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ABSTRACT
This paper provides an overview of current literature on time
series classification approaches, in particular of early time
series classification.

A very common and effective time series classification ap-
proach is the 1-Nearest Neighbor classifier, with different
distance measures such as the Euclidean or dynamic time
warping distances. This paper starts by reviewing these
baseline methods.

More recently, with the gain in popularity in the applica-
tion of deep neural networks to the field of computer vision,
research has focused on developing deep learning architec-
tures for time series classification as well. The literature in
the field of deep learning for time series classification has
shown promising results.

Early time series classification aims to classify a time se-
ries with as few temporal observations as possible, while
keeping the loss of classification accuracy at a minimum.
Prominent early classification frameworks reviewed by this
paper include, but are not limited to, ECTS, RelClass and
ECDIRE. These works have shown that early time series
classification may be feasible and performant, but they also
show room for improvement.

CCS Concepts
•Mathematics of computing → Time series analy-
sis; •Computing methodologies → Neural networks;
Learning latent representations;

Keywords
time series classification, early time series classification, deep
learning

1. INTRODUCTION
Time series arise wherever data is being collected and in-

dexed by time. Its automated classification, i.e. the assign-
ment of a certain label to a time series, is of immense impor-

tance. It is used in practice to solve problems such as using
electrocardiography (ECG) data to assess whether a patient
has some heart condition, identifying tendencies in financial
stock markets, or even classifying sign language. Early time
series classification, as the discipline focusing on arriving to
a classification decision when observing only partial samples
of a time series, is also critical for some application domains.
Often cited examples of early classification of time series in
practice include health diagnoses, where early classification
of monitoring systems data may lead to the early detection
and thus prevention of certain diseases, and predictive main-
tenance in an industrial setting, where the early identifica-
tion of malfunctioning components in machines in a factory
may prove invaluable for the manufacturing process.

This literature review focuses on past and current research
on time series classification, with a focus on the early time
series classification. It is structured as follows. A brief
overview on definitions of time series and time series types
to be considered by this paper serves as an introduction
to the literature on this topic. Then, literature on general
algorithms for time series classification is presented. The
application of deep learning algorithms for time series clas-
sification is awarded a separate section. Finally, early time
series classification literature is reviewed.

2. EARLY TIME SERIES CLASSIFICATION
LITERATURE REVIEW

2.1 Time Series Definitions and Types
The author of [8] defines a time series as a series of ob-

servations xt, with each observation x corresponding to a
specific time t. They distinguish between continuous and
discrete time series. The latter refers, according to the au-
thors, to time series with a discrete set of observations, and
the former to time series of continuously recorded obser-
vations over some time interval like T0 = [0, 1]. The rate
at which time series observations arrives, i.e. the sampling
rate, can also vary. This paper focuses on literature regard-
ing discrete time series with constant sampling rates.

Another distinguishing feature of time series regards the
observations xt. xt may be defined as a singular value, in
which case the time series is called a ”univariate time series”.
If xt represents an n-dimensional vector, then the time series
is termed ”multivariate time series”. Both single variable and
multivariate time series will be analyzed. The observation
values are assumed to be defined in R and respectively in
Rn. Alternatively, these observation values may also stem
from some set of symbols or alphabet Ω, a set with a finite
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number of elements. Such observed variables are termed
categorical, but a review of literature on time series with
categorical observation values will not be in the scope of
this survey.

Time series can be seen in a large number of different
contexts, such as economic forecasting, stock market analy-
sis or inventory analysis, to name a few of the applications
mentioned for example by [27]. Many other examples and
applications of time series theory will be covered in more
detail later.

Time series repositories contain samples of such time se-
ries for analysis purposes. The UCR Time Series Classi-
fication Archive by [11] includes not only a set of labeled
univariate time series for classification, but also benchmarks
for classifiers. Many papers addressing time series classifica-
tion used this time series repository and its benchmarks as
a data source and as a baseline, as will be seen later. One
of the datasets cleaned and summarized in the collection by
[11] is the Auslan dataset, which was originally prepared by
[21]. This data set of multivariate time series consists of
samples of Auslan (Australian Sign Language) signs, and it
is also referenced by a number of time series classification
papers.

2.2 Traditional Methods

2.2.1 Definitions
Time series classification refers to the process of assigning

a label, or class, to a time series. There is a very large
number of approaches to address the problem of time series
classification. Thus, the following review of the literature
on time series classification does not aim to be exhaustive,
but to give an overview of common as well as cutting edge
approaches and theory.

A distinction between time series classification and early
time series classification is drawn here. Time series clas-
sification uses all available observations of a time series to
assign a label to it. Early classification of time series, how-
ever, refers to time series classification using only a reduced
amount of observations. The literature reviewed in this sec-
tion concerns time series classification using the full time
series length. More on early time series classification is pre-
sented in 2.4.

2.2.2 1-Nearest Neighbor
The definition given by [34] of the Nearest Neighbor Search

problem in the field of computational geometry is applied
here to the machine learning context: In a supervised classi-
fication setting, which assumes a train set of labeled samples,
the 1-Nearest Neighbor algorithm takes a new, unlabeled in-
stance and assigns to it the label of the nearest neighbor from
that train set, according to a certain measure of distance in
R.

The definition of a distance measure is of central impor-
tance for time series comparison, and, thus, for the 1-Nearest
Neighbor search too. This motivates literature on the usage
of the 1-Nearest Neighbor search for time series classification
to introduce new distance measures, as well as on optimize of
well-established ones. The baseline distance measure is the
Euclidean distance for univariate time series, and extensions
thereof for multivariate time series, such as the Frobenius
norm. Another widely used time series distance measure is
Dynamic Time Warping, which aims to align out-of-phase

time series with each other.
The paper [36] aims to improve the Euclidean distance

1-Nearest Neighbor’s performance in a binary classification
setting where few labeled data is available. The approach
proposed by the authors involves reinforcing the 1-Nearest
Neighbor classifier’s performance on the unlabeled set by
iteratively adding instances classified with high confidence
to the train set, until some stopping criterion is achieved.

The 1-Nearest Neighbor classifier is used by [11], [41] and
[36], among many others, to classify both univariate as well
as multivariate time series. To name a few of the distance
measures used with the 1-Nearest Neighbor algorithm, these
papers respectively use the Euclidean distance and dynamic
time warping for univariate time series, as well as the Frobe-
nius distance for multivariate time series.

The authors of [11] use the 1-Nearest Neighbor algorithm
with the Euclidean distance as a baseline for comparison
with dynamic time warping with different warping windows,
since the latter generally outperforms the Euclidean dis-
tance, as the authors conclude.

On the other hand, [41] optimize the k-Nearest Neigh-
bors search (incl. 1-Nearest Neighbor) for multivariate time
series with an extension of the Frobenius distance termed
”Eros”. ”Eros” applies the Frobenius distance to the singular
value decomposition of the covariance matrices of 2 differ-
ent multivariate time series in matrix-form. This helps with
getting both matrices to have equal dimensions to compute
the Frobenius distance, as well to capture the importance
of the covariances of columns of the multivariate time series
matrices, i.e. of the variables within the time series.

2.2.3 Other time series classification approaches
Many other approaches have been proposed to improve

the strong performance and benefits of the 1-Nearest Neigh-
bor algorithm outlined above.

Take for example [20]. That paper describes an architec-
ture that, given raw data as multivariate time series, ex-
tracts events, clusters them and combines them back again
with globally computed features on the raw data to produce
train data for learning classification rules. Its implementa-
tion, called ”TClass”, uses k-means clustering and the naive
Bayes learner for the steps previously described. Accord-
ing to the author, this approach leads not only to improved
classification accuracy, but also higher understandability of
the features used for classification.

Other comprehensible features used in time series classifi-
cation are so-called ”literals”: simple statistics, like averages,
computed over intervals of the time series. Both [31] as well
as [30] apply AdaBoost, as presented in [15], on those lit-
erals. AdaBoost is an algorithm which linearly combines
many such simple classifiers to one better performing clas-
sifier. The paper [31] uses adaboosted literals to cope with
variable length time series and perform early classification,
as will be seen in more detail later in this literature review.
In [30], the same authors aim to improve previous results by
considering more complex literal combinations to generate
new features. They then apply, on that set of new features,
support vector machines, both linear as well as with the
Gaussian kernel, to achieve performance gains over the re-
sults outlined by other papers using 1- and k-Nearest Neigh-
bors, on the previously mentioned Auslan data set, among
others.

Another approach regarding feature extraction concerns



shapelets. Shapelets are sub-sequences of the time series
that allow for classification basing on local, phase-independent
similarity in shape, according to [18]. They aim to maxi-
mally represent the class of a time series. The authors of
[18], [25] and [42] use shapelets to derive easy-to-interpret
features, while also experimentally improving accuracy of
the 1-Nearest Neighbor algorithm with the dynamic time
warping distance (in some of the datasets of [11]).

Both the shapelet as well as the time series forest ap-
proaches are designed for univariate time series. One further
approach that considers multivariate time series, by [4], com-
bines the dynamic time warping distance with principal com-
ponent analysis to create the ”CBDTW” (correlation based
dynamic time warping) measure. That similarity measure
is computed by first segmenting an unclassified time series
using principal component analysis, mapping the segments
to the real numbers using a cost function and then applying
the dynamic time warping distance to compare the unclas-
sified time series to the train set of previously segmented
time series. This approach thus leverages correlation effects
to accurately describe time series classes.

All of the papers mentioned before use either the datasets
of [11] or the multivariate time series data set of [21] or
both. This makes benchmarks and comparisons between
them feasible, effectively addressing concerns mentioned by
[22].

The importance of hidden correlations in time series data,
as highlighted by the paper [22], is one of the factors moti-
vating the application of deep learning for time series clas-
sification.

2.3 Deep Learning for Time Series

2.3.1 Definitions
Recently, deep learning has also been applied to the time

series classification problem. This section starts with a re-
view of literature on deep learning in general and then ad-
dresses state-of-the-art deep learning approaches for time
series classification.

To cite [32], quote, ”A standard neural network (NN)
consists of many simple, connected processors called neu-
rons, each producing a sequence of real-valued activations”.
There are input neurons, which get activated from the envi-
ronment, and other neurons, for example hidden or output
neurons, which, according to the same author, quote, ”get
activated through weighted connections from previously ac-
tive neurons”. The assignment of weights for the connections
controls the output of the neural network. In this context,
the process of tuning weights to attain certain output is
termed learning. The neurons are typically grouped into
layers called input, output or hidden (i.e. those between
input and output) layers. Each layer transforms, often non-
linearly, the aggregate activation of the previous layer and
propagates that to further layers. Deep learning consists
of assigning weights (in the context described above) across
multiple such layers of often non-linear transformations.

As a part of artificial intelligence, deep learning techniques
are currently experiencing both numerous practical applica-
tions as well as various research developments. The books
[6] and [14] outline, in their reviews of deep learning meth-
ods and architectures, many of the types of deep learning
models and their purposes. A few examples of deep neural
network architectures used in supervised learning settings

include multi-layer neural networks as explained above and
convolutional neural networks.

The latter consists of a deep neural network, especially
designed for computer vision tasks. As described by [24],
convolutional neural networks have unique properties like
”sparse connectivity”, which means that each layer is associ-
ated with just one region of an input image, i.e. the so-called
”receptive fields”, and ”shared weights”, which refers to each
layer having the same set of weights (but with different re-
ceptive fields). There are also several deep neural network
architectures designed to work in an unsupervised context,
such as Restricted Boltzmann Machines, a type of stochastic
artificial neural network, Deep Belief Networks, which con-
sist of multiple learning layers (like Restricted Boltzmann
Machines) which are trained greedily per layer, or Autoen-
coders, a type of feed forward network designed to replicate
its input.

Deep learning architectures like the ones described above
have been applied to successfully address problems like speech
recognition [19], image classification [35] or even beating pro-
fessional Go players [33]. Besides the very promising practi-
cal results achieved in those areas, the author [6] mentions
the ability deep architectures have to succinctly represent
functions as opposed to very large shallow architectures, as
the main theoretical advantage of deep learning. Further-
more, the broad availability of open-source software frame-
works for deep learning eases the deployment of distributed,
performant, complex and state-of-the-art deep neural net-
work models. Notable examples thereof are Theano [7],
Torch [12], Google’s TensorFlow [1] and Microsoft’s CNTK
[2].

2.3.2 Deep learning for time series classification
Yet another prominent application of deep learning archi-

tectures lies in time series classification. The literature on
this topic is reviewed next. One of the first references on
multivariate time series classification with neural networks
is [10]. That paper proposes a feedforward neural network
for predicting flour prices for a number of geographical loca-
tions. That neural network’s predictions outperform those
by an autoregressive moving average model on the root mean
squared error measure. However, this paper does not em-
ploy deep neural nets since it makes use of only one input
layer, one hidden layer and one output layer.

The work by [3] also suggests that neural networks may
bring performance improvements to time series forecasting.
In their empirical study, the authors directly compare ma-
chine learning methods like support vector regression, k-
Nearest Neighbor regression and multilayer perceptron to as-
sess their performance as time series forecasting algorithms.
The authors conclude that the multilayer perceptron is among
the more accurate methods for that task. A multilayer per-
ceptron is a simple neural network consisting of just one
hidden layer (and, of course, input and output layers), so,
like before, this paper also does not address the use of deep
neural networks.

In [9] however, several deep neural networks are trained
and analyzed for the task of energy demand load forecast-
ing. A deep recurrent neural network of 2 hidden layers
and delivered the best performance in terms of root mean
squared error of predicted values. The authors also stress
the importance of feature selection and engineering to fully
tap neural networks’ power to fit highly non-linear models.



To that end, both domain knowledge as well as, among other
transformations, principal component analysis proved useful
in achieving the best possible results.

Feature selection and engineering as part of the applica-
tion of deep neural networks to time series data is also one
of the topics of [23]. That work addresses the use of deep
neural networks to derive, from raw data, relevant features
for time series modeling in an unsupervised setting.

Finally, [5] proposes a complex model, consisting of a deep
belief network coupled to a multilayer perceptron, to com-
pose portfolios of stocks. In that work, the deep neural net-
work’s input are carefully selected stock value time indexes,
which reflects the role domain knowledge plays in the archi-
tecture of complex deep neural networks. The deep neural
network delivered promising results and performed better
in comparison with, among others, a logistic regression net-
work.

After dealing with the literature on time series classifica-
tion, both with general as well as with deep learning algo-
rithms, work on early time series classification will be re-
viewed next.

2.4 Early Time Series Classification

2.4.1 Definitions
The authors of [38], [28] and [13] all agree on the basic

early classification definition: It is the problem of trying to
come to a classification decision with as little observations
of a time series as possible, while sacrificing classification
accuracy as little as possible.

A different interpretation of the early classification prob-
lem is provided by [29], which tackles the computational
performance side of time series classification. This paper im-
proves both the time and resource complexity of 1-Nearest
Neighbor with the dynamic time warping distance by creat-
ing nearest ”centroid” classifiers that are both faster and at
least as accurate as nearest neighbor algorithms.

Again, all of the papers mentioned below use either the
datasets of [11] or the multivariate time series data set of
[21] or both, which is once again helpful for benchmarking
and comparing the approaches, as referred by [22].

2.4.2 Early works on the early time series classifica-
tion problem

One of the first works on the topic of early classification,
as defined over time series length, was written by [31]. The
authors start with literals, which are, as mentioned before,
simple indicators or statistics, for example if a time series is
going up or down over a previously defined interval. These
base literals are then combined with an AdaBoost.MH, a
version of the prominent ensemble classifier created by [15],
which can cope with multivariate time series with variable
length. Since their approach can work with time series of
variable length, if a partial time series is used as input to
their ensemble classifier, some of the literals, though not all,
will still be able to output a classification response. Using
the fact that the ensemble classifier is just a linear combi-
nation of those literals, the authors omit literals with un-
known values to still reach a classification decision on a par-
tial sample of the time series, thus performing early classi-
fication. For the datasets CBF, Control, Trace and Auslan
(also known in the paper as Gloves), the authors report a
minimum classification error rate of 0.45%, on time series

reduced to 80% of their original length, and a maximum of
83%, on time series reduced to 60% of its original length.
The best results overall were achieved with boosted inter-
val literals, which boast average error rates of 15% for the
60% time series length case and just 1.65% for the 80% case.
While many of the datasets used by the paper are still avail-
able in [11], the Auslan / Gloves dataset (among others)
has been updated since, thus rendering direct comparisons
with current literature harder to make. Nonetheless, this pa-
per’s experimental evaluation of classification performance
on an early version of the dataset by [11] reveals that early
classification may be a promising future research avenue, for
example by tuning the AdaBoost learning process to address
early classification.

After [31], many other authors addressed and further for-
malized the early classification problem. With [37], [38] and
[40], that group of authors advanced research on early clas-
sification of time series from a number of different perspec-
tives.

The paper [37] presents a first approach dedicated to early
classification basing on both sequential rules mining and se-
quential decision trees. The focus of this paper is, however,
sequences, which are time series taking values from a finite
set (like an alphabet). A more general context, which would
be time series taking values in R, is considered in the follow-
ing papers.

2.4.3 ECTS
Further, more prominent early classification approaches

include ”Early Time Series Classification”, or ECTS for short,
developed firstly in [38] and described in further detail in
[39]. The author stipulates desirable, additional character-
istics for early classifiers in general. These are the ”seriality”
of early classifiers, i.e. the invariance of the classification
decision once a certain length of the time series has been
observed, and that its accuracy when classifying the reduced
time series is retained (or at least does not drop too much)
with respect to classification on the time series with full
length. These properties guide the authors’ derivation of the
Early Time Series Classification framework. That frame-
work builds upon the 1-Nearest Neighbor algorithm and
introduces concepts like minimum prediction length and a
clustering algorithm. Those concepts together enable smart
grouping of time series in a train set according to common
prefixes between those time series for early, serial and re-
liable classification. That framework outperforms not only
weaker early classifiers such as 1-Nearest Neighbor fixed,
which refers to the application of the 1-Nearest Neighbor
on a time series with a fixed reduced length, but also even
the 1-Nearest Neighbor algorithm with the full length time
series, on some cases. The classification accuracy of the pa-
per’s algorithm is at least 85% for as little as about 47% of
the original time series length, thus keeping the framework’s
performance always on par with that of the 1-Nearest Neigh-
bor, despite the reduced time series lengths.

The problem of finding appropriate features for early time
series classification is the main topic of [40], the last paper
by those authors on early classification.

2.4.4 RelClass
More recently, [28] proposed a probabilistic framework,

termed ”RelClass”, using quadratic discriminants and sup-
port vector machines for performing early classification. That



paper’s key concept is the reliability of the classification de-
cision, i.e. the degree of confidence with which one can say
that the current incomplete data is sufficient to come to the
same classification as the complete data (with high proba-
bility). That framework allows for classification as soon as
a reliability threshold is met. The results achieved by that
framework compare favorably against the previously men-
tioned 1-Nearest Neighbor fixed and Early Classification of
Time Series methods, both on classification accuracy and
earliness. In general, results strongly depend on the dataset,
varying from a low in classification accuracy of 27% on 87%
of original time series length to a classification accuracy high
of 99% for just 30% of time series length.

2.4.5 ECDIRE
The latest development in the theoretical treatment of

early time series classification seems to be the paper by [26].
The authors employ a method called ”Early classification
framework for time series based on class discriminativeness
and reliability of predictions”, in short ”ECDIRE”, to clas-
sify bird songs early and also beat the results achieved by
[38] and [28] on the same data sets used by those papers.
”ECDIRE” is a probabilistic classification framework that
is organized into 4 steps. The first step, termed by the
authors ”Analysis of the discriminativeness of the classes”,
aims to derive a set of time series timestamps which enable
good discrimination of time series classes early. This step
begins with the definition of a set of early time series times-
tamps as a percentage of total time series length. Then,
a variation of a Gaussian Process classifier, which in turn
is a Bayesian probabilistic classifier, is trained with cross-
folding on each of the time series reduced by the previously
defined percentages. Early timestamps are thus identified
as those which still maintain an accuracy above the reduced
time series length (in percentage) times the accuracy (also
in percentage) attained with the same classifier on the full
length time series. In a second step, thresholds for classifica-
tion reliability are defined as a, quote, ”distance in terms of
differences in class probabilities of the winning class and the
next most probable class”per time series and class. This im-
proves reliability by avoiding uncertain predictions and thus
also classification timestamps, which might be too early to
distinguish certain classes from each other. Finally, the ac-
tual probabilistic classifiers are trained on the full training
set with the early timestamps computed in step 1 (as well as
with the full time series length, as a fallback solution if no
early timestamp was found in some particular case). This
procedure resulted in a framework which Pareto dominated
the results obtained in the papers by [39] and [28] much
more often than the other way round.

The paper [26] was not the only one to apply early clas-
sification techniques to address a real-world data sets and
problems. Examples thereof include, but are not limited to,
the following papers. The authors of [16] compose, in their
paper, a hidden Markov model with a support vector ma-
chine to create an early classifier, which performed well on
a medical domain dataset containing gene expression values
for a number of multiple sclerosis patients, for which not
much data was available. They report classification accura-
cies as high as 87% for as little as 43% of the original time
series length. The work by [17] introduces a classifier with
a reject option, which allows the classifier to abstain from a
classification decision if it is not clear-cut, weighing in that

with the cost of making further observations. Their classifier
with the reject option is general enough to allow for differ-
ent classification algorithms, like a support vector machine
or k-Nearest Neighbors, to be used. This early classifier was
used in the classification of odors, serving as the basis for a
performant electronic nose.

3. CONCLUSIONS
In this paper, literature on time series definitions, its clas-

sification, in particular with deep neural networks, and early
classification techniques were reviewed. In conclusion, there
is a very large number of both theoretical as well as practical
work to classify time series, and, in particular, classify time
series early. In particular, this body of work presents not
only theoretical results and frameworks to use for different
types of time series and data sets, but it also provides re-
sults to benchmark against. The results of the early time
series classification literature highlighted above, in particu-
lar of the paper by [26], have shown that early classification
works on both theoretical as well as applied problems, with
early time series classifiers showing classification accuracies
on reduced time series on par with those obtained via the
1-Nearest Neighbor classifier equipped with the Euclidean
distance.

4. REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] A. Agarwal, E. Akchurin, C. Basoglu, G. Chen,
S. Cyphers, J. Droppo, A. Eversole, B. Guenter,
M. Hillebrand, T. R. Hoens, X. Huang, Z. Huang,
V. Ivanov, A. Kamenev, P. Kranen, O. Kuchaiev,
W. Manousek, A. May, B. Mitra, O. Nano,
G. Navarro, A. Orlov, H. Parthasarathi, B. Peng,
M. Radmilac, A. Reznichenko, F. Seide, M. L. Seltzer,
M. Slaney, A. Stolcke, H. Wang, Y. Wang, K. Yao,
D. Yu, Y. Zhang, and G. Zweig. An introduction to
computational networks and the computational
network toolkit, 2014.

[3] N. K. Ahmed, A. F. Atiya, N. E. Gayar, and
H. El-Shishiny. An empirical comparison of machine
learning models for time series forecasting.
Econometric Reviews, 29(5-6):594–621, 2010.

[4] Z. Banko and J. Abonyi. Correlation based dynamic
time warping of multivariate time series. Expert
Systems with Applications, 39(17):12814–12823, 2012.

[5] B. Batres-Estrada. Deep learning for multivariate
financial time series. 2015.

[6] Y. Bengio. Learning deep architectures for ai.
Foundations and trends in Machine Learning,
2(1):1–127, 2009.



[7] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,
R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: a CPU and
GPU math expression compiler. In Proceedings of the
Python for Scientific Computing Conference (SciPy),
June 2010.

[8] P. Brockwell and R. Davis. Time Series: Theory and
Methods. Springer Series in Statistics. Springer New
York, 2013.

[9] E. Busseti, I. Osband, and S. Wong. Deep learning for
time series modeling. Technical report, Technical
report, Stanford University, 2012.

[10] K. Chakraborty, K. Mehrotra, C. K. Mohan, and
S. Ranka. Forecasting the behavior of multivariate
time series using neural networks. Neural networks,
5(6):961–970, 1992.

[11] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall,
A. Mueen, and G. Batista. The ucr time series
classification archive, July 2015.

[12] R. Collobert, C. Farabet, K. Kavukcuoglu, and
S. Chintala. torch - a scientific computing framework
for luajit, May 2016.

[13] A. Dachraoui, A. Bondu, and A. Cornuejols. Early
classification of time series as a non myopic sequential
decision making problem. In Machine Learning and
Knowledge Discovery in Databases, pages 433–447.
Springer, 2015.

[14] L. Deng and D. Yu. Deep learning: Methods and
applications. Foundations and Trends in Signal
Processing, 7(3–4):197–387, 2014.

[15] Y. Freund, R. Schapire, and N. Abe. A short
introduction to boosting. Journal-Japanese Society
For Artificial Intelligence, 14(771-780):1612, 1999.

[16] M. F. Ghalwash, D. Ramljak, and Z. Obradovic. Early
classification of multivariate time series using a hybrid
hmm/svm model. In Bioinformatics and Biomedicine
(BIBM), 2012 IEEE International Conference on,
pages 1–6. IEEE, 2012.

[17] N. Hatami and C. Chira. Classifiers with a reject
option for early time-series classification. In
Computational Intelligence and Ensemble Learning
(CIEL), 2013 IEEE Symposium on, pages 9–16. IEEE,
2013.

[18] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and
A. Bagnall. Classification of time series by shapelet
transformation. Data Mining and Knowledge
Discovery, 28(4):851–881, 2014.

[19] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r.
Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al. Deep neural networks
for acoustic modeling in speech recognition: The
shared views of four research groups. Signal Processing
Magazine, IEEE, 29(6):82–97, 2012.

[20] M. W. Kadous. Learning comprehensible descriptions
of multivariate time series. In ICML, pages 454–463,
1999.

[21] M. W. Kadous. Temporal classification: Extending the
classification paradigm to multivariate time series.
School of Computer Science and Engineering,
University of New South Wales, 2002.

[22] E. Keogh and S. Kasetty. On the need for time series
data mining benchmarks: a survey and empirical

demonstration. Data Mining and knowledge discovery,
7(4):349–371, 2003.

[23] M. Langkvist, L. Karlsson, and A. Loutfi. A review of
unsupervised feature learning and deep learning for
time-series modeling. Pattern Recognition Letters,
42:11–24, 2014.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[25] J. Lines, L. M. Davis, J. Hills, and A. Bagnall. A
shapelet transform for time series classification. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 289–297. ACM, 2012.

[26] U. Mori, A. Mendiburu, E. Keogh, and J. A. Lozano.
Reliable early classification of time series based on
discriminating the classes over time. Data Mining and
Knowledge Discovery, pages 1–31, 2016.

[27] NIST/SEMATECH. e-handbook of statistical methods
- introduction to time series analysis, Oct. 2013.

[28] N. Parrish, H. S. Anderson, M. R. Gupta, and D. Y.
Hsiao. Classifying with confidence from incomplete
information. The Journal of Machine Learning
Research, 14(1):3561–3589, 2013.

[29] F. Petitjean, G. Forestier, G. I. Webb, A. E.
Nicholson, Y. Chen, and E. Keogh. Dynamic time
warping averaging of time series allows faster and
more accurate classification. In Data Mining (ICDM),
2014 IEEE International Conference on, pages
470–479. IEEE, 2014.

[30] J. J. Rodriguez, C. J. Alonso, and J. A. Maestro.
Support vector machines of interval-based features for
time series classification. Knowledge-Based Systems,
18(4):171–178, 2005.

[31] J. J. Rodriguez, J. J. R. Guez, and C. J. Alonso.
Boosting interval-based literals: Variable length and
early classification. 2002.

[32] J. Schmidhuber. Deep learning in neural networks: An
overview. Neural Networks, 61:85–117, 2015.

[33] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

[34] S. S. Skiena. The algorithm design manual: Text,
volume 1. Springer Science & Business Media, 1998.

[35] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf.
Deepface: Closing the gap to human-level performance
in face verification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pages 1701–1708, 2014.

[36] L. Wei and E. Keogh. Semi-supervised time series
classification. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 748–753. ACM,
2006.

[37] Z. Xing, J. Pei, G. Dong, and S. Y. Philip. Mining
sequence classifiers for early prediction. In SDM, pages
644–655. SIAM, 2008.

[38] Z. Xing, J. Pei, and S. Y. Philip. Early prediction on



time series: A nearest neighbor approach. In IJCAI,
pages 1297–1302. Citeseer, 2009.

[39] Z. Xing, J. Pei, and S. Y. Philip. Early classification
on time series. Knowledge and information systems,
31(1):105–127, 2012.

[40] Z. Xing, J. Pei, S. Y. Philip, and K. Wang. Extracting
interpretable features for early classification on time
series. In SDM, volume 11, pages 247–258. SIAM,
2011.

[41] K. Yang and C. Shahabi. An efficient k nearest
neighbor search for multivariate time series.
Information and Computation, 205(1):65–98, 2007.

[42] L. Ye and E. Keogh. Time series shapelets: a new
primitive for data mining. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 947–956. ACM,
2009.


