

Simulated data: We used Tetrad IV to construct graphs
G2 and G4 of Figure 1 for three parameterization lev-
els that differ by the conditional probabilities pj=0.7,
0.75, and 0.8 between a latent and each of its children.
Each such level imposes a different complexity on the
model and thereby affects the task of learning the latent
model and the causal relations (i.e., pj=0.7 poses a larger
challenge to learning than pj=0.75) [full details about
the types of variables and parametrization schemes are

omitted; see Asbeh and Lerner [2016b]]. We drew data
sets of between 250 and 2,000 samples and report on the
structural hamming distance (SHD) [Tsamardinos et al.,
2006] as a performance measure for learning the LVM
structure. SHD is a structural measure that accounts for
all the possible learning errors (the lower value is the bet-
ter one): addition and deletion of an undirected edge, and
addition, removal, and reversal of edge orientation.

(a) SHD of LPCC/BPC/EFA vs. parametrization level. For
G2/1,000 samples, LPCC/BPC learn perfectly.

(b) SHD of LPCC/BPC/EFA vs. number of indicators
per latent in G2, pj = 0.75, and four sample sizes.

Figure 2: Structural Correctness of Learning Algorithms.

Figure 2a shows SHD values for the LPCC, BPC, and
EFA algorithms for increasing parametrization levels for
four combinations of learned graphs and sample sizes.
It shows that LPCC and BPC improve performance, as
expected, with increased levels of latent-observed vari-
able correlation (pj). LPCC never falls behind BPC, and
its advantage over BPC is especially vivid for a small
sample size. EFA, besides falling behind LPCC and
BPC, also demonstrates worsening of performance with
increasing the parametrization level, especially for large
sample sizes. Larger parametrization levels increase the



chances of an EFA to learn links between latent variables
and observed variables – some of which are not between
a latent and its real child – to compensate for the algo-
rithm’s inability to identify links among latents (EFA as-
sumes latents are uncorrelated). EFA is inferior to LPCC
for all parametrization levels, sample sizes, and graphs.

Figure 2b shows SHD values of the LPCC, BPC, and
EFA algorithms for increasing numbers of binary indica-
tors per latent variable in G2, a parametrization level of
0.75, and four sample sizes. The figure exhibits superior-
ity of LPCC over BPC and EFA for all scenarios. While
LPCC hardly worsens its performance with the increase
of complexity, both BPC and EFA are affected by this
increase. They also have a difficulty in learning an LVM
for which latent variables have exactly two indicators.

Real-world data – The political action survey (PAS): We
evaluated LPCC using a simplified PAS data set over six
variables (Joreskog, 2004): NOSAY, VOTING, COM-
PLEX, NOCARE, TOUCH, and INTEREST. These vari-
ables represent political efficacy and correspond to ques-
tions to which the respondents have to give their degree
of agreement on a discrete ordinal scale of four values.
This data set contains the responses from a sample of
1,076 US respondents. A model consisting of two la-
tents that correspond to a previously established theoret-
ical trait of Efficacy and Responsiveness (Figure 3a) dis-
cards VOTING Joreskog [2004] based on the argument
that the question for VOTING is not clearly phrased.

Similar to the theoretical model, LPCC finds two la-
tents (Figure 3b): One corresponds to NOSAY and VOT-
ING and the other corresponds to NOCARE, TOUCH,
and INTEREST. Compared with the theoretical model,
LPCC misses the edge between Efficacy and NOCARE
and the bidirectional edge between the latents. Both
edges are not supposed to be discovered by LPCC or
BSPC/BPC; the former because the algorithms learn a
pure measurement model in which each observed vari-
able has only one latent parent and the latter because no
cycles are assumed. Nevertheless, compared with the
theoretical model, LPCC makes no use of prior knowl-
edge. BSPC output (Figure 3c) is very similar to LPCC
output, except for NOCARE, which was not identified
by BSPC. Both algorithms identify VOTING as a child
of Efficacy (at the expense of COMPLEX). The outputs
of the BPC algorithm (Figures 3d,e) are poorer than those
of LPCC and BSPC and are sensitive to the significance
level. The output of the FCI algorithm (not shown here)
using any significance level is not sufficient (showing,
e.g., that NOSAY and INTEREST potentially have a la-
tent common cause where these two variables are indica-
tors of different latents in the theoretical model).

Using simulated and real-world data, we show in Asbeh

and Lerner [2016b] that LPCC improves accuracy with
sample size, it can learn large LVMs, and it has consis-
tently good results compared to models that are expert-
based or learned by state-of-the-art algorithms. Applied
to two original domains, LPCC helped identify possible
causes of young drivers’ involvement in road accidents
and cell subpopulations in the immune system.

 

  

Figure 3: PAS: outputs of (a) a true model, (b) LPCC, (c)
BSPC, and BPC with (d) α =0.01, 0.05, and (e) α =0.1.

5 SUMMARY AND CONCLUSIONS

In this work, we introduced the PCC concept and LPCC
algorithm for learning discrete LVMs: 1) the PCC con-
cept to learn an LVM ties graphical models with data
clustering; 2) LPCC learns MIMs; 3) LPCC is not lim-
ited to latent-tree models and does not assume linearity;
4) LPCC assumes that the measurement model of the true
graph is pure, but, if the true graph is not, it learns a pure
sub-model of the true model, if one exists. LPCC also
assumes that a latent collider does not have any latent de-
scendants; 5) LPCC is a two-stage algorithm that exploits
PCC. First, it learns the exogenous latents and latent col-
liders, as well as their observed descendants, and second,
it learns the endogenous latent non-colliders and their
children by splitting these latents from their previously
learned latent ancestors; and 6) LPCC learns an equiva-
lence class of the structural model of the true graph.
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